MCC Technical Report Number AI-194-86
Rewrite Rule Compilation

- Robert S. Boyer
MCC Nonconfidential

June 1986
Reclassified from ACA Confidential and Proprietary to
MCC Nonconfidential - June 1988

Abstract

We describe a method for compiling rewrite rules which produces a substantial speedup over
simpler rewriting strategies. Common Lisp code to perform the compilation is presented, and a timing
camparison with one of the Gabriel benchmarks is provided. A speed-up factor of about 350 is achieved.

Microelectronics and Computer Technology Corporation
Advanced Computer Architecture Program
Artificial Intelligence Laboratory

3500 West Balcones Center Drive
Austin, TX 78759
(512) 343-0978

I Copyright © 1988 Microelectronics and Computer Technology Corporation ]

All rights Reserved. Shareholders and associates of MCC may reproduce and
distribute these materials for internal purposes by retaining MCC’s copyright
notice, proprietary legends, and markings on all complete and partial copies.



Contents
1 Introduction

2 What is Rewriting?
2.} The Utility of Rewriting . . . .. ... ...............
2.2 An Informal Algorithm for Rewriting . . . . . ... ........

3 A Simple Algorithm for Rewriting
3.1 The Representationof Terms . . . ... ... ... ... ... ..
3.2 The Storage of Rules
3.3 REWRITE

4 Compiling the Rewriting Operation
41 AnExample. . . . . . .. ... . e
42 Theldea. . ... . . . . . it i
4.3 The Creation of the Compiled Rules . . . .. ... .. ... ...
4.4 Further Enhancements . . . . . . ... ... ... .........

n

Results and Caveals

The “Boyer” Gabriel Benchhmark

o o v »

A Compiler Basced Rewriter
Match

Index of Lisp Functions, Macros, and Variables

23

26

29



1 Introduction

The development of fast algorithms for the execution of logic programs suggests
that other kinds of theorem-proving algorithms can be substantially speeded up.
In this report we examine one of the simplest theorem-proving operations, called
rewriting or demodulation. We present a simple algorithm for one strategy of
rewriting, an algorithm that forms the basis of one of the Gabriel Common Lisp
benchmarks [2]; we then present a compilation-based means of obtaining the
same ends. The compilation-based technique executes several hundred times
faster than the simpler strategy.

This paper may be regarded as an informal introduction to the topic of
compilation-based techniques for automatic theorem-proving. However, because
we are concerned in this report only with rewniting, it should be noted that
important topics in compilation-based techniques (e.g., backtracking) are not
discussed here. In some sense, the ideas presented in this report are “obvious” to
the half-dozen experts in the field and perhaps are already part of the “folklore”
on the subject. But the actual speed-up of about 350 obtained by applying these
techniques to this particularly well-studied benchmark was quite a surprise to
the author.

2 What is Rewriting?

Among the oldest algebraic operations are instantiution and the subdstitution of
equals for eguals. Although these operations are simple, they are also powerful.
For example, these two operations alone form the basis for the Herbrand-Godel
system of general recursive functions. For example, if we know that

tact(0) = 1
and
fact{s(x)) = s(x) * fact(x)
we can, by only instantiation and substitution of equals for equals, prove that:
fact(s(s(x))) = s(s(x)) » s{x) & fact(x).
and that
tact(8(8(0))) = 8(8(0)) » 8(0) » 1

The question this report concerns is “How fast can we performs these op-
erations of instantiation and substitution of equals for equals?” No theoretical
answers are given, but we do present an example of a method that has been
in use in automatic theorem-proving for years and another “compiler-based”
method that is several hundred times faster.



2.1 The Utility of Rewriting

In the language of automatic theorem-proving the use of equations to sim-
plify or reduce an expression is a very common operation. It seems to be an
excellent henristic to keep expressions in simplified form, and therefore after
every significant theorem-proving operation, it is common to reduce the resuit-
ing expressions by rewriting. For example, in the Argonne ITP-LMA system,
demodulation with all “demodulators” may be performed whenever a clause is
generated, which is to say, frequently.

2.2 An Informal Algorithm for Rewriting

Given a collection of equations S and a formula F, we seek to obtain some derived
formula G which is obtained by using the equations in S, from left to right, until
no rule in S is applicable. A nondeterministic aigorithm for obtaining such a
maximally reduced G is:

1. START. Let H be the starting formula F.

2. Loop. If possible, find a subterm T of H and an equation lhs = rhs of
S for which there exists a (most general) substitution & such that lhs, is
equal to T. If no such term, equation, and substitution can be found, then
set G to H and terminate. Otherwise, go to 3.

3. REPLACE. Let il be the result of replacing the occurrence of T with rhs,
in H. Go to 2,

There are many choices in the strategy for selecting the subterm to work on.
For the purposes of this report, we focus on the leftmosi-innermost strategy.

3 A Simple Algorithm for Rewriting

A simple algorithm for doing leftmost-innermost rewriting is presented in Ap-
pendix A. We discuss the algorithm informally in this section. In the next
section (4), we will discuss a much faster algorithm, but understanding the
slower algorithm is necessary to understanding section 4.

