in memory of my mother

LOCKING:
A RESTRICTION OF RESOLUTION

by

Robert S. Boyer, B,A;

DISSERTATIOM
Présenﬁed to the Faculty of the Graduate School of
The University of Texas at Austin
in Partlal Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

~
O~

THE UNIVERSITY QF TEXAS AT AUSTIN
August 1971

Preface

For a first readlng, may we suggest the following.

1) Read the Introduction for a general view of the subject
matter,

2) Follow carefully the example at the beginning of Chapter 1
for a basfic ldea of what resolutlon is.

3) Read Chapter 2 (whlch ﬁarks the beginning of the material
original to this thesis) for an explanation of the locking
restriction on resolution.

k) Muse over a few of the examples of locking proofs in
Chaptér 6.,

5) Read Chapters 3 and 4, the core of the thesis, after a
cursory reading of the-definitions in Chapter 1. Refer to these

definitions (by means of the Index) when necéssary.

lv

Acknowledgements

W.W. Bledsoe made several substantial suggestions that
are incorpbrated in this theslis, fhe concept of locking is
derivative from a proposal he made.

Robert B. Anderson made several valuable criticisms

~and section 5,7 Is his discovery.

Marvin Minsky made avallable the facilities of the
Artificial Intelligence Léboratory of the Massachusetts
Institute of Technology during 1970-1971,

w;w. 8ledsoce, Anne Boyer, and Vesko Marinov made many
textual and stylistic correctlons.

NASA gave me financlal support from 1967 to 1970,

NIH gave me support {n 1970~71 through grént Git
15769-03 to W.W. Bledsoe.

ARPA supports the A! Lab at MIT,

| am most deeply Indebted to Prof. 3ledsoce and my wlfe
Anne for inspiration and encouragement, Dr. Bledsoe, with his
enthusiasm and profound zeal for mathematical thinking, has been
my brincipal guide throughout my graduate education. My wife's

love and devotion have heid me together.

July 1971

Abstract

A restrliction, called "locking", of the resolution
deductive system of J.A, Roblinson is presented. Lbcking
Involves arbitrarily indexlng with Integers the literals in the
clauses to be resolved. Different occurrences of the same
literal may be indexed differently, Resolution Is then
permltted only on literals of lowest Index in each clause. The
literals in resolvents are indexed hereditarily ("merging low"
when necessary)., Thls restriction is shown to be complete.
Locking results in a significant reduction in the number of
clauses generated, Locking 's compared to other restrictions of
resolution and is shown to be incompatible with some. Several
examples of locking derivations are given., Finally, a special
application of locking to a troublesome axlom is described whlch

reduces the irrelevant clauses generated by that axiom,

vi

Table of Contents

Preface

Acknow!ledgements

Abstract

Iintroduction

1. A Grammar of Resolution

2, The Concept of Locking

3. The Completeness of Ground Lock-resoluéion
4, The Completeness of Lock-resolution

5. The Incompatlibilities and fdfosyncracies of Locking
6. Some Examples of Lock-resolution |
7. Hammer~locking

Appendix

Index

Footnotes

B}bliography ~

Vita

vii

fv

vi

27
32
37
46
54
63
67
69
70
72
75

Introduction

It s an old wish that we might have rules by which to
- think. To some degree mathematics glves us rules for thinking
about the world. It Is only natural that logicians have tried

. to produce mathematical rules for thinking about mathematics.
The !nvention of computers has lnspired an enthusiasm for a
practical mechanlzation of mathematical Inferénce.- Though the
important results so far produced In this endeavor have been
about, rather than by means of, Computation,'this field Is known
as "automatic theorem proving."

The foundation or "ground" of automatic th=orem
proving lies In the concept of the tautology. The
proposftional logic is essentially the calculus of tautologies;
and any question In tHe propos!tional logic can be decided by
the method of "truth tables.'" As anyone knows who has computed
the truth tables fbr a few propositions, queétiohs about
tautologies are essentially boring. They would not be of real
interest to anyone, perhaps, were it not for the remarkable
theorem of J. Herbrahd.

While trying to reduce mathematical loglic to a
mecHanIzable system in 1930, Herbrand.diécoveréd that any
question in the first order predicéte logic can "alhost" be

Eeduced to a question of tautologles, |t Is generally belleved

that most of mathematics can be done in the first order

predicate calcu1u$.

Roughly speakling, Herbrand showed that if P is'a
formula In the predicate logic and H is the collection of all
names of objects,(H is commonly known a Herbrand's Universe),
then P is a theorem if and only if some finite disjunction of
Instances of P by terms In H is a tautology. The "some" in his
theorem is the reason that we must say he "almost" reduced logic
to tautologies, lt_{s_éhurch's theorem that tells us the
"almost'" can never be erased; for If we could find a procedure
that would give us that "some' for any P (or tell us {f such did
not exist), we would have a decision procedure for the predicate
calculus., But there Is none.

Despite the impossibility of decliding whether there is
some finite disjunctlon of inétances for any P, we can still
always find a proof for any P, If P is a theorem. For example,
we might simply proceed to examine all the possible instances. '
Thls procedure was actually tried on computers in 1960 by
Wang(20),Prawitz(13), and Davis{(7). It éﬁs discovered, however,
to be a iask too demanding for the computers in existence then
or now,

fn 1960 D, Prawitz(1l4) and In 1963 J.A. Robinson(16)
Independently discovered a method for greatly increasing the
search for the right instantiations, They showed that one may

search in a perspicuous fashlon, high above the ground level of

the proposltion logic, considering Infinitely many Instances "In

a single bound." Robinson's discovery he named the process of
"uniflcatlon"; he embedded it in a Inference system called

" which system is the basic framework for most work

“"resolutlon,
done since then in "automatlc theorem proving."

Even though resolution provides a vast improvement
over the method of instantlation, it Is stil1]l plagued by an
exponential explosion in the number of ''clauses" it generates;
this explosion Is unmanageable on hard problems. Many
researchers have found sfrategies that restrict this growth
while still preserving resolution's completeness. In this
thesls we present such a restrictlon which we call "locking." In
Chapter 1 we present a grammar of resolution. In Chapter 2 we
Introduce the concept of locking. Chapters 3 and 4 contain the
proofs of the completeness of locking In the "ground" and
"general" cases, In Chapter 5 we describe the relationship of
locking to other restricted forms of resolutlon. Chapter 6

contains some examples of locking refutations. Chapter 7

describes a special application of lockipg to a common but

troublesome ax{om.

1., A Grammar of Resclution

Before precisely defining the concepts of resolution
we offer a brlef example of a resolution proof.

For any binary predlcate 6, (such as "=" or "<{") the
following is a theorem.

VxIy(((G v x) = Iw (G w y))
AN CC 32 (Gzy)ANGyYy 2z)) = (Gyx))))

To prove this theoren by resolution we first transform
It Into the set of five clauses:
LDy (@) (6 (F v v)]
2 [Gy (a)y) (Gy (f yv))]
30 (6w y) (G (F v) v)]
8 [=G w vyl (CGy (f v))]
S [=6 wy) -T(G.y (a)) 11
The rutes for this transformation are quite
stralghtforward(cf., p.18). The members of the clauses are
called "1lterals", e.g. T (G y (a)) in the fifth clause. The
literals without the "not" sign (=1) at the front are called
"atoms." The symbol "f" s called a "functlion symbol™ and was

Introduced during the transformation, The symbol "a" is called

" and it also appeared during the transformation.

a "constant,
"(f x)" and M(a)" are called "terms." The symbols "w" and "y"

are, of course, variables, and we think of them as being

replaceable,

Once we have these original clauses, we try to
"resolve" them together. Resolving involves taking any two
Clauses, plcking any two of thelr literals (one from each
clause), and checking for a "match' of a certain kind. (This
matching Is called unification!)}, [If this match is found, we
then create a new clause, called a "resolvent," from the
literals (other than the ones we matched) in the two clauses we
are resolving.

For example, we take clause 1 and clause 3, and try to
"match" their first literals

(G y (a)) -1 (G w vy).
To match them, we first check’to see that one is an atom and
one has the "not" sign. We then look for a way of replacing
some of the variables in these two literals so that the two
resulting literals will be identlical (except for the "not"
slgn).. If we replace y by w In (G y (a)) and y by (a) in
=1 (G w y) we shall have

(G w (a)) -and ={G w (a)).

Therefore, a "match" exists. And therefore, we may produce a
resolvent,

The resolvent produced is the set consistlhg of the
other literal in clause 1 (with y replaced by w) and the other
literal in clause 3 (with y replaced by a), namely

6 [(G (f w) w) (G (f (a)) (a))].

In a similar way we resolve the first literal in

clause 2 and the first literal in clause 4 to get the resolvent
7 [(6w (f w)) (G (a) kf (a)))]

in fact, It is possible to resolve the first five
clauses In twenty ways. After maklng all these resolvents, we
then proceed to resolve the resolvents with one another and with
the original five clauses, Then we resolve the new resolvents
with one another, with the previous resolvents, and with the
original five; and so on.

The purpose of all this resolving is to generate the
empty set as a resolvent (we denote the empty set by "[J"). For
once we have generated [J, we shall have "nroved" the theorem.
But the only way to generate [] as a resolvent is to resolve two
clauses which have only one literal aplece (since only then
would there be no "other" literals in either clause to appear In
the resolvent.,) The reader may guess, therefore, that we have
one more process In store.

This other process is called '"factoring" (1.18). To
factor a clause Is to replace some of the variables in the
literals of the clause in such a way that the clause '"shrinks,"
- For example,'If we replace w by (a) In clause 6, we obtaln the
¢lause
g8 [(6 (F (a)) (a)))]

This "shrinkage" occurs simply because a clause Is a set and no

set can "contain the same element twice."

Simllarly,

9 [(6 (a) (f (a)))]
Is a factor of 7.

In resolution, we admit the factors of clauses to full
.standlng, t.e., In addition to resolving our original clauses,
their resolvents, etc., we also resolve on the factors of every
clause in sight.

In particular, we can resolve clause 8 with clause 5.
For if we replace y by (f (a)) and w by (a) in the
llteral = (G w y), we get —(G (a) (f (a))), which is
identical to the only literal In clause 9 (except for the "“not"
slgn). Hence 9 and 5 resolve to produce |
10 [(G (f (a)) (a)) 1] |
l.e. the set consisting of the other literal In clause 5 (with
y replaced by (f (3)) and w replaced by (al).)

