PRETTY-PRINT

by
Bob Boyer.

Memo No 64

1473

i:)f19a]ldﬂeA6£ &’Q C:su&fo4txl(0n;aé7 L,Qj(}:
gc(/toot 5 A(\Jﬁ“"\(c}a,Q ld\u[(\@MQ
U(\\VMAS;VL‘/’ o-—p ELin by ':«j“\

ABSTRACT.

A program for printing list structures in a pretty format is
described. The program is fast, does only a little consing, and

is exact (i.e., uses no heuristics).

PRETTY~PRINT.

Many programmers who deal with lists have found that a facility for
pretty-printing list structures is a great convenience. (The only
alternative to pretty-printing that I know of is a 'parenthesis count!
which prints below each parenthesis the number of unbalanced parentheses

to the left.) This note describes a pretty-print algorithm.

An apology is perhaps due before I describe the algorithm. The
first pretty-print program I used was called GRINDEF; it was the standard
at the MIT AI Laboratory. GRINDEF worked reasonably well on small formulas
but was actually compute-bound on some of the larger formulas generated by
theorem-proving programs I helped write. (I mean, the program would some-
times stop printing on our visual display for a few moments while it
calculated.) That spurred me on to write an algorithm myself. I
inspected the code for GRINDEF, and I can testify from that vision alone
that anyone who thinks pretty-printing is trivial has Just not thought
about it long enough. The beauty of GRINDEF is that it does no consing.
As a result, it was almost constantly re-computing what it might have

remembered.,

My first pretty-print did a fantastic amount of consing: three (gasp)
times as much store as the formula being printed. But at least it worked
faster, at least 10 times faster on large formulas. However, my program
was still far from exact (I will explain precisely what I mean by 'exact!'
later). I now see that exactness was missing because I had not yet
imagined the full complexity of the task. Let me try to give you an
intuition of how complicated an exact pretty-print is: it is the only

recursive function I know of with 9 really local variables.,

Working in Edinburgh on another theorem-proving program, I found it
necessary to write another pretty-print for list structures, this time
in POP-2 instead of LISP. My current pretty-print does a small amount

of consing, is very fast, and is completely exact.

a) The amount of consing done by the program is approximately

one cons for every three lines of output.

b) The speed of the program is directly proportional to the
gize of the formula being printed; it takes about three
times as long to pretty-print a formula as it does simply
to print it. (This time is calculated for writing to a

'device' which uses up no time whatsoever.)

¢) By exactness I mean that no 'heuristics' are used; the
program knows precisely how much space every part of the

formula needs for the several varieties of indentation

before anything is printed.

Requirements of a Pretty-Printing Algorithm

Before beginning a description of what I want in a pretty-print program,

let me make a few simplifying assumptions:

1) No special attention will be paid to things like LAMBDA's,

PROG's or comments.

2) Nothing of the form ((...) ...) is permitted (i.e., we

have always stoms in the function position).
3) Nothing of the form (FOO . BAR) is permitted.

All of these simplifications can be eagily removed; the only reason I

make them is to help keep a complicated discussion a little clearer.

The first requirement in a pretty-print algorithm is that it print

the formula all on one line if it will fit.

The second requirement is that it print the formula with the arguments
directly underneath one another if the formula will not all fit on one line.

The best type of indentation is of the form:
(FOO (BART.evevouranronsonnncnsonnes)
(BAR2.euueres)
(BARZceeecrccnnrness))

That is, with the first argument on the same line as the function symbol.

The other type of indentation is

(FoO

6:7V: 3 I)
(BAR2........)

(BAR3.....)

The third requirement in a pretty-print algorithm is that if the
second type of indentation must be employed, then the arguments will be

moved as far to the right as possible. Thus

(FOO
(BART.....)
(BAR2.....)
(BAR3.....)

is better than the immediately preceding output because the arguments are
indented further. Of course, the only reason that the second type of
indentation must be employed is that if the first variety is used, then

the output will go beyond the right-hand margin.

The pretty-print algorithm to be described in this note achieves these

three requirements in the following way:

1) Any sub-formula that can be printed flat (on one line)
is so printed flat, even if that entails the worst
variety of indentation for the formulas which contain

the sub-formula.