The slower algorithm was developed by the author and J Moore as a simple
program that could be quickly transported to different Lisp systems in order
to benchmark them with an eye towards determining how the very much larger
Boyer-Moore theorem-prover [1] would perform on those systems. This algo-
rithm was tried out on enough systems that Richard Gabriel decided to include
it among the benchmark algorithms in his book [2]; times for this “Boyer”
benchmark are now among those commonly cited in the advertising for new
Lisp systems. This algorithm is certainly far from being the most naive method
for rewriting. The fact that the compilation based algorithm to be presented




in the next section is 350 times faster than the simple algorithm was a great
surprise to the author!

3.1 The Representation of Terms

In order to describe the algorithm, it is best to start with a description of the
representation of terms. We use the simplest kind of Lisp technique to represent
terms. The Lisp expression:

(EQUAL (QUOTIERT (PLUS X (PLUS X Y))
(TR0))
(PLUS X (QUOTIENT Y (TWO0)})))

is how we represent the equation
(x+ (x+y))/2=2+(y/ 2.

A term is either a variable, which is represented by a Common Lisp SYNBOLP,
or it is the application of a function symbol (also represented by a Common
Lisp SYMBOLP) to some arguments, and is represented by CONSing the function
symbol on to a list of the arguments.

3.2 The Storage of Rules

The algorithm is initialized with a set of rewrite rules {in the global variable
*RULES#), by invoking (SETUP). SETUP places on the property lists of function
symbols the rules that are applicable to terms beginning with that function
symbol. This segregation of rules is a minor efficiency; it permits us to avoid
considering rules about REMAINDER when we are trying to rewriie terms that
begin with QUOTIENT. After SETUP has been invoked the property LEMMAS of
QUDOTIENT consists of the following list of length two:

((EQUAL (QUOTIENT (TIMES Y I) Y)
(IF (ZEROP Y) (ZERD) (FIX I)))
(EQUAL (QUOTIENT (PLUS X (PLUS I Y)) (TWO))
(PLUS X (QUOTIENT Y (TW0))))).

That is, there are just two equations in #RULES# with a lefthand side whose
outermost function symbol is QUOTIENT.



3.3 REWRITE

In the Gabriel Benchmark, the computation that is timed is (TAUTOLOGYP
(REVRITE $TERN+) NIL NIL). The overwhelming percentage of the computa-
tion time is spent executing the REWRITE call, and we will ignore TAUTOLOGYP
for the remainder of this report.

The function REWRITE performs leftmost-innermost simplification of its pa-
rameter. If the parameter TERM is a variable, it is simply returned. Otherwise,
each of the arguments of TERN is rewritten. Then REWRITE-WITH-LEMMAS is ap-
plied to the result of consing the function symbol, say fn, of TERN on to the
list of the rewritien arguments. REVRITE-WITH-LEMMAS searches the LEMMAS
property of fu; SETUP has previously arranged that all of the equations whose
lefthand sides have fa as their outermost function symbol are stored there. One
at a time, the equations are examined, and for each such equation lhs = rhs,
an attempt is made, using the function ONE-WAY-UNIFY to find a substitution
o such that lhs, is equal to the term passed to REWRITE-WITHR-LEMMAS. If such
a o is found, then ONE-WAY-UNIFY returns T and the substitution is found in
the variable UNIFY-SUBST. In case of a successful unification, REVRITE is called
on the result of instantiating rhs with the substitution. (The unification algo-
rithm used is akin to a reasonably efficient version [4) of Robinson’s unification
algorithm [3].)

4 Compiling the Rewriting Operation

In Appendix B, a rewrite system is presented which performs the same compu-
tation as that performed by REWRITE in the Gabriel benchmark but (with both
tests run on a Symbolics Lisp Machine) about 350 times faster. The secret of
the speed up is simply compilation. This should not be confused with the com-
pilation versus interpretation of Lisp functions such as REWRITE; in all timing
tests discussed in this report, we are assuming that all the Lisp functions in
sight have been compiled. We are not using the Lisp interpreter at all!

4.1 An Example

Perhaps one reason that the compilation of theorem-proving operations has re-
ceived 5o little discussion in the scientific literature is that felicitous descriptions
of the idea have not been discovered. Instead of starting with an abstract de-
scription of the compilation process, let us instead jump into the middle of
things.

After the rewrite rules on #RULES+ have been compiled by invoking (RCP-
SETUP) there exists a Lisp function RCP:QUOTIENT whose definition is:

(DEFUX RCP:QUOTIENT (Vi V2)
(COXD ((AND {CORSP Vi)



(EQ *TIMES (CAR V1))
(EQUAL V2 (CAR (CDR V1))))
(RCP:IF (RCP:2EROP (CAR (CDR V1)))
(RCP : ZERD)
(RCP:FIX (CAR (CDR {CDR V1))))))
(CAND (CONSP V1) '
(EQ *PLUS (CAR V1))
{(COXSP (CAR (CDR (CDR V1))))
(EQ 'PLUS (CAR (CAR (CDR (CDR V1)))))
(EQUAL (CAR (CDR (CAR (CDR (CDR V1)))))
(CAR (CDR V1)))
(CONSP V2)
(EQ 'TWO (CAR Vv2)))
(RCP:PLUS (CAR (CDR V1))
{RCP:QUOTIENT
{CAR (CDR (CDR (CAR (CDR {CDR V1)))}))
(RCP:TW0))))
(T (CONS *QUOTIENT (LIST V1 V2)))))