Now we can resolve 8 and 10 to obtain the desired (0.

Thus we have proved the theorem by means of resolution,

The main result of this chapter 'is the Resolution
Theorem 1,26, Those familiar with_rgsplution may well skip the
entire chapter after a cursory glance at 1.15, 1,16, 1,17, 1.19,
and 1.20. Virtually all of the definitions and theorems may be
found in (16).
Those who tire of the definitions and theorems before 1.26 may

well begin reading after 1.26 and refer to the earlier material

when necessary.

ke now descrlbe the language in which resolution is

the rule of inference.

1,1 The Symbols

The language |s determined by three disjoint sets of symbols,
viz,, the variables, the function symbols, and the predicate

symbols,

The variables are Infinite in number and tnclude:

] 110
W,X,V,zZ,wt,xt,yt, 2t WY,

x'', ...

There are a countable number of function symbols, With each
function symbol is associated exactly one non-negative Integer
called "the number of arguments" of that symbol. A function
symbol of 0 arguments is called a '"constant.," The language has

at least one constant.
With each predicate symbol Is associated exactly one
non-negative Integer called "the number of arguments'" of that

symbol,

There are four additlonal symbols,

() - /

1.2 Terms
Froﬁ the functlon symbols and variables are built the "terms"
of the language, To be precise, let H be the smallest set such
that
1) H contalns the variables of the language, and
2) if tl, t2, t3, ... tn are members of H and f is a
function symbol of n arguments, then H contains the
string (f tl t2 ces tn),

H s the set of terms.

1.3 Atoms
If P Is a predlcate letter of 0 arguments, then P is an atom.
If P Is a predicate letter of N arguments and tl, t2, t3, ... tn
are terms, then the string

(P t1 t2 t3 ... tn)

Is an atom.

l.4 Literals, Complements, and Signs

If A Is an atom then
1) A is a "literal",
2) the string
= A
is a "literal",

3) A and - A are "complements'" of one another,

4) the "sign" of A Is "T" and the "sign" of —A is "F",

10

and

5) A 1s called "the atom" of both A and = A.

1.5 Clauses

A clause ls a flnite set of literals, The empty clause is the
empty set and Is denoted by "[J". A clause with exactly one

member Is called a "unit" clause.

1.6 Groundness

A clause, a literal, or an atom is called "ground" If and only

if no variabhle occurs in {t.

1.7 Substitution Components

If x is a variable and t is a term and x Is not t, then the
string |

t/x
Is called a "substitution component."” x s called the "second
part" of the component and t Is called the "first" part of the
component, (He think of the second part as about to be replaced
and the first part as the expression.that will take the place of

the second part.)

1.8 Substitutions

A finlte set of substlitution components is called a

“"substitution" provided no two distinct members have the same

n

second part. (The reason a substitution cannot have two
components, say t/x and t'/x , with the same second part !s that

we could not know whether to replace x wlth t or with t'.)

1.9 Instances

Suppose that L is a term, a literal, or a clause. The lInstance
of L under a substitution o s the result of slmultaneously
replacing in L each variable x that is the second part of a
component t/x of o with the t.

"LU " denotes the instance of L under o . If L s s
ground(i.,e. has no variables), it Is called a ground instance of
L. If ¢ [Is a substitution, L is a set of literals, ana L0

has as many members as L, then l.c Is called a "direct

Iinstance' of L.

1.10 Variants

If E is an Instance of F and F is an instance of E, then E and
F are called "variants" of each other.,
For any E there exists an F such that E and F have no

variables In common anﬁ E is a variant of F,.

If ¢ and T are substitutions, we would like to have a

substitution Yy such that (EU)T Is E y ¢ f.e. the

composition of ¢ and .

12

1,11 Composition of Substitutions
Suppose 0 and . are substitutions., Let y be the
substitution to which the component t/x belongs If and only If
el ther
1) for some t', t'/x Is a component of o and t = t'f .
or
2) x Is not a second part of a component of o and t/x
ls a component of 1 ,

Y is called the "composition" of ¢ and 1™ and is denoted

by " o1 ",

1.12 Unification

If S is a set of literals, o is a suhstitution, and S is a
a

singlteton, thencls sald to "unify" 3,

Consider the set C
L Gy x) (G (F x) 2.
Each of the followlng substitutions unifies C.
[(FCECFCECR)I)Yy (F(F(F(a))))/x
(F(F(f(al))d)/z]
[(f (a))/y (a)/x (a)/z]
[F (xN)/y x/z]

1.13 tost General Uniflers

If ¢ unifies S and for each t© that unifles S there exlsts a

13

A such that o = 1, then ¢ {s said to be a "most

general unifier™ of S.
The substitution
[(FEx))/y x/z]

is a most general unifier of ¢ above.

l.14 Unification Theorem

|f any substitution unifles §, then there exlists a most general

unifier of S,

1,15 Simultaneous Unification

If S1, S2, ... Sn is a sequence of sets of literals, o Is a
substitution, and for each i, Sij is a slngleton, then ¢ Is
. a '

sald to "simultaneously unify" $1, S2, ... Sn.

1.16 Most General Simultaneous Unlfiers

If o simultaneously unififes S1, $2, ... Sn and for each =t
that simultaneously unlfies S1, S2, ... Sn there exists a A
such that oA = 1 , then o s said to be a "most general

simulitaneous unifler"” of S1, S2, ... Sn.

1.17 Simultaneous Unification Theorem

IF any substitution simuitaneously unifies S1, $2, ... Sn, then

there exlsts a most general simultaneocus unlfier of sil, 82, ...

14

Sn,

1.18 Factors

1f C is a clause, T is a subset of €, and o most generally
unifies T, then € _ s called a "factor" of C. {(Since a ground
clause has no non-trivial instances, {t has no non-trivial

factors.)

1,19 Fully-factored Sets

A set S of clauses is said to be "fu11y-fact0réd" if and only
1f some variant of every fac;or of every member of § ls a

member of S.

1,20 Fully=~factored Theorem

If C is a member of a fully-factored set S of clauses and ©
Is a substitution, then there exist a member C' of § and a

substitution 1t such that C, s a direct instance of C' under

~.

1.21 Interpretations

A set of ground literals | is called an "interpretation"

provided that for each ground atom A, elther A is a member of |

or mA is a member of i, and not both are,

15

1.22 Models and Satisflability

If S Is a set of clauses and | {s an Interpretatlon, then | s
called a "model" of S If and only If each ground Instance of
~each member of S contains some member of 1. $ Is called
"satisfiable" lf and only if some Interpretation is a model of

S.

1.23 The Model Theorem

If S is a finite set of clauses, there exists a model of S If

and only if for each sequence of substitutions oy, op, ..., Un
such that for all i, § o_fs a set of ground clauses,
i

S U %m U ¢ U S admits a model..

a1 g

n : _
We now prove the lModel Theorem. By the definition of

model, If S admits a model! M, then M is a model for any

S01 U S02 U ...u SUn . Hence, one half of the Model Theorem
is trivial,

The other half s only a variation on Kénig's Lemma.
One mlght view the Model! Theorem as .a compactness theorem.'

Suppose that for each sequence 01, 02,...,ﬁ1 of

substitutions such that for all i,S Is a set of grodnd

a.

i

U 802 U ..U 8 admits a model, There are only
n

countably many substitutions. Let t,75,73 ... be an

clauses, S01

enumeration of those substitutions t such that ST is a set of

ground clauses, Let us denote by 1(m) ST U ST2 see U S .

1

16

Let Al, A2, A3, ... be an enumeration of the ground atoms,

For each i, we shall recurslvely deflne an ft; and it
will turn out that #go r--1i Is a model of S,

There Is a literal L such that
1) elther L is A]or L Is =A : and,
2) for eachm, L Is a member of some model of [(m).
For suppose that for some jo Alis not a member of some model of
t(jo). Then for all k > 0, A iIs not a member of any model of
1(jo+tk), slnce any mode]lof 1(jo*k) 1s a model of 1(jg).
Similariy, if for some j 1 A1 Is not a member of a model of
1(j1) , then A1 is not a member of a model of F(j1+k), But
then nefther of Ay ,™ A1 s a member of a model of 1(jo*j1).
This, however, contradicts the assumption that for every
O1. G2 » *=+ s Op such that S‘H Is a set of ground clauses
S01 u 502 u...u SUn admits a model.

We define M; to be [L] for such an L, Suppose that
for some | > 0 Mi has been defined and that for each m, Mi
is a subset of some model of I(m). By am argument similar to
the one Immediately above:

There is a literal L' such that

1) either L' Is A, _or L' iIsmA ., and
i+ i+

1
2) for each m, H UlL'] I1s a subset of some model of I{m).

Let M4y = M4 U[LT . Then for each m, M j4q Is a subset

of some model of 1(m),

Now let 4 = LJOHi « Then for each m, M is a rmodel
1>)

17

of I{m}. For, let J be a positive Integer such that if L is a
1iteral In I{m) and A " Is the atom of L In the ordering

Al, A2 , A3, ... of the atoms, then n < J. Then I!f C is.a

- clause in I{m), some member of My Is a member of C.

Therefore, M is a model of $.QED.

1,24 Resolvents

If C and D are clauses, Ll and L2 are literals in C and D
respectively, the slgn of L1 is not the sign of L2, and there
exists a most general unifiter o of the atoms of L1 and L2,
then

(Cc-[L1]yu oD - [L21)_

Is called a "resolvent" of ¢ and D. 2

1,25 Resolution

If § Is a set of cléuses, then let R(S,0) be $ and.for each
positive integer [+1 let R(S,i+1) be the union of R(S,i) and the
set of all resolvents of factors of membeérs of R(S,1). Léf

R(S, w) be LJR(S,i).

jew

1.26 Resolution Theorem

ITf S is a finite set of clauses, S Is unsatisfiable If and only

if 0 =R(S, w).

18

The Clausal Transformatlion and Herbrand's Theorem.

Before proving the Resolution Theorem (1.26) we do two
things., First, we show how to transform any question In the

3 into a set of clauses., Second,

first order predicate calculus
we state Herbrand's Theorem, which tells us why resolution is of
Interest.