2) Subject to constraint (1) above, if & sub-formula cammot
be printed flat it will be printed with its arguments
indented in the best way or as far over as possible (if
the second type of indentation is necessary). This
indentation will be allowed for the sub-formula even if
it entails the worst variety of indentation for the

formulas which contain the sub-formula.

3) At the very worst, the arguments of each sub-formule will

be indented at least one space further than the sub-formula.

(Unless, of course, the formula simply cannot be
pretty-printed. I have never seen this happen with

a line width of 80 characters.)

The implications of 1, 2 and 3 can be easily apprehended by inspecting

some sample output. See the appendix.

The Pretty-Print Algorithm

The pretty-print algorithm is called PPR. It takes 3 arguments:

MARG1 which is the number of spaces you want in the left-hand

margin,
the FMLA to be pretty printed,

and RPARCNT which is the number of characters you want to print
on the last line of the pretty-printed text after the pretty-

print is finished.

Norﬁally RPARCNT is originally O. The global variable MARG2 is set to the
maximum number of characters that may be printed on a line. PPR expects
that it can begin outputting immediately: i.e., the print head is positi-
oned where pretty-printing is to begin. PPR does not print a new line

after it is finished. You can still print as many as RPARCNT characters
before exceeding MARG2.

Essentially, PPR works by making two complete passes through FMLA.
The first pass is made by PPR1 which does no output whatsoever. Instead
PPR1 simply calculates exactly where, what kind of, and how much
indentation is required. The information returned by PPR1 is used by
PPR2 which makes the second pass through FMLA. PPR2 does no calculating
but does all the printing.

PPR1 returns its answers through four global variables: FLATSIZE,
REMAINDER, STARTLIST, ENDLIST.

FLATSIZE may be a positive integer or false. 1If it is a positive
integer then it is the number of characters it takes to print FMLA flat;
furthermore FMLA can be printed on one line. If FLATSIZE is a positive
integer, then STARTLIST and ENDLIST are of no significance. If FLATSIZE
is false then FMLA cannot be printed on one line and information about

where indentation should occur is found in STARTLIST and ENDLIST.

STARTLIST is a list of numbers. Each number is actually a packed
triple representing three numbers, These numbers describe the kind and

amount of indentation required for each sub-formula with indented arguments.,

1) The bottom number is a kind of pointer to the sub-

formula with indented arguments.

2) The middle number is the number of spaces further in

that the arguments are to be indented.

3) The top number is a one bit flag indicating what kind
of indentation is to be used. If the bit is on, then
the first argument is to be printed on the same line
as the function symbol; otherwise the first argument

is to be printed on a new line.

The basic idea is that PPR! returns an appropriate STARTLIST and that PPR2
will take this list and begin printing the FMILA the way that, say, PRINT
does. But as PPR2 encounters each sub-formula, PPR2 asks whether the
sub-formula is pointed to by the next entry on the STARTLIST. If so,

the sub-formula is printed with its arguments indented according to the
other information in the first entry on the STARTLIST. If the sub-
formula is pointed to by the first entry on STARTLIST, then STARTLIST is
CDR'd before the arguments are printed (recursively by PPR2 of course).

If the sub-formula is not pointed to by the first entry on the STARTLIST,
it is printed flat.

What kind of pointers are these 'kind of' pointers? They are the
p

integers associated with each sub-formula by the depth-first enumeratioph:+#en .

of the sub-formulas of FMLA., Every time we enter PPR1 recursively we
increment a global variable GRECCNT by one. The value of GRECCNT on entry
to PPR1 is thought of as pointing to the current sub-formula that PPR1 is
working on. Of course, when we reinitialize GRECCNT to zero and begin
PPR2 (where we also keep uping the count), we know that the next entry on
STARTLIST points to the current sub-formula if and only if GRECCNT is equal
to the bottom third of the next entry on STARTLIST. GRECCNT is set to
zero before PPR calls PPR1 and before PPR calls PPR2.

ENDLIST is merely the last cell of STARTLIST. It is used for fast
NCONCing.

REMAINDER is a number. It represents the number of spaces FMLA can
be shoved over towards the right after pretty~-printing it. It iz from
REMAINDER that we learn whether or not indentation of the best kind is

possible, and, if not, how much indentation of the other kind is possible.

The Locals of PPR1

PPR! has a number of arguments and local variables.
The arguments are FMLA and RPARCNT.
FMLA is the current sub-formula we are working on.