First note that many of the symbols in this definition are in a special Com-
mon Lisp package RCP of our own creation. Why do we engage in this apparently
awkward naming convention? We do it in order Lo avoid collisions with the nor-
mal Lisp functions. For example, although IF is one of the function symbols in
our rewrite rules, it would create chaos if we were to redefine IF, so therefore
the rewrite compiler defines functions for symbols such as RCP:QUOTIENT and
RCP: IF instead of QUOTIENT and IF.

Here again, for the sake of discussion, are the equations about QUOTIENT:

((EQUAL (QUOTIENT (TIMES Y X) Y)
(IF (ZEROP Y) (ZERO) (FIX X))}))
{EQUAL (QUOTIERT (PLUS X (PLUS X Y)) (TW0))
(PLUS X (QUOTIENT Y (TWO)))))

What purpose does the function RCP:QUOTIENT fulfill? Imagine that we are
in the middle of rewriting a large expression, that we are currently rewriting
an expression that starts with QUOTIENT, and that we have rewritten the argu-
ments. If we invoke RCP:QUOTIENT on the two rewritten arguments, then three
conditions of the COND are encountered. The first two conditions correspond
exactly to the unifications that would occur with the two rules about QUOTIENT.
For example, the first condition checks that the first argument is a TIMES expres-
sion and that the second argument is the first argument of the TINES expression.
What happens if the first condition is satisfied? We invoke:



(RCP:IF (RCP:ZEROP (CAR (CDR V1)))
(RCP: ZERQ)
(RCP:FIX (CAR (CDR (CDR V1))))).

Under similar assumptions about the RCP package functions for IF, ZEROP,
2ERQ, and FIX, the result of the invocation will be exactly the same as the
result of rewriting the expression (IF (ZEROP Y) (ZERD) (FIX X)) after first
substituting in the unifying substitution thai would have been produced by
DME-WAY-UNIFY.

The last clause of RCP:QUOTIENT handles the case in which neither equation
is applicable; we simply return a term that begins with QUOTIENT and has as
arguments the rewritten arguments.

4.2 The Idea

From the foregoing example, the main idea here should be obvious: we seek
to avoid the overhead of interpreting the rewrite rules with functions such as
REWRITE-VITH-LEMMAS and ONE-WAY-UNIFY in exactly the same way that a Lisp
compiler permits one to avoid the overhead of interpreting Lisp function defini-
tions.

The objeclive that RCP-SETUP achieves is to define for each of the function
symbols fu of the terms involved in the rewriting process a new Lisp function
RCP: fu such that:

If args is a list of rewritten terms, then applying RCP: fn to args
will return the same thing as calling REWRITE-WITH-LEMMAS on the
result of consing fn on to args will return.

4.3 The Creation of the Compiled Rules

How are these compiled functions computed? The key function is:

(DEFUN COMPILE-RULES (FN RULES &AUX ARGS LES RHS)
(MATCH! (CAR RULES) (EQUAL (CORS FN ARGS) &))
(SETQ ARGS (MAKE-VARS {LEKGTH iRGS)))

* (DEFUN , (RCP-INTERK FN) ,ARGS
(COXD
,@(LODP FOR RULE IN RULES
Do
(SETQ #A-LIST# NIL +CONDITIONS* NIL)
DO
(MATCH! RULE (EQUAL LHS RHS))



Do
(LOOP FOR TERM IN (CDR LHS) iS V IN ARGS
DO (CONDITIONS TERN V))
COLLECT
‘((AND ,@{REVERSE sCONDITIDNS+))
, (RCP-SUBST *A-LIST* RHS)))
(T (CoNs (QUOTE ,FN) (LIST ,@ARGS))))))

COMPILE-RULES returns a DEFUN form, which when evaluated will define a
function, and that function can then be compiled. COMPILE-RULES takes as
its two arguments a function symbol F¥ and some rules about that function
symbol, the same rules that would have been stored under the LENNAS property
of F¥. The DEFUN form that COMPILE-RULES will return will be a definition of
RCP: fn, where fn is the value of FN. The body of the DEFUN will be a COND.
The last condition of the COND is the trivial case; F¥ is simply consed on to the
arguments.