Suppose we wish to prove in the first order predicate
calculus that C follows from Al, A2, ..., An. VWHithout loss of
general ity we assume there are no free variables In any of
C, Al, A2, ... , An. Let TH be the formula
ALAAZ A oo AARAC. (Thus in our example at the Beginning
of this chapter TH is just

(v W3Iy(G y x) = 3w (6w y))
ACC Jz(Gzy) A (BGy2)) = (Gyx))))

Now perform the following three operations on TH,
1) Transform TH into prenex normal form. (For our example,
‘this is .

3;—;.‘1_/ Jz¥w 7 (G y X) ~> (G w v))

AG 2z y)Aa (Gy z) = (G y x))).

2) If TH has the form VXIsz..fonﬂyB (l.e., ¥y Is the first
existentially quantifled varlable in TH) then_]et f be a new

function symbol of n arguments and transform TH Into the result

of replacing y by (f Xy X 2...xn) In VxIsz...Van. If TH still

19

has any existentially quantiflied variables, perfor: step 2

again.

(Step 2 fs referred to as "skolemization™ and the new function
symbols introduced are called "skolem functions.™ In our
example, step 2 Is performed twice and the result Is
(Vy ¥Yw =1 (G y (a)) = (G wy))
AG(f y) v) A(Gy (fy)) 2 (Gy (a)))).

3) Transform_TH into conjunctive normal form. In our example,
this Is
¥y Yw (((6y (a)) v (G (F y) y))
AWG y (a)) v (G y (f y)))
Al (G w vyl vV (G (f y) y))
A (Gw y) v (Gy (Ff y}))
A G wy) v 1 (Gy (a)))) N
After these three.steps have been performed, TH is of the form

n~

¥ ' ‘
X oo xp((L.“ VLIZV”'Vle)

1
Al L21 vL22v...vL2k2)
A . & »
A Lm] vLmzv...VLmkm }).

Each Lij Is a literal as defined at (1l.4), TH is inconsistent

if and only If C follows from Al, A2, ..., An,

Let us call

20

(L_” VLlZV...VL.Ik])

AC L2] \4![22\/...\M_2k2)

AC L m Vb v...vLmkm))
the negated-skolemized=conjunctive~-normal-matrix of
(C, Al, A2, ..., An) or NSCNM(C, Al, A2, ... An) for short.
Let S be the set of clauses
S S
[L2.I Y IRLL |2k2]

Lt e oo T
S Is precisely the set of clauses we glve to resolution to
decide whether C follows from-Al, A2, ..., An. Let us call 3§
the clausal form of C, Al, A2, ..., An or
CL(C,ALl, A2, ..., An) for short,
Mow that we have shown how to obtain clauses from
questloﬁs In the first order predicate calculus, we state

Herbrand's Theorem and show lts connection with resolution,

Herbrand's Theorem

If D is NSCNM(C, Al, A2, ..., An), then C follows from
Al, A2, ..., An if and only if there exist substitutions

Ols 25 «ess O such that for each i, D,, has no
_ . i
variables and (D AD A...AD _) 1Is inconsistent, 3

3

21

What is the connection with resolution? Suppose that

01s To, ...;ok are substitutions and for each i, 0 has no
i

variables. Then by the method of truth tabies,

(D AD AN...ND) is inconsistent if and only if there
01 02 Uk

exists no way of assigning the value T to some literal in each
disjunction of each D - without assigning T to some literal and
.i .
its complement., It immediately follows that
(D AD A... AD_) is inconsistent If and only if
03 05 dk .
(S us U ...U S } does not admlt a model (recall that we
g) 02 Uk
let § = CL(C,AL, A2, ... , An).) Now by the Model Theorem
(1.23), C follows from Al, A2, ... , An if and only if S does
not admit a model, Therefore, once we have established the

Resolution Theorem (1,26) we shall have

The Completenéss and Soundness of Resolution

If S is cL(C, Al, A2, ..., An), then C follows from

Al, A2, ..., An If and only if [J ¢ R(S, w).

We thus complete the digression on the clausal
transformation and Herbrand's Theorem and begin proving the
Resolution Theorem (1.26),

One half of (1,.26) is easy, namely:

1,26,1 If S has a model, then [J ¢ R(S, w).

We flrst prove by induction on n,

22

1,26,2 Lermma

If S Is a set of clauses and M is a model of S, then for each
C ¢ R(S,n) and for eachisuch that CA is a ground clause,
some.member of 11 Is a member of C, -

1.26,1 Is an Immediate consequence of this lemma, for
If every ground instance of every member of R(S,w) contalns a
member of M, then surely [] ¢ R(S, w). |

By the definition of model, every ground instance of

every member of S contalns a member of M. Since R(5,0) = 3§,
the lemma holds for the case n = 0.
Suppose 1.26,2 holds for 1 < n+l1, and Cl and C2 are

members of R(S,n). By the Induction hypothesis, every ground
tnstance of Cl or €2 contalns a member of M. Let Cl' and C2' be
factors of Cl1 and C2, ‘Trivially, any ground instance of CI1! or
C2' contalins a member of M. Suppose that L1 € Cl', L2 ¢ c2!', thé
atoms of L1 and L2 have most general unifler o, and L1 and L2
have opposite slgns., Let R = ((C1' -[LIp U (C2' A2D) ;. Let
A be any substitution such that R, 1Is a ground clause. Then
(c1? -[Lﬂ)cA or (C2' -[LZJ)G}t . hence R, , contains a member of
M. QED.

We now suppose that S does not admit a model and

proceed to show that for some I, [] ¢ R(S,1). The proof is

based upon the Model Theorem and

23

1.26.3 The Ground Case

If S Is a finlte, unsatisflable set of ground clauses, then
e R(S, w),

In proving the Ground Case we make use of a
partlcularly transparent form of Induction first presented in
Anderson & Bledsoe (3). We shall again make use of it In
Chapter 3 to prove the ground case for locking. \e need the

definition of

1.26.4 The K Parameter

If S is a finlte set of clauses, then K(S) is the difference
between the sum of the cardlnalities of the members of S and the
cardlnality of S. {(More simply, K(S) ts the number of literal§
minus the number of clauses. But note we count distlnct
occurrences of lliterals!!!)

He now prove 1,26.3.

Suppose that § is a finlte, unsétisfiabie collection
of ground clauses. |If K(S)< 1, then either [J ¢ S or each
member of S Is a sihgleton. If O € s, then [0 = R(S,0).

So suppose that each member of S Is a singleton.
Since S is unéatlsfiable, there must exist some atom L such that
L] ¢ s and+L] € S. But then [J ¢ R(S,1).

Now assume that Kk Is an Integer and for all] such

that j< k+1, If S' is an unsatisflable collection of ground

clauses and K(S') = j then for some n, [Je¢ R(S',n); Suppose’
! .

24

further that K($) = k+l., Then either [0 £ S or S contalns a
clause that is not a slngletoﬁ. If 1 ¢« S, O e R(S,0), So
suppose there Is a clause C in S with at least two members, one
of which is the literal L, Let A = € -~ [LJ]. Let S* = (S =[CD
UEAL Cilearly, then, K(S*) = k., Furthermore, S*% is
unsatisfiable since any model of $* is a model of S, Hence for
some integer JO, [J e R(S* , J0). But this Implies that either
Oc RS, 40) or [L)e R (S, 4O). Let S*x+ = (S -[cp U [[.L]].
K(S*%*) < k+1. Furthermore, S*+ is unsatisfiable. Therefore,
for some integer Jl1, [Q e R(S»», Jl1). Therefore,

[¢ R(S,J0 + yl), This establishes 1.26.3.

Digression on Lifting and Instantiating

After the following digression, the proof of 1.26 continues at
1.26.5

By the Model Theorem, a collection $ of clauses Is
unsatisfiable If and only if there exists a sequence

ol, 62, «ss,0n of substitutions such that -for each i, %, is
i

a collection of ground clauses and

S U s U +eo US
ay Go %

Is unsatisfiable.

If G 1s a finlte collection of ground clauses, then
for some integer n, R(G,n) = R(G, w). Hence to decide whether
S is satisflable, we might take some enumeration of all

substitutions o such that S0 Is a collection of ground

rd

25

clauses, and for each | compute R(SGl U S02 U ... U Sci, w)
until.D is generated. Although Davis, Prawitz, and Vang used
methods more efficient than resolutlon for checking
inconsistencies, thelr programs attempted essentially this
computation,

It Is, however, an unsatisfactory approach to proving
dlfflcult theorems.

It was J, A, Robinson(16) who discovered that if is
possible to avoid taking resolvents of ground instances of $§ by
taklng "general resolvents of S, He describes resolution as a
"demon" that, if possible, finds just the substitutions

6l, 02, .u.,0n for which we are looking. |In fact, If
ol, 02, «eu,0n s a shortest sequence of substitutions such that
S Uus U ... U Sc is unsatisfiable and J0 is the smallest

01 go n

integer such that [1 ¢ R(S Uus U ... US , J0), then
g1 U2 cn .

0O e R(S,J0).
The kernel of Robinson's proof is

"~

1.26.5 The Lifting Lemma

If C1 and C2 are clauses and o s a substitution and R is a
resolvent of Cl, and C2, + then there exist factors Cl' and
C2' of Cl and €2, a resolvent R' of Cl! and C2', and a
substlitution A such that R = Ra .

He now conclude the proof of the other half of the Resolution

Thecrem.

26

1,26.6 If S is a finite, unsatisfiable collection of clauses,
then [J & R(S,w).
Suppose S is a finite, unéatisfiab]e collection of

clauses, By the tModel Theorem, there exist O1s Uz,---,cn

.8uch that Sc. is a set of ground clauses and
i
o1 U 502 U ...Scrn s unsatisfiable,

By Induction on {, it is clear that {f
Ce R(SCrl U %2 U ... U Scn,i), then there exist Y and
C' e R{S,i) such that ¢ = C'G . If 1 =20, this Is trivial, By

Induction, if C and D are in R(SU U s U oo US_ ,1) there
) 1 92 %
exist C' ¢ R(S,i), D" ¢ R(S,i), and A such that C = C'JL and

D = D'A . Hence any resolvent R of C and D Is an instance of a

resolvent R' of factors of C' and D' by the Lifting Lemma.

