THE SHLRING OF STRUCTURE

IN RESOLUTION PROGRIMS.

by

Rotert 5. Boyex
and
J Strother Moore

1972

Meta Mm‘“l@v“d“cs | Unit
Cda ‘OUY‘G\/\ O‘\‘V\Msjt7
S c O+ lCU’\A



ABSTRACT

A machine oriented representation of clauses is presented
that shares substructure to the extent that no terms or literals
or lists of literals are constructed after input. The
representation eliminates the process of standardizing apart.
The representation admits programs as fast and as natural as
list representation. Striking analogies with LISP and ALGOL
are describeds The details of implementations of the
representation for both SL and general resolution are

presented.



A programmer in computational logic finds himself hard put
to represent clauses 1n computers both naturally and compactly
He turns to lists as. the most obvious solution tc his problem,
Lists accurately represent the tree structure of terms and literals
and conseq_uently permitk efficient and elegant recursive coding.
Two maaor disadvantages emerge however to mar the perfectlon of
this method of representatlon. First, lists w111 typically
require ten times more machine storage than the most compact
character atrip represehtétibn.  Secondly, the rapid construction
and deletion of clauses in'list form ‘demand frequenf garbage

collection,

We here offer a rerresentation of clauses ten times more
compact than character strips while it preserves all the virtues
of lists. Suppose that C and D are clauses, K is a literal in
C, =L is a literal in D, and o is a most general substitution
such that XK =1 . Then the clause

Ro= ((c-f®)u@-i1})) o

is a resolvent of C and D. To reify R (by applying ¢~ and
cons-~ing a list of literals) in a computer may require almest

as much construction as was involved in building C and D. We
observe, however, that R is completely described by dppropriate
references to the roles of C, X, D, ~L, and 07, This observation

is the key to our representation.

The reader may well guess that !'appropriate references! to
C, K, D, and -L are easy to program. If K is the kth member of C
and -L is the m'> member of D then the four-tuple { ¢, k, D, m>1
will do, for example., Treating ¢~ is a harder problem, however,
and akin to a problem elegantly solved in LISP% | The application
of a lambda—exfression to an argument was defined blehurch as a
substitution into the body of the lambda-expression. The LISP
A-list obviates this substitution, which would be quite expensive
to perform. Instead of substituting & value V, for a bound
variable, say x, the LISP interprefer adds (x.7V ) to the A-list.
If x is encountered later; its value is &etermined'by an examination
of the A—list; |

1Th1s might be programmed as a list of four thlngs- ﬁointers to
C and D and the numbers k and m, :

Algol handles.a similar problem in calie by namé.



2

Many workers in computational logic have intuited that
substitutions in resolution ought to be treated in a way similar
to the LISP solution. = In fact, J.A. Robinsons, B, Anderson and
R. Popplestone have implemented unification algorithms that do
not actually perform substitutions. The main idea in their
progréms is that to replace a variable by a term in an expression
it is sufficient to put the term into the place reserved for the
value of the variable. Then if one encounters a variable, one
askst Does it have a term in its value place? If it does, one
proceeds exactly as if he had encountered the term rather than

the variable.

The extension of this idea to a whole theorem proving program

is impeded By two problems:

(1) Whenever two clauses are resolved, their variables must
. be standardized apart., If this is accomplished by
physically changing each variable, one will frequently

need to recoastruct a whole clause.

(2) since a clause may be resolved with meny others, a
variable may have different bindings on different
branches of a search trse. Hence a single value cell

" ig insufficient.

Our solution'to these two problems is to expand che proposed
4—tup1e‘
{¢y k D, mp (cofe p. 1)
to a five-tuple '

<c,k,D,m,O">

after redefining the concept of a 'substitution component!.

At the tips of the tree defined by such five-tuple clauses
are input clauses, It is only at these tips that one may encouater
a 'reall literal, term, or variable. If oune speaks of a variable,
term,»or literal, T, as being 'in' a five-tuple clause, C, then
he also has in mind a single branch of clauses extending from C
to an input clouse in which T actually occurs. We call this
‘_the branch 'along which T occurs'. We are particularly‘interested
in the branches associated with variables becaﬁsé they autonntically
stendardize variables apart. The following syllogism makes this
point clear: ; ’

%p

obihson, Jehs, 'Computational Logic: The UﬁificationAComputatinn'
in Machine Intelligence VI, eds. B, Meltzer and D. Michie,
University of Edinburgh Press, 1971, p-63.