Each of the other clauses of the COND corresponds to one of the equations in
RULES. For each such clause, there is a test and a value; the test is computed
by calling CORDITIONS sequentially on the arguments of the lefthand side of the
equation. Here is the definition of COEDITIONS:

(DEFUR CONDITIONS (TERM NAME &AUX TMP)
(COND ((ATOM TERM)
(CORD ((SETQ TMP (ASSOC TERM sA-LIST+))
{(PUSE ‘(EQUAL ,NAME ,(CDR TNP))
*CONDITIONS®))
(T (PUSE (CDNS TERM NANE) ¢A-LIST*))))
(T (PUSH ‘(CONSP ,NAME) CONDITIONS#)
{PUSH ‘(EQ (QUOTE ,(CAR TERM)) (CAR ,NAME))
*CONDITIONS»)
(LOOP FOR TH IN (CDR TERM) DO
(PROGN (SETQ NAME ‘(CDR ,NAME))
(CONDITIONS TM ‘{CAR ,WAME)))))))

CONDITIONS will deposit on the special variable #CONDITIONS* the sequence
of tests that are necessary to perform the unification. However, during this
compiled unification process, no attempt is made to accumulate a subsiitution
(cf. the selting of UNIFY~SUBST in the execution of CEE~WAY-UNIFY). After all,
at compilation time, we do nol even know with which terms we are going to be
unifying; we only have in hand the equations, not the terms to be rewritten.
Rather, whenever a variable is encountered in the lefthand side of the equation,
we check whether it has been encountered before. (1) If it has not, we place
a note on the a-list *A-LIST# consisting of the pair of (a) the variable and (b)



an expression that, when evaluated at runtime, will return the term with which
the variable would have been bound on UNIFY-SUBST. (2) If it has, then there is
a note on *A-LIST+. In this case, we lay down a test that requires the EQUALity
of the expression we will be encountering here at runtime with the expression
we encountered at runtime which would have been bound on UNIFY-SUBST, to
the variable in question.

The purpose of accumulating *A-LIST¢ is seen in the way that COMPILE-
RULES forms the value part of the corresponding clause of the CO¥D: we substitute
#4-LIST# into the righthand side of the equation, while renaming all of the
function symbols of the righthand side to be in the package RCP.

4.4 Further Enhancements

The code produced by the compiler here is far from optimal. Since we are
dealing with Pure Lisp, we can certainly rearrange the text to take note of
common subexpressions and to eliminate redundant tests. Furthermore, we
could use some sort of “indexing,” as it is called in the Prolog literature, to
dispatch rapidly using hashing techniques when we do get information about
function symbols encountered. We could even macro-expand some of the RCP:
functions, in eflect applying the rewrite rules to themselves at compile time.

5 Results and Cawveals

In repeated tests on a Symbolics 3640 with 4 megabytes of RAM, 2 140 megabyte
disks, and with {GC-0¥), we have found that execution of (TIME (PROGE (SETQ
#RT+ (REVRITE *TERM+*)) NIL)) takes about 80 seconds whereas (TIME (PROGN
{SETQ *RC-RT* (RCP-REWRITE *TERM#)) ¥IL)) takes about .23 seconds. The
values of #RT* and *RC-RT#* returned are, of course, EQUAL. The speed-up ob-
tained is thus about a factor of 350.

In any compilation based system, one has to consider the cost of compiling.
Invoking (RCP-SETUP) requires about 20 seconds. Of course, compilation is
only necessary when one changes rewrite rules. Fucthermore, in the particular
strategy of rewrite compilation discussed here, only the function which embodies
the rewrite rules about a particular function needs to be redefclbobi ined and
recompiled when a rule about that function is changed.




A The “Boyer” Gabriel Benchmark

We have slightly modified the benchmark that appears in Gabriel’s book [2}
in the following ways: (a) we have introduced the top level variables sRULESe
and *TERM#* only in order to make those objects readily accessible for use by
the functions in Appendix B and (b) we have cleaned up a few typographic
errors in the rules so that all functions everywhere take the same number of
arguments and so that integers do not occur where terms are expected. The
defined functions are unmodified.

In order to use this code, you need to first invoke (SETUP), which puts the
*RULES#* on property lists.

i+ —%- Syntax: Common-lisp; Package: USER; Base: 10 -«-
(DEFVAR UNIFY-SUBST)
(DEFVAR TENP-TEMP)

(DEFUR nauﬁaa-squnL (x L)
(DOLIST (Y L) (COND ({EQUAL X Y)
(RETURN-FRON NEMBER-EQUAL T)))))

(DEFUK ADD-LEMMA (TERM)
(COND (C(AND (MOT (ATOM TERNM))
(EQ (CAR TERN)
(QUOTE EQUAL))
(NOT (ATOM (CADR TERM))))
(SETF (GET (CAR (CADR TERN))
(QUOTE LEMNAS))
(CONS TERM (GET (CAR (CADR TERM))
(QUOTE LEMMAS)))))
(T (ERROR "ADD-LEMMA-DID-NOT-LIKE-TERN"
TERM))))

(DEFUN ADD-LEMMA-LST (LST)
{COND ((NULL LST)
T)
{T (ADD-LEMMA (CAR LST)})
(ADD-LEMMA-LST (CDR LST}))))



(DEFUN

{DEFUN

(DEFUN

(DEFUN

{DEFUN

APPLY-SUBST (ALIST TERNM)
(COND ((ATOM TERM)
(coXD ((SETQ TEMP-TEMP (ASSOC TERM ALIST))
(CDR TENP-TENP))
(T TERN)))
(T (CONS (CAR TERN)
(APPLY-SUBST-LST ALIST (CDR TERM))))))