G}
n
J, [e R(S01 U 802 U ... u Scn .J}. Therefore, [Is an

instance of some member of R(S,J). Therefore [1 e R(S,J),

Since S, U S U ... S is unsatisfiable, for some
1 g2

"~

2. The Concept of Locking

The use of unificatlon permlits a vast Increase in the
efficiency of proof procedures based on Herbrand's Theorem. By
avoiding the individual examination of ground instantiations of
the original clauses, a proof procedure needs less time and
storage, Nevertheless, there is still no proof procedure that
solves many and varied hard problems in mathematics on
computers. The explosion in the number of clauses generated b
resolution, In particular, and fhe corresponding increase in thx
time necessary to examine the clauses still provide insuperable
problems for anQ present computing facllity. One of the most
obvious causes ® of this problem is that any unsatisfiable
collection of clauses s]Ikéiy to admit a large number of
refutations, and resoldtion will proceed to find them all. Any
technlque that provides a method for significantly reducing the
number of resolvents, without significantly lncreasing the depth
of the shortest refutation, is of interest.

Wle present In this fhesls a restriction of resolution
that does signifiéantly'reduce the number of resolvents
generated. This restriction Is hased on the simple idea that
If one were to resolve on only one literal In each clause, the
number of resolvents would Certa!nly be reduced. ldeas in this
general dlrection have heen pursued in the works of Reynolds,

Slagle, Kowalsk!l, Hayes, Loveland, and Reiter’.

27

28

One wishes he might.éhoose any literal in each of the
original clauses, resolve upon just those literals, choose one
literal in each of the resolvents, resolve agaln, choose agaln,
and so on., However, it Is easy to show that this procedure is
Incomplete. For consider the following unsatlsflable set of
ground clauses:

(L A 8llne Ale =all=a -8l

Suppose we choose to resolve only upon the first literal in
each clause, We get the following resolvents:

[B =81l A ~al.

Again suppose we choose to resolve upon the first literals
only, We then obtain the resolvents:

[2B A~ A =B].

If we agaln decide to resolve only upon the first titerals, we
can only produce dupliéates of ¢lauses we already have., |If we
continue to choose literals from these clauses as we chose
before, we will never get any mofe new clauses, and certainly
not [.

A restriéted version of thls procedure Is complete,
however, In particular, in the ground case, It {s true that one
need only resolve on a particular literal in the clause (and It
{s easy to determine which one it i{s). The general case permits
slightly less freedom,

The technique for decliding which literal to resolve

upon Is roughly as follows. Before beglnning resolution, we

29

assign to each occurrence of each literal in each clause a
positive integer., This may be done arbitrarily. Let us call
the Integer the "Index"™ of the literal. Note that different

. occurrences of the same literal may bé assigned different
indices, Having made this asslignation, we resolve clause
against clause as in unrestricted resolution, but only upon the
lowest indexed literal In each clause. The literals in the
resolvents have "hered!tary" Indices.

For example, suppose we have the two clauses

[(1Go y (a)) (Ei (f v) y)]

[(1{31 w y) (G y (a)) 1.
(The number printed below a lfteral is Its index,) The only
llteral in the first clause that may be resolved upon is
(G (f y) y) (because 1 < 10), The only 1lteral in the second
clause that may be resolved upon is — (G vy (a))
(because 6 < 11), There is only one lock-resolvent of these two
clauses, viz,

[(G (a)(a)) = (G w (f Ca)N] .

10 11
as opposed to four ordinary resolvents,

There are two matters we néed to clarify. Strictly
speaking, we may not refer to "the" lowest indexed 1lteral of a
clause. Even If we Index different occurrences of literals
differently at the beglnning, two distinct 1iterals, descendent

from the same original literal, may appear in a resolvent.

Therefore, we resolve on all the literals of lowest index in a

30

clause, Thus If the clause
T (Gxy x (f x)) (6 (F x) (F X))]
should arise, we would resolve on both literals of index 3.

The second matter is that a literal may appear in a
resolvent as a descendent from two literals, one In each of the
clauses resolved, If these two llterals have different Indices,
we assign to the descendent the lower of the two Indices. Thus,
the resolvent of |

[(% (f x) (f x)) (S x x)]

[(%_(f x) (f x)) —1(9 x x)]
is

[(% (f x) (f x3) 7.

Because we think of the literals in a cTéuse that are
not of lowest Index as "locked-out" of the resolving process, we

refer to our method of. resolution as "locking."

2.1 Locked

If S is a set of clauses, then S is sald to be "locked" if and
only if for each clause € in S and for each literal L in C,

there exists a positive integer i such that | Is the index of L.

2,2 Lowest Index

If C is a clause and L ts a 1iteral In € and the index of L is

tess than or equal to the index of every literal In C, then L is

sald to be "of lowest index" in C.

31

In Chapters 3 and & we preclsely define the concept of

"lock-resolvent™ and prove the completeness of lock=resolution.

3. The Completeness of Ground Lock-resolution

The usual method for proving the completeness of a version
of resolution has fwo parts. First, one proves the "ground
case", the case in which no variables (and consequently no
substltutions) occur. Then one "1ifts" to the general case. ‘le
follow the method here., This chapter contains the definition of
a fground lock-resolvent" and the completeness proof for ground

lock-resolution. Chapter 4 treats the general case.

3.1 Ground lock=resolvents

Suppose C1 and C2 are members of a locked set of ground
clauses,
Suppose further that L1 is a literal of Towest Index in Cl1 and
L2 is a literal of lowest index in C2.
Finally, suppose that L1 is an atom and L? is - L1,
ow let R = (C1 -[L1]D U (c2 -[LL2D. If a literal L in R
is a member of both (C1 -[L1D and (c2 =[L2]), let the index
of L in R be the least of the index 6F-L in (€1 -[L1]) and the
index of L in (C2 -[L2D. Otherwise, let the index of a
literal in R be the same as it is in (C1 - [L1]y or (c2 - [L2]),
Under these suppositions and allowances, R is sald to be a

"groﬁnd lock-resolvent" of €1 and C2.

32

33

3.2 Ground Lock=resolution

Suppose § is a locked set of ground clauses. Let L(3,0) be

S, and for each positive integer i+l let L(S,i+1) be the union
of L(5,1) and the set of all ground lock-resolvents of members

of L(S,i). Let L(S,u) be U L(s,1).
'igw
The kernel of this chapter is the following lemma:

3.3 Lemma

suppose § is a finite, locked set of ground clauses.

Suppose also that m is the least integer such that soma
literal in some clause of S hgs index m and every literal in
every non~unit clause of 5 has index less than or equal to m.

Finally, suppose ¢ is a clause in S, L Is a literal In C, and
the index of L is m,

Let S*# = (S -[CcDh Ul ~[L]].
Then, for each non-negative integer n and for each clause D
in L{S*,n) there exists a clause D' in L{(S,n) such that either
| 1) D and D' are identical and have. the same locking, or
2) D = D' ~[L], L has Index m in D', and each member
of D has the same index in D and D',

Proof:

]

We prove this lemma by induction on n. If n 0, the
lemma is trivial. Ue assoclate (C - [L]) in S* with C In S; and

we associate every other member of S* with itself.

- Suppose the lemma holds for some non-negative integer j.

34

There are two ways a clause D can be a member of L(S+,j+1). If
De L(S*,i), then De L{3%,j+1), But in this case, by the
induction hypothesis, there exists a D' € L{S,]J) with the right
“properties and D' e L(S,j+1),

On the other hand, D may he a ground lock-resclvent of two
clauses D1 and D? in L(S*,j). By the Induction hypothesis,
- there exist D1' and D2' in L(S,J) with the right properties.
Suppose that D Is the result of resolving on L1 in DI and L2 in
D2, Then Ll e Bl' and L2 € D2', Furthermore, L1 is of lowest
index In D1' and L2 Is of lowest index In D2'; this follows from
the induction hypothesis and Fhe fact that m {s greater than or
equal to the index of any literal In any non-unit clause in
L{S, ®). Therefore there exists a ground lock=resolvent D' of
D1' and D2'" on L1 and L2; and thus G' ¢ L(5,j+1).

It remains to be.shown that D and D' have the .correct
relationship, There are four cases to consider:

1) If D1 and D1' are identical and have the same lTocking
and D2 and D2' are identical and hawe the same Iocking;
then D and D' are identical and have the same locking.

2) If D1 = D1' = [L], L has index m in D' and each member
of D1 has the same index in D1 and D1', and
D2 = D2' - [L] (etc.), then D = D' ~[L}, L has index
m in D', and each member oF.D has the same index in D and

B'. The main point is that since L has index m in both D1'

~and D2', It will have index m in D',

35

3) It D1 and D1' are identical and have the same locking,
but b2 = Dp2' - [L], L has index m In D2', and each member
of D2 has the same index In D2 and D2', then

a) D and D' are identical and have the same locking
if and only if L occurs in D1 and is not L1, whereas

b D =0' -[L], L has index m In D', and each member
of D has the same index in D and D' if and only If L
does not occur in Bl or L Is L1.

The main point here is that if L is In D1 and is not
resolved upon, then L will appear in D' and D with the same
index it had in D1.

L) case 3, mutatis mutandis,

This concludes the proof of the lemma.
Let the reader recall the definlitions of "satisfiable"

(1.22) and the "K-parameter"(1.26.4).

3.4 The Completeness of Ground Lock-resolution

If S Is an unsatisfiable, finite, and locked collection of
ground clauses, then O ¢ L(s, w),
The proof is by induction on K(S), Let 3 be an
unsatisfiable, finite, and locked collection of ground clauses.
If K(S) < 1, then either OO S (In which case
O e L(S,0)), or each member of 5 is a unlt clause. in the

latter case, there exists an atom A such that[A]e s and

f-xA] e 3. For otherwise, S would be satisfiable, Clearly,

36

e L(3,1).