RPARCNT is the number of characters we want to output on the last line
after pretty-printing FMIA. Supposing that the user has not requested any,
then RPARCNT is simply the number of right parentheses that is to be printed
on the last line after pretty-printing FMLA, i.e., right parentheses belonging
to formulas of which FMLA is a sub-formula that must be printed on the same
line immediately after FMLA. Any pretty-print algorithm which ignores this
aspect of pretty-printing is,in my opinion,not exact. The secret to keeping
track of the right parentheses is to call PPR1 recursively with RPARCNT as O
unless you are recursing on the last member of FMLA, in which case you call
PPR1 recursively with RPARCNT as RPARCNT + 1. When eventually the last
member of FMLA is an atom, simply add in RPARCNT when calculating the space
it will take to print the atom. (Actually RPARCNT is one greater than
suggested here.)

A global variable called SPACELEFT ought really to be considered as an
argument of PPR1. SPACELEFT is decremented by one every time we recurse
into PPR1 and incremented by one every time we exit. Hence it does not
have to be local, and we have not made it local. SPACELEFT is initialized
to MARG2-MARG! by PPR before it calls PPR1. Hence SPACELEFT represents
the maximum width of characters that can be available for pretty-printing
FMLA. That is because with minimum indenting we will space at least once

for the arguments of every formula of which FMLA is a sub-formula.
The local variables of PPR1 are:

NODENAME is set to the value of GRECCNT on entry to PPR1, Then GRECCNY
is incremented by one. NODENAME is to be thought of as pointing to FMILA.

RUNFLAT is a variable in which we accumulate the flatsize of FML& (the
number of characters it takes to print FMLA flat).

MINREM is a variable in which we keep the minimum amount of space
remaining after pretty-printing each of the arguments of FMLA. MINREM is
bagically just the smallest value REMAINDER has had after recursive calls
of PPR1 on the arguments of FMIA.

L is just a variable that is used to CDR down FMLA as we call PPR1 on
each of the arguments of FMLA.

RUNSTART is a variable used to concatenate the STARTLIST's which are
returned by recursive calls of PPR!1 on the arguments of FMLA. RUNEND is
used to help NCONC together different STARTLIST's. RUNEND is always the
last cell of RUNSTART.

The Flow of Control through PPRI

After initialization and assuming FMLA does not have length 1, we begin
looping around LOOPFLAT, CDRing down the arguments of FMLA. The tentative
assumption is that FMLA can be printed flat. As long as each of the
arguments of FMLA can be printed flat, we simply keep summing up the
FLATSIZE's in RUNFLAT and keep MINREM to be the least of the REMAINDER's.

If we finish CDRing down FMLA and each argument will fit flat, we ask
if RUNFLAT is < SPACELEFT. If so, then we can print FMIA flat.

If not, we set FLATSIZE to false and set STARTLIST to the list whose

only element is a packed number of the form:

1 4 13

The top bit is set if the best kind of indenting is possible. The 4
bits are set to the amount we further indent the arguments. The bottom -
13 bites are set to NODENAME. These packed numbers are set up by PPRPACK.

If, while CDRing down FMLA, we discover that some argument requires
indentation (FLATSIZE is false), then we know that the arguments of FMLA

mist be indented alsgo.

We initialize RUNSTART to bte the STARTLIST defined by the first
argument which requires indenting, and then we begin looping around LOOPIND.
Here we call PPR1 recursively on each of the remaining arguments to FMLA.
If FLATSIZE is false after any of these calls, we concatenate the STARTLIST
defined by that call to the end of RUNSTART.

When we reach NIL, we cons the packed number (as above) onto RUNSTART
and assign that to STARTLIST, and set FLATSIZE to false.

Following is LISP code for PPR, PPR1, PPR2, and PPRPACK. There are

two functions used but not defined:

PPRDL takes one atomic argument and returns the number of characters
in it.

PPRSP takes one numeric argument and prints that many spaces.

Finslly, there is an example of the kind of formula for which PPR was

written. It is printed at various MARG2 settings.

I thank J Moore for his substantial help in the coding, debugging and
documenting of PPR.

[DOCUMENT FOR PPR MEMO1 TRACK 3% [14,12 9 A
PRIL 1973]
CREATED 14.11 9 4 1973

HERE IS THF LISP cODE FOR PPR.