APPLY-SUBST-LST (ALIST LST)
(COND ({(NULL LST)
¥IL)
(T (CONS (APPLY-SUBST ALIST (CAR LST))
(APPLY-SUBST-LST ALIST (CDR LST))))))

FALSEP (X LST)
(OR (EQUAL X (QUOTE (F)))
(MEMBER~EQUAL X LST)))

ONE-WAY-UNIFY (TERM1 TERM2)
(PROGN (SETQ UNIFY-SUBST NIL)
(ORE-WAY-UNIFY1 TERM1 TERK2)))

ORE-WAY-UNIFY:1 (TERM1 TERM2)
(COND ((ATOM TERM2)
(COND ((SETQ TEMP-TENMP
{ASSOC TERM2 UNIFY-SUBST))
(EQUAL TERMi (CDR TEMP-TEMP)))
(T (SETQ UNIFY-SUBST
{CONS (CONS TERM2 TERM1)
UNIFY-SUBST))
T)))
((ATOM TERN1)
RIL)
((EQ (CAR TERM1)
(CAR TERM2))
(ONE-WAY-UNIFY1-LST (CDR TERM1)
(CDR TERN2)})
(T ¥IL)))
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(DEFUN OME-WAY-UNIFY1-LST (LST: LST2)
(COND ((NULL LST1)
T)
((ONE-VAY-UNIFY1 (CAR LST1)
(CAR LST2))
(DNE-VAY-UNIFY1-LST (CDR LST1)

(CDR LST2)))
(T ¥IL)))

(DEFUN REWRITE (TERN)
(COND ((ATOM TERM)
TERM)
(T (REWRITE-WITH-LEMMAS
(CONS (CAR TERN)

(REWRITE-ARGS (CDR TERM) })
(GET (CAR TERM)

(QUOTE LENNMiS))))))

(DEFUN REWRITE-ARGS (LST)
(COND ((NULL LST)
NIL)
(T (CO8S (REWRITE (CAR LST))
(REWRITE-4RGS (CDR LSTY») )

(DEFUR REWRITE-WITH-LEMMAS (TERN LST)
(COND ((NULL LST)
TERM)
((ONE-WAY-UNIFY TERN (CADR {CAR LST)))
(REWRITE (APPLY-SUBST UNIFY-SUBST

(CADDR (CAR LST)))))
(T (REWRITE~WITH-LEMMAS TERM {CDR LST)))})

(DEFU¥
SETUP ¥IL
(ADD-LEMMA-LST *RULES*))

(DEFUN TAUTOLOGYP (X TRUE-LST FALSE-LST)
(CO¥D ((TRUEP X TRUE-LST)
T)

((FALSEP X FALSE-LST)

11




¥IL)
((ATOM X)
NIL)
((EQ (CaR X)
{QUDTE IF))
(coND ((TRUEP (CADR X)
TRUE-LST)
(TAUTOLOGYP (CADDR X)
TRUE-LST FALSE-LST))
((FALSEP (CADR X)
FALSE-LST)
(TAUTOLOGYP (CADDDR X)
TRUE-LST FALSE-LST))
(T (AMD (TAUTOLOGYP {CADDR X)
(CONS (CADR X)
TRUE-LST)
FALSE-LST)
(TAUTOLOGYP {CADDDR X)
TRUE-LST
(coxs
(CADR X)
FALSE-LST})))))
(T ¥IL)))

(DEFUE TAUTP (X)
{TAUTOLOGYP (REWRITE X)
¥IL NIL))

{DEFUN TRUEP (X LST)
(OR (EQUAL X (QUOTE (T}))
{MENBER-EQUAL X LST)))

(DEFUE TEST ¥IL
(TAUTP $TERMs))

(DEFVAR *TERM* (APPLY-SUBST
(QUOTE ({X G (PLUS (PLUS & B)
(PLUS ¢ (ZERD))))
(Y G (TINES (TIMES i B)
{PLUS C D)))
(Z G (REVERSE (APPEED (APPEND i B)
(¥IL))))

12




(U EQUAL (PLUS A B)
(DIFFERENCE X Y))
(W LESSP (REMAINDER A B)
(MEMBER 4 (LE¥GTH B)))))
(QUOTE (IMPLIES (A¥D (IMPLIES X Y)
(AND
(INPLIES Y 2)
(AND
(INPLIES Z U)
(IMPLIES U ¥))))
(IMPLIES X ¥)))))

(DEFVAR »RULES*
(QUOTE ((EQUAL (COMPILE FORN)
(REVERSE (CODEGEX (OPTIMIZE FORN)
(NILy))
(EQUAL (EQP X Y)
(EQUAL (FIX X)
(FII YO}
(EQUAL (GREATERP X Y)
(LESSP Y X))
(EQUAL (LESSEQP X Y)
{¥OT (LESSP Y X))}
(EQUAL (GREATEREQP I Y)
(»oT (LESSP I Y)))
{EQUAL (BOOLEAN X}
(OR (EQUAL X (T))
(EQUAL X (F))))
(EQUAL (IFF I Y)
(AND (XIMPLIES X Y)
(INPLIES Y X)))
(EQUAL (EVEN{ X)
(IF (ZEROP X)
(1)
(opD (SUB1 X))))
(EQUAL (COUNTPS- L PRED)
{COUNTPS-LOOP L PRED (ZERD)))
(EQUAL (FACT- I)
(FACT-LOOP I (ONE)))
(EQUAL (REVERSE- X)
(REVERSE-LOOP X (NIL)))
(EQUAL (DIVIDES I Y)
(ZEROP (REMAINDER Y I)))
(EQUAL (ASSUME-TRUE VAR ALIST)