Suppose for some non-negative integer, i, that {f 8' is an

unsatisfiable, finite, and locked set of clauses and |

CKESY)Y < i1, then Oe L(S',s Y. Suppose further that

KE3) = j+1, Either 0 € S or there is a clause In § with at
least two literals,

We now apply Lemma 3.3, Let m be the least integer such
that some literal in smWﬁ_c]ause of § has index rn and every
titeral in every non-unit clause of S has index less than or
equal to m. There exists a clause C in 5 that is not a unit

clause and a 1iteral L in C whose index is m. Let

1
-
L]

S* = (S -[clhy utc - [L])]; Clearly, then, K(S*)
Furthermore, S* is wunsatisfiable since any model of S* is a
model of S, DBy the induction hypothesis, for some Joos
Oe LGS,jp }. By Lemma 3.3 there exists a clause D' in L(S,]jp)
such that either |
0O =0d', or
O]

| £ O e L(S,jo) the proof is complete, So suppose that

D' - [L]and L has index m in D',

[L] e L(5,jo). Let S*x = (S -[cD U[[1]]. clearly, then,
K(S*x) < i+1, Furthermore, S** js unsatisflable since ahy model -

of S** is a model of S, By the induction hypothesis, for some

J1s Oe L(S*x,j1). Therefore, [e L(5,jg+j). QED.

. The Completeness of Lock-resolution

In this chapter we aefine "loch=resolvent' and prove the
completeness of lock-resclution. The definition and proof are
fundamenta.ﬂy based on the seminal concept of unification.
Because we pay close attention to the detalls of indices, our
definition and proof differ widely in the letter (but hardly in
the spirit) from the definition and proof of the completeness of
resolution given iIn Chaptér 1.

Except for the restriction on literals to be resolved upon,
the major difference between lock-resolution and unrestricted
resolution is that in lock-resolution we are interested in
factors only at the beglnning., Instead of factoring each
resolvent, we have built the essehce of factoring into the
definition of lock=resolvent., This technidue is not new® and
has been called "merge~resolutlion,” Although the definition of
lock-resolvent is more complicated than it would he if we reiied
on factoring, we helieve it results In a clearer completeness
proof.

The idea behind the definition of the lock-resolvent of two
clauses C and D is simple. Basically, we take a literal Al of
lowest index in C and a literal Bl of lowest index in D and look
for a most general substitution a; such that -1A101 = Blal.
To avoid factoring, we also look for litérals Al in C and

llterals 31 In D and an extenslon o of o; that unifies each

37

38

At with Bi. That is, we try td merge Al with 3i. e then take
R = ((C - [aily U (b - [Bl])% as a resolvent of € and D

after assigning appropriate indices to the literals in R,

The precise definition is:

4.1 Lock Resaivent

Suppose that
1) € and D are members of a locked collection of c¢lauses,
2) n Is a positive Interer, (we Intend that n may he 1)
3y Al, A2, ..., An is a sequence of distinct literals in C, Al
is a literal of lowest Index in €, and Al is an atom,
by B, 82, ..., Bn is a sequence of distinct literals in D, Bl
is a literal of lowest Index in B, 81 is not an atom (i.e. Bl is
the negzative of an atom), and finally
5) 0 is a most general simultaneous unifier of
[[— A2 811 A2 82]...[An 8n]], o does not unify two distinct
literals of (C ~[A1]l), and ¢ does hot unify two distinct
literals of (D ~[81)). "
Let R be ((C - [AL]) U (D - [811)) .
I'f there exist L1 in (C -~ [A1]) and L2 in (D - [B1]) such that
L1 = L20 , then let the Index of LlU in R be the least of
the index of L1 In (C = [Al]) and the Index of L2 in (D - [B1D).

Otherwise, if L is a literal in (C - [A1]) or (D -[81]), 1let

the index of LU In R be the Index of L In (¢ - [A1]) or
(D -[Bl])l

39

Under these suppositions and allowances, R is said to be a

"Mock-resolvent" of € and D, 2

e now prove the bhasis of the completeness proof:

4,2 The Lifting Lenma for Locking

Suppose that

1) C and b are members of a locked collection of clauses,

2) 1 is a substitution, CT and DT are ground clauses, and T
does not unify two distinct members of C nor does it unify two
distinct members of D,

3) if Le C, then the index 6f L T in C. 1Is the Index of L in
C; and if L € D, then the index of Ly in D _ Is the Index of L
in D, and finally suppose

k) R Is a ground lock-resolvent of C . and D, .

Then there exist a lock-resolvent R' of ¢ and D and a
substitution A éuch that

(i) R'A = R, -

(i1} X does not unify two distinct members of ', and

(iti) If L e R', then the index of L 5y in R Is the index

of L In R',

Proof:

Let us make the suppositions of the Lifting Lemma for

Lécking. There exist a sequence al, a2, ,.., an of distinct

40

members of C. and a sequence nl, b2,..., bn of distinct memhers
of UT' such that
1) al is an atom and a literal of lowest index in C L
2) bl is not an atom but is a literal of lowest index in
D,
3) mval = bl,
k) Ro= (C_ ~-[a1]y u w_ - [b1]),
5Y for i > 1, a; = hi,and
6) if L ¢ (CT - [all]l) and L e ([JT - [b1]), then for some
i > 1, L = a; = bi'
These points are all easy cohsequences of the fact that R is
a resolvent of CT and DT . |
Since 1 does not unify distincp members of C or D, there
exist a sequence Al, A2, ..., An of distinct members of C and a

sequence 31, B2, ..., Bn of distinct members of D such that for

each i, Ai_ = a

ny BET = q , the index of Ai in C is the index

of a,I in CT , and the index of Bi in D is the index of b iin
o . -

Since T Is a simultaneous unifier of
[[—a1 811 a2 821...L An Bn]l, there exists a most general
sltmultaneous unifier o of [[—Al Bi][A2 32]...[An Bn]], and a
substitution A such that oA = T . Because 1t does not
unify two members of C or of [, neithér does ¢ . Therefore,

R' = ((¢c -[aA1l) t (D = [Bl]))U is a lock-resolvent of C and

D. But

41

ko= (¢ ~lath v - [bl]
= (¢ - [Aa1h_u (@ - [81D)_
= ((C - [ALD U (D - [Bl]))r'

= ((¢c - [a1Dh u (D - (8233 ,

= RYS

This establishes the first part of the conclusion of the
Lifting Lerma,

e now show that A does not unify two members of RY.
Suppose Kkl e R', k2 ¢ R', K1 # k2, but klk = kZA . From
these suppositions we shall derive the contradiction ki1 = k2.
There exist K1 ¢ (C - [A1]) U (D - [B1]) and
K2 e (C =[AIl) U (B - [81]) such that KL, = k1l and
K2 5 - k2. Since o does not unify two memhers.of (C =L A1 D

or of (0 -[831)), we may assume without loss of generality that

Kle (C = [A1]) and K2 ¢ (0 - [B1]). By (6) above, for some

i > 1, klA = a; = bi = kzk . But we have AIT = ay and
Bi . - bi' Since Al : - KlT_, Ai = K1l. Furthermore,
Bl = K2, 3ut kl = Ai g = BiU = k2, contradicting the

assumption that k1 # k2, Thus we have established the second
part of the conclusion of the Liftinz Lerma.

Finally, we MUst show that if L e R', then the index of L
in R' is the index of L, in R, There are two cases to
consider. |

1) If for some i > 1, L = Aic = Bic , then the index of L

in R' is the least of the index of Ai in C and the index of

42

Bi in D. For since o does not unify members of

(c - [A1l]), if L' ¢ (C ~{A1]) and L'Ur- L , then L' = Ai.

And stmilarly, if L' ¢ (D - [31]) and L'd L , then

L' = Bi. In this case, however, the index of L in R' is
the least of the index of ay in (C " [a1]) and the index
of bqi in (D’E - [b1]).

2y If for no i > 1 is L = Aic = Bic , then there do not
exist L1 in (C - [AL]) and L2 in (D - [B1]) such that

L o= Llc = L2 s .. Hence, there exists precisely one L'
in (C ~-[A1]) or (D - [31]) such that L‘0 = L, |If
L' ¢ (¢ ~[Al]), then the index of L' in (C - [Al]) is the
index of L in R', the index of L'T In ¢, and the index of

L, inR. And simitariy, if L' ¢ (D - [B1]).
This concludes the proof of the Lifting Lemma for Locking.

Before proving the completeness of lock-resolution, we need

4.3 Lemma
Suppose S is a finite, locked, fully-factored, unsatisfiabhle
collection of clauses, Then there exists a finite, locked,
unsatisflable coltection | of ground.cTauses with the following
property:
For each member D of |, there exists a member C of S
and.a substitution A such that

1Y D = CA

2}y x does not unify two distinct members of C,

43

3) if Le C, then L has the same index in C as L \ has In
D.
Proof:
Suppose § is a finite, fully~factored, unsatisfiable

coltection of clauses. By the tiodel Theorem, there exists a

sequence a3, 0y, a0y of substitutions such that for each i
- S is a collection of ground clauscs and § U s eesll S
is unsatisfiable., Let ! be S U s aes S o By the
U] 02 O'n

fully-factored theorem,-fbr each D in | there exists a C in 5
and a substitution A such that D = CA and A does not unify
two members of 0. e now only need to "rig" the indices of the
Titerals in the members of |, For each clause D in 1, let D' be
a member of S and X a substitution such that_I}'A = D and A
does not unify two members of D', [f Le D', let the Index of
Ly in D be the index of L in D'. QED,

e are now prepared for the completeness theorem, so we

define:

4.5 Lock Resolution

If S is a set of locked cltauses, let L(5,0) he S, and for

each positive Integer i+1l, let L(S,i+1) be the union of L(5,1)

wlith the set of all lock-resolvent of memhers of L{(S,1). Let

L(s,w) be U (s, 1.

cw

44

4.6 The Completeness Theorem for Lock-resolution

If S is a finite, fully-factored, unsatisfiable collection of
clauses, then {1 (5,0).

Suppose that S is a finite, fully-factored, unsatisfiable,
and locked collection of clauses. Let | be a finite, locked,
unsatisfiable collection of ground clauses with the following
property:

For each member D of |, there exists a member C of S and a
substitution A such that

1) b = C,

2) A does not unify two distinct menbers of ¢

3) if L € C, then L has'the same Index in C as LA has in

D.