(DEFPROP PPPR
(LAMBDA (FMLA MARGL RPARZINT)
(PROG NIL

(COND ((ATOM FMLA) (PRIN1T FMLA) (RETURN NIL)Y))
(SETQ GRECINT 0)
(SETQ SPACZLEFT (DIFFERENCE MARG2 MARGBL))
(PPR1 FMLA (ADD1 RPARCNT))
(COND (FLATSIZEZ (PRINT FMLA) (RETURN NIL)Y))
(SETQ NEXTNODE (_OGAND (CAR STARTLIST) R191))
(SETQ NEXTIND (LOGSHIFT (CAR STARTLIST) (MINUS 13)))
(SETQ GRECZNT 0)
(PPR2 FMLA MARG1)))

EXPR)

(DEFPROP
PPR1
(LAMBDA
(FMLA RPARCNT)
(PROG
{NODENAME DLHDFMLA RUNFLAT MINIEYM _ RUNSTART RUNEND)
(SETQ NODFMAME GRECCNT)
(SETQ GRFECCNT (ADD1 GRECCNT))
(SETQ DLHDFMLA (AND1 (PPRDL (CAR FMLA)Y)))
(COND ((NULL (CDR FMLA))
(SETQ FLATSI7E (PLUS RPARCNT DLHDFMLA))
(SETQ REMAINDER (DIFFERINCF S ACELEFT FLATSIZE))
(PETURN NI1i))) ‘
(SETN RUNFL AT DLHPFMLA)
(SETQ MINREM (DIFFERENCF SPACF_EFT D_HDFMLA))
(SETO SPACELEFT (SURB1 SPACELEFT))
(SETN L FMLA)
LOOPFLAT
(SETQ L (CDR L)Y
(COND ((NULL L)
(SFTQ SPACELEFT (ADD1 S2ACELETT))
(COND ((OR (EQUAL RUNFLAT SPACELEFT) (LESSP RUNFLAT SPACFLEFT))
(SETQ FLATSIZE RJUNFLAT)
(SETQ REMAINDER (DIFFERENCE SPACELEFT RUNFLAT)Y))
(T (SETQ STARTLIST (CONS (PPRPACK) NIL)Y)
(SETQ ENDLIST STARTLIST)
(SETQ FLATSIZE NItL)))
(RETURN NIL)Y))
(COND ((ATOM (CAR L))
(SETQ TEMP1 (PPRDL (CAR L)))
(SFTQ RUNFI AT (PLUS (ADD1 TEM21) RUNFLATY)
(SFTQ TEMP1 (DIFFERENCE SPACE_EFT TEMP1)y)
(COND ((NULL (CDR L))
(SETQ RUNFLAT (P_US RPARCNT RUNFLAT))
(SETQ TEMP1 (DIFTERENCF TEMP1 RPARCNT)Y)))

(COND ((LESSP TEMP1 MINIEM) (SFTQ MINREM TEMP1)))
(GO LOOPFLAT)Y)
(PPR1 (CAR L) (COND ((CDR L) 1) (T (ADD1 RPARCNT))Y))
_(COND ((LESSP REMAINDER MINREM) (SET3 MINREM REMAINDER)))
(COND
(FLATSIZE (SETQ RUNFLAT (P_US (ADD1 FLATSIZE) RUNFLAT)) (RO LOOPFLAT)))
(SETQ RUNSTART STARTLIST)
(SETH RUNFND ENDLIST)
LOOPIND
(SETQ L (CDR L))
(COND ((NULL L)
(SETQ STARTLIST (CONS (2PRPACK) RUNSTART))
(SETO ENDLIST RUNEND)
(SETO FLATSIZE NIL)
(SETQ SPACELFEFT (ADD1 SPACE_FTT))
(KFTURN NTIL)YY)
(COND ((ATOM (CAR L))
(SFTQ TEMP1 (DIFFERENCE SPACE_EFT (PPRDL (CAR L))))
(COND ((NULL (GDR 1)) (SETn TEMP1 (DIFFERENCE TEMP1 RPARCNT))))
(COND ((LESSP TEMP1 MINREM) (SETQ MINREM TEMP1)))
(GO LOOPIND)Y)Y)
(PPR1 (CAR L) (COND ((CDR L) 1) (T (ADD1 RPARCNT))))
i COND ((LFSSP REMAINDFR MINREM) (SFTQ MINREM REMAINDER)))
(COND (FLATSIZE)Y (T (RPLACD RUNEND STARTLIST) (SETQ RUNEND ENDLIST)Y))
) (G) LOOPINDYY)
EXPR)