13




(coNs {(coms VAR (1))
ALIST))
(EQUAL (ASSUME-FALSE VAR ALIST)
(co¥s (COXS VAR (F))
ALIST))
(EQUAL (TAUTOLOGY-CHECKER X)
(TAUTOLOGYP (MORMALIZE I)
{¥IL)))
(EQUAL (FALSIFY I)
{FALSIFY1 (NDRMALIZE X)
(RIL)))
{EQUAL (PRIME X)
(AND (NOT (ZEROP X))
{AXD {WOT (EQUAL X
(ADD1 (ZERD))))
(PRINE1 X (SUB1 I)))))
(EQUAL (AND P Q)
(IF P (IF Q (T)
(F))
(F)))
{EQUAL {(OR P Q)
(IF P (T)
(IF Q (1)
FNN
(EQUAL (XOT P)
(IF P (F)
(T)))
(EQUAL (IMPLIES P Q)
(IF P (IF Q (T)
(F))
(1))
(EQUAL (FIX X)
(1F (NUMBERP IX)
X
(ZERO)))
(EQUAL (IF (IF 4 B C)
P E)
(IF A (IFBDE)
(IF C D E)))
(EQUAL (ZEROP X)
(OR (EQUAL X (ZERD))
{MOT (NUMBERP X))))
(EQUAL (PLUS (PLUS I Y)
2)

14
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(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

{EQUAL

{(EQUAL

(EQUAL

PDS ENVRN)
(EXEC Y (EXEC X PDS ENVRN)
ENVAN))
(MC-FLATTEX X Y)
(APPEND (FLATTEN X)
1))
(MEMBER X (APPEND i B))
(OR (MEMBER X 4)
(MEXBER X B)))
(MEMBER X (REVERSE Y))
(MEMBER X Y))
(LERGTH (REVERSE X))
(LENGTE X))
(MEMBER A (INTERSECT B C))
(AND (MEMBER A B)
{MEMBER 4 C)))
(¥TH (ZERO)
I)
(ZERD))
(EXP I (PLUS J K))
(TIMES (EXP I J)
(EXP I K)))
(EXP I (TIMES J K))
(EXP (EXP I J)
K))
(REVERSE~LOOP X Y)
{APPEND (REVERSE X)
¥))
(REVERSE-LOOP X (NIL))
(REVERSE X))

(COUNT-LIST Z (SORT-LP X Y))

(PLUS (COUNT-LIST Z X)
(COUNT-LIST 2 Y)))

(EQUAL (APPEND 4 B)
(APPEND 4 C))

(EQUAL B ¢))

(PLUS (REMAI¥DER X Y)

(TINES Y (QUOTIENT X Y)))

(FIXI X))

(POWER-EVAL (BIG-PLUS1 L I BASE)

BASE)
(PLUS (POWER-EVAL L BASE)
1))

(POWER-EVAL (BIG-PLUS X Y I BASE)
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{(EQUAL

(EQuUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

{EQUAL

{EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(EQUAL

(DIFFERENCE (PLUS X Y)
(PLUS X Z))
(DIFFERENCE Y Z))

(TIMES X (DIFFERENCE C W))
(DIFFERENCE (TIMES C X)
{TINES ¥ X)))
(REMAYNDER (TIMES X Z)
Z)
(ZERD))
(DIFFERENCE (PLUS B (PLUS A C))
4)
(PLUS B C))
(DIFFERENCE (4DPD1 (PLUS Y Z))
Z)
{ADD1 Y))
(LESSP (PLUS X Y)
(PLUS X 2))

(LESSP Y 2))

(LESSP (TINES X 2)
(TIMES Y 2))

(AND (WOT (ZEROP Z))

(LESSP X Y)))
(LESSP Y (PLUS X Y))
{NOT (ZEROP X)))

(GCD (TINES X 2)

{TIMES Y 2))
(TIMES 2 (GCD X Y)))
(VALUE (NORMALIZE X)

i)
(VALUE X 1))
(EQUAL {(FLATTE¥ X)
(CONS Y (RIL)))
{(AND (NLISTP X)

(EQUAL X Y)))
(LISTP (GOPHER X))
(LISTP X))