There exlsts such an | by Lenma 4.3, ‘lle now prove by induction

on n

b.7 Lemma
If n is a non-negative integer and R e k(I,n), there exists on
' e L(S,n) and a substitution A such that R = R'A . A does
not unify two member of R', and If L e R', then the Index of L
in R' is the index of Ly In R,
In the case n = €, thls follows Immediately from the

defining properties of I,

Sdppose that Lemma 4,7 holds for n and that R ¢ L{T,n+1).,

There are two ways R can be a member of L{I,n+1). If

45

Re L{l,n), then Re L{I,n+l), iIn this case, howaver, there

exists by the induction hypothesis an R'e L(3,n) and a a with

the right properties, and R' ¢ L(5,n+1).

Un the other hand, R may be a ground lock-resclvent of two
clauses C and U in LUl,n). By the induction hypathesis there
exist C' and D' in L(S,n) and substitutions A; and A, such
that C'il = C, D'l2 = b, A1 does not unify two distinct
members of C', and Ay does not unify two distinct members of DV,
Furthermore, if Le C! then the index of L in C' is the index of
L A in C, and sinidilarly if L e D', Since we provide that no
tuc claouses being resolved have variables in common, there
exists a substitution T , namely XA, , such that ¢° = C,

T
D'T = D, and v does not unify twc distinct members of &' or
of D'. By the Lifting Lerwa for Locking, there exists a

resolvent R' of ¢' and D' and & substitution A such that

R!A = R, A does not unify two distinct menbers of R', and if

Le R', then the index of L \ in B is the index of L in R'.

This completes the induction step, and censequently the proof of

Lemma 4.7, |
Since | is unsatisfiable, by the Ground Completeness of

Lock=resolution, for some n, 1 e L(tI,n). Therefore,

O ¢ L(5,n). QED,

5.The Incompatibilities and ldiosyncracies of Locking

5.1 Locking is incompatible with the elimination of tautologies.
In the literature on resolution, a Ytautology" is defined to be
a clause that contalns two complementary iitecrals, In every
other form of resclution of which we are aware, [] may be
derived from an unsatisfiable set even if one never resolves a
tautology agalnst any clause. The following locked sct of
clauses fairly approximates the restrictions which we wished to
apply in the first round of the example in Chapter 2.
1 L a8 1]
12
2 [“lg]
3 [B Aal
5 6

4 [= A -38]
7 8

A
b
1

Notice that every possible lock-resolvent in the first round is
a tautology. Clearly, eliminating them would prevent [J from

arising, \le present a derivation of [3 for this set of clauses,

RSSO RMoooo oo n

- 8 + 31 1 1 5

a6

47

s [=B] 7,8

10 = A B8] 68

1; [b:j ; ;__“ 9,3
::z}:E_—ﬂ;“i;=== 11,1
z;=====;;=z====: 9,12

The key difference between lock~resolution and the
incomplete strategy suggested for the example in Chapter 2 comes
to light in clause 7. Notice that lock~-resolution forces clause
7 to be locked differently from clause 2. (cf. example 7.2 for

-another locking refutation of the same set of clauses.)

5.2 Locking is Incompatible with linear format. There Is a
powerful restriction of resoltution discovered by Loveland(10)
among others, called "linear format"™, 1I1f S is a set of clauses,
cl, €2, €3, ... Cn Is a sequence of clauses, Cle S, and for
each I > 0, Ci+l is a resolvent of Ci and a member of S or some
Cj where j < i, then C1, €2, ... Cn Is called a linear
derivation of Cn from S, There Is a linear derIQation of [0 from

any unsatisfliable collection of clauses. This is not the case

for locking. Consider the following set of clausec:
L & 21
[A]

48

[% | i 1

[~8 1
It is possible to dnrive [Plon one branch, and [V PJon another
branch, but these two clauses do not admit lock=resclvents with
either "ancestors" or "input parents'.
5.3 Locking is tncompatible with the ancestor restriction of
Loveland(10), If S is an unsatisfiable collection of clauses,
[1 may be deduced from S if one accepts only those resolvents R
of two clauses ¢ and D such that one of C, D is in S or sone
instance of R is a subset of some instance of C or D. This is
not the case for locking, however; consider the following

‘unsatisfiable collection of clauses:

1 [[ggr]

2 [R]

53 [P]

v 0 Lﬁ T % E]

s [A] i
& [nF]

In the flrst round we obtain
7 [S P, 1 1,2
8 [=5 %] 4,5

5 _
But nelther 7 nor 8§ lock-resolve with any of the original

clauses. The lock-resolvent [-1; g]of 7 and 8 is not a subset

49

of 7 or 8. Hence, if we accept the ancestor restriction, no
resolvents will appear In round 2.

S.h Locking is incompatible with the merging restriction of
Andrews{Lk)., If S is an unsatisfiable collection of clauses, 0
may be be deduced from S if one accepts only those resolvents R
of two clauses C and D such ;hét one of C,D Is In S or one of
the literals resolved upon is a merged literal. This is not the
case for locking, however, as the counter-example to

linear-format above reveals,

5.5 Lockling is incompatihble with a set of support restriction.
If S is an unsatisfiable collection of clauses bhut every proper
subset of 3 is satisflable, and C ¢ S, it is possible to
generate [] by resolving just C against S, then those resolvents
against themselves and S, then the new resolvents against
themselves, S5, and the previous resolvents, and So on, But .

-~

consider the following clauses:
[~na P]

1 2 _

[a]

[P]

Notice that the third clause admlts no resolvent on the first

round,

50

5.6 The method of Pl resolution invented by Roblnson(1l7) is an
easy consequence of the conpleteness of lock-resoclution, A Pl
resolvent is a clause formed by resolving two clauses together,
one of which contains only negative literals. This effect can
be achievéd In tock=resolution by simply assigning the index.l
to all positive literals and the index 2 to all negative
llterals. MNo negative literal can be lock-resolved upon unless
all the literals in the clause containing the literal are

negative,

2.7 Locking is compatible wlth Anderson's restrictlion on
merging 2. Recall that when we resolve two "general" clauses C
~and D we not only try to unify =1 Al and 81 (for some Al ¢ C and
Ble D), but also try to simultaneously unify some other
Al's ¢ Cwith Bi's ¢ D. This has the beneficial effect of
sometimes "shrinking" the resolvent by the merging of literals:
but It also requires a significant amount of computation,
Surprisingly, it is possible to restrict. the search to just
those Ai's and Bi's that have the same index. To be precise we
may:
Add to supposition 4 of definition 4,1 the condition "and
for each i > 1, the index of Ai in C is the index of Bi in
Dll

without the loss of completeness.

If we make sure before heginning resolution that

51

]iterq!s in different clauses and in the same clause have
different indices, this result tells us that we need only merge
literals whose origin is the same. To some extent thls strikes
us as intuitively reasonable; it means that the only essential
function of merging is to keep a literal from getting in its own

way.

5.8 Several authors have discovered restrictions of
resolution based on resclving only some of the lfteraTs in a
clause,

Reyﬁo]ds 10orders the predicate symbols before
beginning resolution; then IH one of the clauses belng resolved
he resolves only on literals with highest predicate letter,
Slagle (18) comblines this restriction with maximal clash
resolution.

Kowalski and Hays (8) redefine an A-ordering (a
concept introduced by Slagle) to be a total ordering of some of
the literals, Their A-ordering Includes- the requirements that
(L) if A < A', then for all substitutions ¢ A < AL ,
(2) if A is a variant of A", then A < A', and (3)

MA < A s A, They then demand that neither of the
literals resolved upon be less than any other literal in either
of the clauses being resolved.

Reiter (15) follows Kowalski and Hays in defining an

A-ordering as a partial ordering on all the literals. This

52

ordering is Induced by a total ordering of all the ground atoms
and by Instantiation. Uslng é l1inear format, he requirés that
In one of the clauses being resolved the literal resolved upon
be maximal,

| Kowalski & Kuehner(9), Loveland(ll), and Reiter(1l5)
have found tinear format and other restrictions compatible with
resolving on exactly one literal in a clause being resolved wlth
an original clause, (They do not restrict the literal to be
resolved upon In orlginal clauses,)

The essential difference between locking and all these
verslons of resolution is that.In lock=-resolution ”moét“-of the
time one need only resolve on one literal in each clause, |If
one simply simply assigns dlfferent Indices to the literals In
the original clauses, one never resolves on more than one
literal in any clause unless the clause contains two distinct
descendents of the same origlnal literal, and these]iteraTs
have lowest index fn the clause. In particular, one never
resolvés on more than one llteral In an original clause. Thus
lock resolution differs from the versions mentioned in the last
two paragraphs because in those verslons resolution is always
permitted on any of the llterals in an original clause. In
comparison to the ordering of predlcate letters or A-ordering,
locking permlts a greater discrimination between literals (and

their complements, varlants, and instances.) Thls comes to

light In examples such as example & In the next chapter.,

53

Ordering the predicate letters there has no effect whatsoever
since there is only one, If one A-orders the literals and
admits to the ordering the literal {(x < z) from the
transitivity axiqm, the A-ordering becomes completely trivial.
lie first became Interested in locking clauses precisely because
of exarmples like this, which arise in proving elementary
theorems in analysis. Finally, locking may be distinguished

from all versions of resolution by the number of known

restrictions with which it is Incompatible.

6. Some Examples of lLock-resolution

Example 1

Qur flirst example of a lock=-resolution proof Is based
on the exahp]e at the beginning of Chapter 1. Consider the
following collection of locked clauses.,

1 {0 (6 v (a)) (G (f v) y) 1
2 [(6 vy (a)) (Gy (fy))]
3 [= (% w v (Ga(f v) v)]
L [= (Gmw y) (qu (f yv3) 1

5 [— (qlw y) (g y (a))]]

In the first round there are only two possible matches
(as opposed to twenty for unrestricted resolution).
6 [(cea (aY(a)) = (?1“‘ (f(a)))] 1,5

7 ['1_(% w (a)) -1 (%1W' (F (a))y 1l 3,5

=R =

In the second round we have .
8 [= (G w (a)) 1 (G W' (f (a))) 1 6,5
9 [~tgm (F(ad)) 1 (6w (f (a3)) le,7
16 [= (G w (f a)))] 6,7
11 [(g (a) (a)) = (%1W' (f (a))y 1 7,1
12 [7 (6w (a)) -1 (Gw' (f (a)))] 7.3
Since clause 10 subsumes every other resolvent, we may delete

them all 1L

55

SRS -ag Ay

The only resolvents of round 3 are those of clause 10
with the origfna] 5 clauses, viz.
13 [“E, (f (a)) (a)) 1 10,1
[(6 (a) (a))] 10,2
15 [-ncg;‘ w (f (a))) 1 10,3
[

1 (Eiow (al))] 10,4

—_—mEsSsonnas

Among the resolvents of the next round is

17 0 14,16

HWe know of a program using linear-format, set of
support, merging, splltting, and subsumption (but not locking)

that generated more than 100 resolvents in proving this theorem,

Examp]e 2

In Section 5.1 we presented one locking refutation for
the "full set on two atoms." lle presentﬁhere another locklng
that leads to a less pathological derivatlon of 0.