3

(1) To stendardize a variable apart, it is sufficient to -
agsociate with it the branch of the derivatlon along

‘ whlch 1t occurs.A

. (2) Inductively, if. each variable in a clause is already
_ossociated with the branch along which it occurs, then .
in a-resolvent we need merely associate with each

variable the clause from which it came. -

(3) If a clause is a five—tuple as above, then a varidble

- “is implicitly associsted with the clause from which ~ -
‘it comes (it is either in C or D). '

'(4) Therefore, no work need bé‘dqnq dt all (beéides

creating the 5-tup1e) to sfanddrdize variables apart.

To take advantage of this !'automatic! standardizing apart

- we must keep track of the branches associated with variables.

. To this end we define a substitution component to be a four~tuple
of the form: . o
| £ VARIABLE, BRANCH{, TERM, BRANCH2 ) |

where BRANCH! is the branch associated with VARIABLE and BRANCH2
is the branch associated with TERM. This four~tuple corresponds
roughly to the normal substitution component TERM/VARIABLE.

Sinee we never actually apply substltutlons, we never construct
new terms. Hence TERM is actuully a term in an 1nput clause.

It follows that BRANCH2 is the branch not only for TERM but also
for all the variables in TERM.

When, in unlficatlon, we encounter a varlable v w1th associated
branch b we ask whether v is bound to a term T with assoclated
‘branch B. If it is, we proceéd‘as if we had encoﬁntered’T (of
branch B) insterd of v. If we wish to unify some, varisble v
with assoc1ated branch b ﬂn& tern T with a08001<ted branch B
we form the substitution component

| | {v, b, 7,8 |
We then store this component in such a way that if we evef encounter
vof b dgain we can find that it is treally' T of B.

In our 1mplementation of SL-resolutlon4 we actually use
integers instead of branches in substitution components. This
use of integers permits us to determine whether v of b is bound

in one reference to an array. (This-array is.easily updated as

.A4Kowalski, R. and Kuehner, D., 'SL-Resolution', to -appear in the

T wrtt o] Al P et £ o d T Teend o T T o e



4

we move from one branch to arnother.).

In any binary resolution systeﬁ one may use binary words
instead of branches in substitution components. The binary word
ia as long as the branch and precisely describes the path of the
branch throﬁgh the derivation. In this case the algorithm for
deciding whether v of b is bound is exceedingly interesting and
delicates We believe the reader will find some satisfaction in
discovering it for himself. We have implemented such a notation
for branches for general resolution.  Although very pretty, it
requires a sigrnificant amount of searching for the bindings of
varinbles (much like searching up an A-list in LISP). To over-
come this search we have discovered and implemented a more efficient
notation for branches in the general case which uses integers no
greater fhan the number of nodes in the derivation trees of the two
Clauses being resolved. This is a generalizaiion of our SL-imple-

nentation and permits the discovery of binding in a single airay access.

In Parts IT and IIT cf this paper we describe in close detail

our implementation of SL and general resolution.

After we developed our representation of clouses, Pat Hoyes,
Bruce Anderson, Robin Popplestone and Rod Burstall pointed to its
sinilarity to the implementations of ALGOL and LISP. We were
surprised to discover the following: |

(1) Standecrdizing cpart as treated by us is remorkably similer
to function entry in LISP and ALGOL. In particular, the
pushing of local and formal varinbles resembles the intro-
duction of new variables. Unlike récﬁréive function
evaluation however, unification frequéntly accesses 'values
of o varieble' other than the most recent value.

(2) Our definition of substitution component is strikingly
sinilar to a generalized notion of ALGOL identifier binding
deseribed by Wegners. | To a lesser degfee our substitution
components resemble FUNARd's in LISP.

(3) The arrcy we use in our SL implementation to speed up access

- to bindings along o lLranch resembles the ALGOL'display.

(4) The‘search tree of derivations in our SL representation is
similar to parallel processing using co-routines.  The
general fepresentation however resembles a form of parallel
processing in which the parallel processes actually

redefine one ~nother, simultsneously.. .




PART IT

The SL-Resolution Implementation.