(SAMEFRINGE I Y)
(EQUAL (FLATTEW X)
(FLATTEN Y)))
(EQUAL (GREATEST-FACTOR X Y)
(ZERD))
(AND (DR (ZEROP Y)
(EQUAL Y (ONE)))
(EQUAL X (Z2ERD))))
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(EQUAL (EQUAL (GREATEST-FACTOR X Y)
(ONE))
(EQUAL X (OWE)))
(EQUAL (WUMBERP (GREATEST-FACTOR I Y))
(MOT (AND (DR (ZERODP Y)
{EQUAL Y (ONE)))
(¥OT (WUMBERP X)))))
(EQUAL (TIMES-LIST (APPEND X Y))
(TIMES (TIMES-LIST X)
(TIMES-LIST Y)))
{EQUAL (PRIME-LIST (APPEND I Y))
(aMD (PRIME-LIST X)
(PRIME-LIST Y)))
(EQUAL (EQUAL Z (TIMES W 2))
(AND (WUMBERP Z)
(OR (EQUAL Z (ZER0))
(EQUAL ¥ (ome)))}))
(EQUAL (GREATEREQPR X Y)
(NOT (LESSP I Y)))
{EQUAL (EQUAL X (TIMES X Y))
(OR (EQUAL X (ZERO))
(AND (MUNBERP IX)
(EQUAL Y (ONE}))))
(EQUAL (REMAINDER (TIMES Y X)
Y)
(ZER0O))
(EQUAL (EQUAL (TIMES A B)
(DNE))
{AND
(¥OT (EQUAL A (ZERQ)))
(ARD
{NOT (EQUAL B (2ER0)))
{AND
(NUMBERP 4)
(AND
(NUMBERP B)
(AND
(EQUAL (SUB1 A)
(ZERO))
{EQUAL (SUB1 B)
(ZERG))))IN))
(EQUAL (LESSP (LENGTE (DELETE X L))
(LE¥GTH L))
{MEMBER X L))
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(EQUAL (SORT2 (DELETE I L))
(DELETE X (SORT2 L)))
(EQUAL (DSORT X)
(SORT2 X))
(EQUAL (LENGTH
(cows
I1
(cons
12
(cows
X3 (cons
14
(CORs
{3
{CONS X6 X7
(PLUS (SIX) (LENGTE X7)))
(EQUAL (DIFFERENCE (ADD1 (ADD1 X))
(TVO))

(FIX X))
(EQUAL (QUOTIERT (PLUS X (PLUS X Y))
(TWO))
(PLUS X (QUOTIERT Y (TWD))))
(EQUAL (SIGNA (ZERQ)
1)
(QUOTIENT (TIMES I (4DD1 I))
{T¥0)))
(EQUAL (PLUS X (ADD1 Y))
(IF (NUMBERP Y)
(4DD1 (PLUS X Y))
{(4DD1 I)))
(EQUAL (EQUAL (DIFFERENCE X Y)
(DIFFERENCE Z Y))
(IF (LESSP X Y)
(NOT (LESSP Y 2Z))
(IF (LESSP Z Y)
(MOT (LESSP Y X))
(EQUAL (FIX X)
(FIX 2)))))
(EQUAL (MEANING (PLUS-TREE (DELETE X Y))
A)
(IF (MEMBER X Y)
(DIFFERENCE (MEANING
{PLUS-TREE Y)
1)

20




(MEANTNG X A)
(MEANING (PLUS-TREE Y)
4)))
(EQUAL (TIMES X (ADD1 Y))
(IF (NUMBERP Y)
(PLUS X (TIMES X Y))
(FIX 1)))
(EQUAL (WTH (XIL)
¢
(IF (ZEROP I)
(NIL)
(ZERD)))
(EQUAL (LAST (APPEND A B))
(IF (LISTP B)
(LAST B)
(IF (LISTP A)
(CONS (CAR (LAST 1))
B)

B)))
(EQUAL (EQUAL (LESSP X Y)
Z)
{IF (LESSP X Y)
(EQUAL (T) Z)
(EQUAL (F) 2)))
(EQUAL {ASSIGEMENT X (APPEND A B))
(IF (ASSIGNEDP X &)
(ASSIGNMENT X 4)
(ASSIGNMENT X B)))
(EQUAL (CAR {GOPHER X))
(IF (LISTP X)
{CAR (FLATTENX X))
(ZERD)))
(EQUAL (FLATTEN {(CDR (GOPHER IX)))
(IF (LISTP X)
(COR (FLATTEN I))
(COUS (ZERD)
(L))
(EQUAL (QUOTIENT (TIMES Y X)
Y)
(IF (ZEROP Y)
(ZERD)
(FIX 1))
(EQUAL (GET J (SET I VAL XEM))
(IF (EQP 1 I)
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VAL
(GET J MEN))))))
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B A Compiler Based Rewriter

Here is the code that is original with this report. Compilation of the file depends
upon (a) Common Lisp, (b) the Maclisp/Zetalisp LODP macro, (c) the code in
Appendix A, and (d) the MATCH and XATCH! macros in Appendix C.