(DEFPROP
PPR2
(LAMBDA
(FMLA MARGT)
(PROG
(NONLFLAG INDFLAG)
(COND ((ATOM FMLA)Y (PRIN1 FMLA) (RETJRN NIL)Y)
(COND
((EQUAL GRECCNT NEYTNODE)
(SETQ MARG1 (PIUS MARG1 (LOZAND NEXTIND 15)))
(SETQ INDFLAG T)
(SETQ NONLFLAG (FQUAL 16 (LIGAND NEXTIND 16)))
(SETQ STARTLIST (CDR STARTLIST))
(COND (STARTLIST (SETQ NEXTNODE (_OGAND (CAR STARTLIST) R191))
(SETQ NEXTIND (LIGSHIFT (CAR STARTLIST) (MINUS 13))))))
(T (SETO INDFLAG NIL) (SETQ NONLFLAG T))y)
(SETQ GRFCCNT (ADD1 GRECCNT))
(CUCHAROUT 24)
(PRIN1 (CAR FMLA))
(SETQ FMLA (CDR FMLA))
(COND ((MULL FMLA) (CUCHAROUT 25) (RETURN NIL)y)y)
(COND (NONLFLAG (CUCHAROUT 16)) (T (ZUCHAROUT 17) (PPRSP MARG1)))
LOOP
(PPR? (CAR FMLA) MARG1)
(SETQ FMLA (CDR FMLA))
(COND ((NULL FMLA) (CUCHAROUT 25) (RZTURN NIL)))
(COND (INDFLAG (CUCHAROUT 17) (PPRSP MARG1)) (T (CUCHAROUT 16)))
. (GO LDOOP)Y))
EXPR)

(DEFPROP
PPRPACK
(LAMBDA

N1L
(i OGOR
(LOGSHIFT

(COND
(1 ESSP MINREM DLHDFMLA) (SETG REMAINDFR 0) (ADD1 MINREM))

(T (SETQ REMAINDER (DIFFZRENCE MINREM DLHDFMLA)) (PLUS 17 DLHDFMLA)Y))

13)
NODENAME))
EXPR)

PAGE ?

HERE IS A TYPICAL FORMUIL A FROM OUR THEOREM PROVER PRETTY PRINTFED WITH MARG? SET
TO 0.

(IF
A .
(Ir

(ZQUAL (LLAST GENRL1) (CAR A))

(IF .
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIpL))) A1).
(IF .

A .

(IF .
GENRL1 .
(IF .

(EQUAL (LAST GENRL1) (CAR A))
(1F
(APPEND GENRL1 (CONS A1l NI_)) .
(EQUAL (LAST (APPEND GENRL1 (CONS At Nip))).
A1) .
(EQUAI GENRL11 A1))
T
(IF
(EQUAL GENRL11 (CAR A))
(IF
(APPEND GENRL1 (CONS A1 NI_.)) .
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))).
A1) .
(EQUAL GENRL11 AL)) .
Ty
T)
.

(1F
A
(IF
GENRL1

(IF .
(EQUAL (LAST GENRL1) (CAR A)) .
(IF .

(APPEND GENRL1 (CONS Al NI_)) .
(FQUAL (LAST (APPEND GENRL1 (CONS A1 NIp))).
A1) .
(EQUAL GENRL11 A1))
T)

(IF .
(EQUAL GENRL11 (CAR A)) .
(IF .

(APPCND GENRL1 (CONS Al NI_)) .
(EQUAL (LAST (ABPPEND GENRLL (CONS A1 NIL))Y),
A1) .
(EQUAL GENRL11 A1)) .
TH .

™)
(If .

A

(IF

SENRLL

CIF
(EQUAL (LAST GENRL1) (CAR A))
LIF
(APPEND GENRL1 (CONS A1l NI_)) .
(EQUAL (LAST (APPEND GENRL1 (CINS A1 NILY)Y).

A1) .

(FEQUAL GENRL11 AL)) .

™ .
(IF ‘
(EQUAL GENRL11 (CAR A)) .
(1F .
(APPEND GENRL1 (CONS A1 NI_)) .
(EQUAL (LAST (APPEND GENRL1 (CONS A1 NIL))).
A1.) .