1 [A 84]

56

6 [BJli1,5
0 6,7

Notice there is only one possible match In the first round.
This compares wlth the eight possible matches of unrestricted

resolution.

Example 3
The following collection of clauses'may not appear at
first glance to be the clausal representation of a theorem of

the form A - A, 12

1l 0 & x 0% vy 0 < (f x y) J
1 8 .l
20 0 ¢x 04y (fxvy)< x]
9 10 2
30 04 x o0ty (Fxuy)< yl
I1 - 12 3

50 0 < ta) 1

s[o < (b)] .
6 o }(FGa)(b)) (F(a)(m)) } (a) (fla)(b]) bby]

In the five rounds that resolution takes to derive [J],
the first four clauses lead to many spurlous resolvents. But
notice the locking proof.

770 0 ; (a) ¢ g (b} (f(a)(b))g (a) {(f (a){b)) ; (b)]
' 6,1

8L 03 (@ 0t (F (a3 (b))} (b)]

57

?12
9 [0 ’67(aJ 0 %8(b3] 8,3
10 0 ¢ (b)] 9,4
11 0O

Notice that not one spurious clause was generated.

Exampie 4
Our next example 1is more Interesting and more

difficult, 13

1[0k x 0 ¢y 0< (fxy)]
12 13 4

2 [0 i+x 0 fSy (F5x y) < x']

S[Giﬁsx 0%7&' (fxy)gy]

h[x%yygz x;z]

5 T 0< (a)]

6 [0< (b)]

7008 2z ()< z () <z]
18 7 10

8 [04 z (c)< z (d) t (b)]

: 19 8 20

g [0t z ()t (a) (d)< 2] -
21 22 9

10[0 z (c) 4 (a) (d)fl (b)]

23 24

11 [(d) + v v £ (b) (c) ¢ (a) 0 ¢ z 1] 10,4
3 2 24 23
120 (df 0 0% (b) () t (a)] 10,4
3 2 24
13 [0 t (b) (c)f(a) 0 % 2z] 10,9
21 22 23
14 0 j (b} (e) & (a)] 10,9
1 22

58

Among the resolvents of round 2 is:
15 [(¢ & (a)] 14,6

This clause subsumes all the other resolvents of round
1. Hence we may delete then and their descendents., e also

delete clause 9 and clausce 10.

In round three the resolvents are:

16 [(c) ¢ vy y ﬁ (a)] b,15
3 A
17 [0 & (a) (d) < (a)] 7,15
18 10 '
18 [0 § (a) (d) £ (b)] 8,15
19 20 .

Among the resolvents in round four are

19 { 0 ¥ (a) 4% vy () 4 (f (a) vO] 16,72
14 15 3
20 [0 fq(a) (c) g (f (a)(al))] ' 16,12
21 { 0 f X ¢ 4 (a) (cYk(f x (a))] 16,3
6 17 3
22 { 0 fs(a) (c) g (f (a) (a))] 16,3
23 [(c) § ¢] - 16,5
24 [0 % (a) (d) < (a) (o)t ()] 16,7
18 10 3
25 [0 ¥ (a) (d)y & (b) () 4 ()] 16, 8
i9 20 3
26 [0 fa(a) (c) {3: (d)] 16,17
27 [¢ v y 4 (a) (d) + (b) 1] 18,4
_ 3 2 20
28 [(d) 4 (b)] 18,5

Because of 28 we can delete clauses 8, 18, 25, and 27.

Thus after four rounds, we are concerned only with the clauses

1, 2, 3, 4, 5, &, 7, 15, 16, 17, 19, 20, 21, 22, 23, 24, 2¢,

59

and 28, Let the number 12 be roughly compared to the 61
possible matches of unrestricted resolution in the first round
alone, Having praised Jlock=resolution, we now admit that
writing all lock=resolvents of the future rounds becomes
tedious. ‘e slmply list the interesting clauses produced in

each round,

29 [(d) ¥ v vy ¢ (b)Y] 28,4
3 2
30 [0 § (f(a)y) (d) < (F(a)y) 0 ¢y 0 4 (a)]
18 10 15 14
19,7
31 C 0 f ’
[tsx {7(b) (d)ﬁ(x (b))] 29,3
32
[0 ts(f (a) (b)) ¢ tu (a) 0 is (b)] 39,31
33 [0 ¢ (f (a) (b)) 0 § (b)] 32,5
18 15
38 [o ¢ (f (a) (b))] . 33,6
35 [0 ¢ (a) 0 ¢ (b)] 34,1
12 13
36 [0 ¢4 (b)] : 35,5
37 | 36,6

(if we added to lock-resolution the helpful strategy

60

L

of always resolving immediately wlth unit clauses {(regardless of
fndices) whenever the resolvent produced subsumes the other
clause with which we resolved, then this proof would be
shortened by five rounds. In particular, the last six rounds

would be shortened to two rounds.)

Example 5
The following theorem is due to Joyce Frledman,
Ix3Iy ¥z (({ (P xy) = (P x2z) © (Qy z)))
AP xy) & ((P z 2) = (Q z 2)))
-> axy) € (Q z z) 1))
In clausal form this is
1 [—ltzPox y) -'1(IP0 x (z x y)) (Ql y {z x v))]

2 [=(Pxy) (Px(zxy))m(Qy (z x y))]
21 2 . 11

W

[-1(21:’2:& y) —1(1P2(2xy) (z x y)) (39‘ (z x y) (z x y))]
5 [(; X y) (E (z x y) (z x y))]

5 [(? X y) -1(93(2 x y)(z x y))]

[@ x v (Q (z x ¥v) (z xy))] N

- o

[~(Q x y) =|(Q (2 x ¥v) (z x v))]
23 iu
Here 1s a locking derivation of O from these
clauses,

.=======================:===

8 [-I(P X V) "1(P (z x y) (z x y) ‘1(% xy)y] 7,3
9 [-1(P X y) ‘1(%3(2 (z x y) (z x y)) (z (2 (x y)) (z x v))))
-l(%?(y}] 5,8

61

10 [=9(P x yv) (Qlz x y) (z x y)}=(Q x y)] 6,9
22 8 23

11 [(P x y) 1(Q x y)] 7,10
22 23
12 [(P xy) (0 x (z x v)) (0 y (z x y))]1ll,2
21 23 i1
13 [(Plx) (0 x (z x x))] 11,2
2 11
I [= (P x x)=1(P x (2 x X))] 1,13
20 10
15 [~ (gox x)1(Q (z x (z x x)) (z x (z x x)))]5,1h
13
16 [— (gdx X)- (% x (z x x))] 6,15
17 [(P x x)] | 13,16
18 [(P x y)] 4,17
19 0O 17,18

=sm====s=zsuz=az=

There are only two c&auses generated in the first
round., (There are 27 possible matches In the flrst round for
unrestricted resolution.,) The two are clause 8 and the
tautology |

[@xy) =(Qxy)] | 6,7
8 23

Let us for the moment call a clause "spurious" If it is a
tautology or is a superset bf a clause p?evious]y generatea
(ignoring Indices). We pointed out in 5.1 that in general if
spurious clauses are eliminated then completeness is lost, Let
ﬁs for the moment, however, eliminate spurious clauses, Then in
the twelve rounds needed to derive [J for this theorem fewer
than twenty resolvents besides those listed above aré produced

(and flfteen of them are spurious), This leads us to hope for a

powerful Improvement of locking based on the ellmination of

62

spurious clauses ﬁhich meet some special condition. {(For

example, one might place a condition on the original locking.)

7. Hammer Locking

In unrestricted resolutlon, a set of clauses that

contains a transitivity axifom such as
[(x ¢ v) (v 4 2) (x < 2)]

presents an annoying problem, Maturally, any clause whatsoever
contalning a literal of the form (a < b) or (a & b} can be
resolved against the transitivity axiom, The problem is that
resolvents so.formed will contain at least two literals,
descendent from the axiom, which again match 1iterals in the
axlom,

For exampie, if the E]ause

[(a) £ (b)]
shauld arise, then after four more rounds we should obtain such
spurious resclvents as
[((a) ¥ y) (y ¢ v") Cy' + y'") (y' E y''Y)

(y'"" $ (b))]
We believe such resolvents are unnaturaly In essence they
amount to an application of the transitivity axiom to {tself..
In this chapter we show that such resolvents are unnecessary;
and that they can be avoided by a very simple use of locking.

If S Is an unsatisfiable collection of clauses
Including the transitivity axiom

[¢ x} v)(y Py Ox ¢ 2]

and every literal in each member of S except this axiom has an

63

64
index greater than 3, then there is a o ing derivatlon of []
from S such that no literal of index 2 i. ever resolved against

the transitlivity axiom, This restriction prevents any resolvent
that contains two literals of index 3 or two literals of Index 2
from arising.