(DEFUR RULE-FN (RULE &AUX FN)
(MATCH! RULE (EQUAL (CONS FN &) &})
F¥)

(DEFUN COMPILE-RULE-LIST (RULE-LIST)
(LOOP FOR PAIR IN (PARTITION-BY RULE-LIST #’'RULE-FR)
COLLECT
(COMPILE-RULES (CAR PAIR) (CDR PAIR))))

(DEFUE PARTITION-BY (LST FN &OPTIONAL STASH)
(COND {(NULL LST) STASH)
{T (INSERT-ITEM (CAR LST)

FN

(PARTITIDE-BY (CDR LST)
Fi
STASE)}))))

(DEFUN INSERT-ITEM (ITEM FN STASE)
(LET ((KEY (FUNCALL F¥ ITEN)))
(Co¥D ((NULL STASH) (LIST (CO¥S KEY (LIST ITENM))))
((EQUAL {CAAR STASE) KEY)
(CONS (CONS KEY (CONS ITEM (CDAR STASE)))
(CDR STASH)))
(T (CONS (CAR STASH)
(IESERT-ITEM ITEM FK {CDR STASH)))))))

(DEFUE MAKE-VARS (N)
(LOOP FOR I FROM 1 TO ¥ COLLECT
(INTERE (STRING-APPERD "V (PRIN1-TO-STRIKG I)))}))
(DEFVAR *A-LIST*)
(DEFV4R *CONDITIONS#*)
(OR (FIND-PACKAGE "REWRITE-COMPILER-PACKAGE")

(MAKE-PACKAGE “REWRITE-COMPILER-PACKAGE"
:XICKNAMES ’(RCP) :USE ¥NIL))
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(DEFVAR *REWRITE-COMPILER-PACKAGE»
(FIND-PACKAGE "REWRITE-COMPILER-PACKAGE™))

(DEFUE RCP-INTERK (SYMBOL &AUX TMP)
(SETQ THP (INTERN (SYMBOL-NAME SYMBOL)
*REWRITE-CONPILER-PACKAGE+*))
(COND ({NOT (FBOUNDP THP))
(EVAL ‘(DEFUX ,TMP (&REST ARGS)
(comp
(ARGS
{Co¥S
{QUOTE ,SYMBOL)
(LOOP FOR ARG IN ARGS COLLECT ARG)))
(T (QUOTE (,SYMBOL)))})))
(COMPILE TMP)))
TMP)

(DEFUN COMPILE-RULES (FN RULES &AUX ARGS LHS RES)
(MATCH! (CAR RULES) (EQUAL (CONS FN ARGS) &))
(SETQ ARGS (MAKE-VARS (LENGTH ARGS)))
¢ (DEFUN , (RCP-INTERK FN) ,ARGS

(COND
,e(LOOP FOR RULE IN RULES
Do
(SETQ »A-LIST+ NIL *»CONDITIONS#+ NIL)
Do
(MATCH¢ RULE (EQUAL LHS RHS))
DO

(LODP FDR TERM I¥ (CDR LHS) AS V IN ARGS
DO (CONDITIORS TERM V))
COLLECT
‘((AND ,@(REVERSE *CONDITIONS*))
, (RCP-SUBST *A-LIST+ RES)))
(T (CO¥S (QUOTE ,FN) (LIST ,@4RGS)))}))

(DEFUN RCP-SUBST (L TERM RAUX TMP)
(COND {(ATOM TERM)
(SETQ TMP (ASSOC TERN L))
(COND ({NULL TMP} (ERROR "Variable unbound!*)})
{CDR THP))
(T (COMS (RCP-INTERN {CAR TERM))
(LOOP FOR ARG IN (CDR TERM)
COLLECT (RCP-SUBST L ARG))})))
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C Match

The following macros are used by the code in the previous appendix. This code
is taken from the Boyer-Moore theorem-prover. MATCH is a macro that has been
used in that system since about 1975. It is very similar to what has been called
& “destructuring let” in the Lisp community for over a decade. In a certain
sense, the idea of MATCH is very similar to that of the compilation of rewrite
rules discussed in this note.

iis ~% Syntax: Common-lisp; Package: USER; Base: 10 -s-

;i; This is the Common Lisp-ification of the Match stuf?
iii from the Boyer-Yoore theorem-prover.

(DEFVAR *SETQ-LST+)

(DEFVAR *TEST-LST#)

(DEFUN NCONC: (X Y) (NCONC X (LIST Y)))

(DEFMACRO MATCH (TERM PAT) (MATCH-NACRO TERM PAT))
(DEFMACRO MATCH! (TERM PAT) (MATCE!-MACRO TERM PAT))

(DEFUN MATCH-MACRO (TERM PAT)
(COND ((CONSP TERM)
‘(LET ((MATCH-TENP ,TERN))
» (MATCH1-MACRD (QUOTE MATCH-TEMP) PAT)))
(T (MATCH1-MACRG TERM PAT))))

(DEFUN MATCH!-MACRO (TERM PAT)
(LIST (QUOTE OR)
(MATCH-MACRO TERM PAT)))

(DEFUN MATCE1-MACRO (TERM PAT)
(LET ($TEST-LST* *SETQ-LST»)
(MATCE2-MACRO TERM PAT)
(LIST (QUOTE COND)
(CoNs
(CONS (QUOTE AND) *TEST-LST+)
{NCORC1 #SETQ-LST+ T)))))
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TERN)
SUBPAT)
(SETQ TERM (LIST (QUGTE cDR)

TERN)))
(SETQ *TEST-LST+

(WCONC1 *TEST-LSTs (LIST (QUOTE EQ)
TERN NIL))))))
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