(EQUAL GENRL11 A1)) .
) .

T

THIS. IS THF SAME FORMULA PRINTED AITH MARG2 SET TO 65,

(1F
A

(Ir

(FQUAL

('F
(E

QUAL

(IF

™
(IF

(IF

T

A
(1fF

(IF

™)

(LAST GENRL1) (CAR A))

(LAST (APPEND GENRI.1 (CONS A1

GENRLY1
(1F (EQUAL (LAST GENRL1)
(IF (APPEND GENRL1
(ENUAL (LAST (APPEND
(EQUAL GENRL11 A1)

(CAR A))

Ty

(EQUAL GFNRL11 (CAR A))

(IF (APPEND GENRL1 (CONS
(EQUAL (LAST (A2PEND
(EQUAL GENRL11 A1))

(IF

DD

GENRL1
(IF (EQUAL (1LAST GENRL1)
(IF (APPEND GENRL1
(ENUAL (LAST (A2P2ZND
(EnNUAL GENRL11 A1))

(CAR A))

™

(EQUAL GENRL11 (CAR A))

(IF (APPEND GENRL1 (CONS A1
(EQUAL (LAST (APPEND
(ENUAL GENRL11 A1))

™

GENRL1
(IF (EQUAL (LAST GENRL1)
(IF (APPEND GENRL1
(EQUAL (LAST (AP END GENRL1
(EQUAL GENRL11 A1))

(CAR A))

)

(EQUAL GENRL11 (CAR A&))

NIL)YY)

A1)

(CONS a1 NIL)
3ENRL1

(CONS A1 NIL)Y)

AL NIL))
GENRL1

(CONS A1 NIL)Y))

(CONS A1 NIL))
GENRL1

(CONS AL NIL)Y))

NIL))
SENRL1

(CONS A1 NIL)YM)

(CONS A1 NIL))

(CONS A1 NIL)M)

(CONS A1 NIL)YM)

(IF (APPEND GENRL1 (CONS A1 NIL)Y)
(EQUAL (LAST (AP2END G=NRL1
(EQUAL GENRL11 A1)

T

A1)

A1)

A1)

A1)

A1)

A1)

PAGF 3

FINALLY, HERE IS THE SAME FORMULA PRINTEZD WITH MARG2 SET TO 78.

(1F A
(TF (EQUAL (LAST GENRL1) (CAR A))
(IF (EQUAL (LAST (APPEND 3ENRL1 (CONS Al NIL))) A1)
(TF A
(IF GENRL1
(IF (EQUAL (LAST 3ENRL1) (CAR A))
(IF (APPEND GENRIL1 (CONS A1 NIL))

(EQUA_ (LAST (APPEND GENRL1 (CONS A1 NIL)))

(EQUA_ GENRL11 Aq))
T)
(IF (ENUAL GENR_11 (CAR A))
(IF (APPEND GENRL1 (CONS A1 NIL))

(EQUA_ (LAST (APPEND GENRL1 (CNNS A1 NIL)))

(EQUA_ GENR_11 A1)
T

LD)

i)
(IF A

(IF GENRL1

(IF (EQUAL (LAST 3ENRL1) (CAR A))

(IF (APPEND G=NRL1 (CONS A1 NIL))

(EQUAL GENRL11 A1))
T)
(IF (FOUAL GENRL11 (CAR A))
(IF (APPEND G3NRL1 (CONS A1 NIL))

(ENUAL (LAST (A2PEND GENRL1 (CONS A1 NIL)Y))

(EQUAL (LAST (APEND GENRL1 (CONS A1 NIL)Y))

(EQUAL GENRL11 A1))
™)
T))
(IF A
(1F GENRL1
(1F (EQUAL (1LAST GENR_1) (CAR A))
(IF (APPEND GENRLYI (CONS A1 NIL))
(ENUAL (L AST (APPEND GENRL1 (CONS A1 NIL)Y))
(ENUAL GENRL11 A1))
T)
(IF (EQUAL GENRL11 (CAR A))
(IF (APPEND GENRL1L1 (CONS A1 NIpL))
(EQUAL (1 AST (A2PEND GENRL1 (CONS A1 NIL)Y))
(EQUAL GENRL11 A1))
T

A1)

ALY

- e ® & » e =

-

® 2 e ® e ® e s e 2 w e

* 4 ® 8 e e & & » e