Before proving the completeness of this restriction_we
wish to point out a peculiar aspect of it. Consider the

followlng collection of ground clauses:

[r <a g {(b) (b) i (c) (a) < (e}]

[{c) 4% (d) (d) ¥+ (e) (c) < (e)]
3 2 1

[(a) ¥ () (c) £ (e) (a) < (e}]
3 -2 1

[(a) % (e)]

[(a) < (b)]

[(by < (¢) 1]

[(c) < (d)]

[(d) < (e)]7].1

Note that it is unsatisfiable, but that if we observe
the restrlction of not resolving any literal of index 2 against
the transitivity axiom, then we shall not obtain [1 . However,
using the uninsténtiated transitivity axiom

[x & v y t 2z X < z]
3 2 1
we can obtaln [0 under this restriction.
Thus to prove the completeness of the restriction we

consider first a "semi" ground case., Suppose S is a collectlon

of ground clauses, every literal in every clause of S has lndex

65

greater than 3, and

s* = sUl[lx 4§ v y ; z x < z1]] s unsatisfiable.
3 1

Then there is a locking derivation of {3 from S* in whlch no

literal of index 2 1s resolved agalnst the transftivity axlom,

Wle procede by induction on K(S), |If K(S) 0, then
there exist ground terms al, a2, ..., an such that for 0 < 1 < n
[at < ai+1)e S and [al tan] e S. This can be seen by
considering 5 U [[«x f- y y g z x <z 11 . From

this 1t follows that there is a derivation of [from S* In
which no 1lteral of index 2 Is resolved against the transitivity
axfiom.

If K(S) > 0, then there is a literal L in a non-unit
clause C of S such that the Index of L Is greater than the index
of any literal In any non-unit clause In S and greater than 3.
By the Inductlon hypothesis (s*+ - [cl >Yu [c - [LI] admits
a restricted lock derivation of [J. Hence S* admits a
restricted lock derivatlon of [or [L] where L has the
same index it had in €. But (S* - [C] ;)'U [[L1] admits a
restricted lock dérivation of [J. Hence S* admlits a restricted
derivation of 1. QED. The 1ifting to the full general case Is
immediate.

We hope that results slimilar to this can be derlved for other

axioms. \le also look for a generalization of locking that will

permit control over a set of axloms., In particular, we belleve

it Is possible to lock equality axloms In such a way as to

66

simulate paramodulation(21) and E-resolution(12).

Appendix

Two complications, monumentally shallow, arise In the
- locking of literals.

The first problem Is that the "same" literal may have
different Indices in different clauses. To be completely
precise we might redefine a literal to be an ordered pair
consisting of an index and a "literal" as we have defined It,
Then we should redefine an interpretation to contain equivalence
classes of literals. And then we should worry whether it is
possible to unify literals with different Indices. e believe
this would only be a source of annoyance to the reader,

The second problem Is the notlon of "factor." In the
main theorem of the thesls (4.,6) we start with a fully-factored
set of clauses, It !5 a minor point, but true, that when
generating a fully factored set one need pay no atfention to
Indices. That is, one may "fuliy-factor" first, and then
"lock." But if literals have indices "built-in" as suggested
above, then to achieve the desired factor-locking generallty,

one must engage in a gyration like the following:

Variations

If ¢ and C' are clauses and there is a one-to-one

correspondence between C and C' such that corresponding 1iterals

have the same sign and atom (but not necessarily the same

Indices), then C and C' are called "variations" of one another.

Factor«

If C Is a clause, T is a subset of C, the members of T all have
the same slgn, o Is a most general unifier of the atoms of the
members of T, B is the set of all literals in C 5 for which
there does not exist a literal In C0 with the same sign and
atom but a lower Index, and D Is a variation of B, then D is

called a "factorx" of C,.

Fully-factored* Sets

If S is a collectlon of clauses such that if C is in S and C'

Is a factor* of C, some variant of some variation of ¢' Is in S,

then S is safd to he "fully-factored*,"

I ndex

atom

clause

compliement
composition

direct instance
factor
fulty~factored
function symbol
ground lock resolvent
ground
Interpretation
k-parameter

literal

lock resolvent
locked

lowest Index

model :

model theorem

most general simultaneous unifler
most general unifier
predicate symhol
resolution theorem
resoclution

resolvent
satisfiable

slgn

simultaneous unifier
substitution
substitution component
terms

uniflcation

unlt clause

variable

variant

69

10

12
11
14
14

33
19
14

338
30
30
15
15
13
13

17
17
17
15

13
10
10

12
10

11

Footnotes

1 The exact definition of resolvent may be found at
(L.24), It is there explalned that one looks for a "most
general unifier"., Before one resolves two clauses C and D, it
is actually necessary first to change the variables In C and D
'so that C and D will have no variables is common; otherwise, one
may not obtaln the right unifier., Ve pass over this detail in
our examples throughout the thesis,
2 Before resolving C and I one must first create a
varlant C¢' of C and a variant D' 6F D such that C' and D' have
no varlables in common, Theﬁ one resolves C' and D' instead of
C and D. Otherwise, one could not resolve [— (G x) Jwith
[(6 (F x))], for example.
3 A valuable réference on the first order predicate calculus
Is Schoenfleld(19)., He proves Herbrand's Theorem.on p.54,
" Wle Ignore tautologous disjunctions such as
{ (Gy (a))v=a (G vy (a)})).
3 tn the Introduction, we claimed that Herbrand's Theoren

dealt with tautologies. D AD A.../\Dc is inconsistent

1 02 k
tf and only if “IDUIV'ﬂo oy Vess V ﬂ{%kis a tautology.
6 There Is a valuable examination of this problem in

Kowalski & Kuehner (9), For a discussion of other inadequacies

of resolution, see Bledsoe (5) and Bledsoe, Boyer, & Henneman

(6),

71

In section 5,8 there Is a comparison of locking with the

works of these authors.

8 It is defined in Anderson(2), for example.

3 This result was pointed out to rme in a conversation

wlth Robert Anderson.

10 lle have not seen the original source (viz.
Unpublished seminar notes. Stanford Unlversity, fall 1965, cited
by Stagle(l8)). This technique Is descrihed in Allen and

Luckham(1).

11 In this chapter, if C is a unlt clause, D is a clause

different from C, and C Is a subset of D, then we say that "C
subsumes D" and delete D, Thls Is a very special case of the
~general principle of subsumptlon.

12 In the next two examples, we depart frém the "prefix"
notation for "< " and“"-1". Furthermore, 0 is a contant here
and should really be written "(g)."

13 This is example 4, section 6, of (6).

This example was pointed out by Robert Anderson.

Bibliography

1 Allen,J., & Luclham,D., An Interactive theorem-proving

program,, Machline Intelligence vol. 5, B.leltzer & D. Michie

eds;, pp. 321-36 (Edinburgh University Press) 1969,

2 Anderson, R., Some theoretical aspects of automatic
theorem proving., (Ph.D.Thesls, Mathematics Dept. Univ. Texas
at Austin) 1970,

3 Anderson,R,, & Bledsoe,)., A linear format for
resolution with merging and a new technique for establishing
completeness, J, ACi, 17, pp,525-53t4,(July 1970C).

4 Andrews,P,,Resolution with merging.,J.
ACM,15,p.720,(0ct 19638),

5 Bledsoe,V.,Splitting and reduction hedristics In
automatic theorem proQing., Artlficial Intelligence, 3, pp.
55=77, (1970).

6 Bledsoe,il., Boyer,R., Henneman,\i., Computer proofs of
limit theorems., Proc. [JCAl 2, 1971(to appear),

7 Davis, M., & Putnam,H., A computing procedure for
quantification theory., J. ACM, 7, pp. 201-15,(1960).

8 Kowalski,R., & Hayes,P., Semantic trees in automatic

theorem-proving, Machine Intelligence vol.4, B, MHeltzer & D.

Michle, eds., pp. 87-101, (American Elsevier Publishing Co.,

Inc., New York) 1969,

9 Kowalski,D., & Kuehner,D,, Linear resolution with

72

73

selection function., fiemo 34, MHetamathematics Unit (University
of Edinburgh) 1670,
10 Loveland,D., A linear format for resolution. Symposium

on automatic demonstration, Lecture Notes 1n iiathematics,voel.

125, (Sprfnger-Ver]ag, Berlin, New York) 1970.

11 Loveland,D.,Sone linear Herbrand proof procedures: an
analysis., Department of Computer Science lemo (Carnegie-liellon
University) 1970,

12 Morris, J., E-reéolution: extension of resolution to
include the equality relation., Proc, JCAl 1, (Washington,
D.C.} 1869.

13 Prawitz,D., Prawitz,H., & Yoghera,M., A mechanlcal
proof procedure and its reé]ization in an electronic computer.,
J. ACHY, 7, pp. 102-28, (1960),

14 Prawitz, D., An improved proof procedure., Theoria,
26, pp, 102-39, (1960),

15 Relter, R., Two results on ordering for resolution
with merging and linear format., (to appear),

16 Roblnson, J., A machine-oriented logic based on

the resolutlon principle., J. ACil, 12, pp. 23-41 (January 1965)
17 Robinson, J., Automatic deduction with
hyper-resolution., Int,J. Comput. Hath.,l, 227-34, {(July 1965).
18 Slagle,J., Automatic theorem~proving with renamable

and sematic resolution,, J. ACH, 14, pp. 687-6397, (October

1967).

74

19 Schoenfield, J., Mathematical logic .,

(Add!éon-ﬂesley, Reading, Mass,) 1967,

20 Wang, Hao., Towards mechanlical mathematics., |BM J.
Res, Dev., &, pp. 2~22, (January 1960).

21 Wos,L., & Robinson, G.A., Paramodulation and
theorem-proving in first-order theories with equality., Machine

Intelligence, vol. 4, B, Meltzer & D. Michle, eds., (American

Elsevier Publishing Co., Inc., MNew York) 1969,

Vita

Robert Stephen Boyver was born August 2, 1846 In Washington,
D.C., to Cdr. and Hrs. Fred Y. Boyer, U.S.N.(ret.).

He was graduated from H.,M, King High School in Kingsville,
Texas In Hay 1964,

He attended Texas.A&I University in the summer of 1964,

He matriculated at ﬁhe University of Texas at Austin In
September 1964 and was graduated Bachelor of Arts with Hlgh
Honors in August 1567, He took a major in mathematlcs and a
minor in philosophy.

Since'September 1367 he has been enrolled as a graduate
student in mathematics at the University of Texas at Austin.
From 196? to 1970 he was a teaching assistant in the pdathematics
Department,

He is co-author wlth Or. W.W., Bledsoe and Dr. William
Henneman of a paper "Computer Proofs of .Limit Theorems."

He is harried to Anne Herrington Boyver, and they have a

daughter tadeleine.

Permanent Address:
555 Elilzabeth Avenue
Kingsville, Texas 78363

This thesis was typed by a PDP~10 computer.