Readers familiar with SL resolthion will find the notation
in the - following description somewhat different from that used
by Kowalski and Kuehner. However, i% is felt that this notation

relps clarify our representation of clauses.
SL-resclution operates on chains. These chains are composed
of cells which contain literals. We will separate ce¢lls in chains

by a slash('/'). The left-most cell in a chain is called the

most recent cell. A chain is thus of the form:
ABC/DE/
where A, B, C, ™ and E are literals in the traditional sense.

Before a chain may be resolved with an input clause a
literal from the most recent cell must be selected. This

selected literal must be the litersl resolved upon in all

resolutions of the chain with input elauses. We will denote

the selected literal of a cell by underlining it, eg.
ABC/ DE/

SL has three operatinns on shains. Extension corresponds
to resolution with an input clause. Reduction is similar to
factoring but also replaces ances*or resolution., [Truncation

is a book-keeping device for chains.

To extend upon a chain < with selected literal L, we nust
use an input clause 3 containing some 1itéral K of sign opposite
L such that the atoms of K and L unify via mgu . The result
of extending (& (the resrparent) by ¢~ (the input or far parent)
is the chain & ¢ whore &~ 1s the chain whose most recent cell

is composed of mll the literals in @ except K, and the remaincer
of ©" is just&. For example, extending A B C / D E/ with
input clause -B G H, yields:

GH/ABC/DE/.

The selected literal, L, in T is called an A—literal
(A for ancestor) in chain .Cf’. Note that in the above example,
either G or H must be selected before the chain mey be extended

upon.



A chain is admissible iff no two literals in any cells
of the chain have identical atoms. A chain may be extended
upon enly if it is admissible and the most recent celi is non-

empty.

A chain, C , may be reduced if the atom of some literal L
ir the most recent cell unifies with the atom of an A-literal
(other than the most recent L-literal) of opposite sign, or
& non-A literal (other than another most recent one) of the
seme sign. The resul* of such a reduction is the chain
obtained by delieting L from € and applying the unifying

substitution.

The first case defined above is called ancestor reduction
and performs the function of cncestor resolution in other
'linear! systeus. The other case is the usual factoring.

Two examples or reduction are:
ABC/ DB/ reduces to A C / DB/ (factoring)

ABC/23E/F =B/ reduces 1o A C/ DE/F -B/
. ancestor reduction

The final operation in SL is truncation. 4 chsin must be
truncated when *he most recent cell is enpty. This esndition
can be caused by extension with a unit clause, reduction of all
of the most recent literals, or truncation. The result is
sinply the chain obtained by deleting the (empty) first cell
and deleting the A-literal (i.e., previous selected literal)

Trom the exposed cell (which is now the most recent) . Thus,
/ ABC/DE/ truncates to 4 C / DE/, ond
/ B/ DE/ truncates to /.
Ln example of an SL derivation'fcllows;

Let (1) ‘hrough (6) be grouni input clauses:

(1) -2 B,
(2) -BcC.
(%) - D.
(4) -D 4.
(5) 4c.

(6) -B -D.



Given below are two refutntions of this set of clauscs in (I)

linear formnt and (II) SL-resolution.

I

-B =D top claouse

-/, =D resolution

=D «D regolution

=D

-~B

i

factoring

resolution
resolution
resolution

resolution

with (1)

with (4)

with (3)
with (2)
with (1)

with (5)

ancestor resolution

~0/=t/-B-1/
/-/-B~D/

3/-0/-Y

~s/-B/ 8/
¢/-4/-B/-¢/-D/
EVEYRTEY,

II

top chain
oxtension with (1)
exbension with (4)
reduction
truncation
extension with (3)
eutension with (2)
extension with (1)
extension with (5)
reduction

truncation

0f course, in geneial one has to apply the unifying

substitutions to chains produced by extension and reduction.



Readers interested in completeness and efficiency results

for SL-resolution should consult feotnote 4. However, before

discussing our implementation of structure sharing and automatie

standardizing apart, several features of SL should be pointed oute.

(1)

(2)

(%)

(4)

(5)

SL derivations are truly linear since one never resolves
with a clause ether than an input clause. Thus, there
is only one branch in an SL-derivation. This will
drastically simpl.fy the association of branches to

variables.

Unlike the general case, where each tuple representing

a clause points to two parents which are presumably tuples
themselves, SL-tuples require only an indication of which
input operator was used and a pouinter to the nearperent

(which in general will be another tuple).

In the general case we must include a reference %o

which literal in the nearparent was resolved upon.

" This is not necessary in SL since the literal resolved

upon must have been the selected literal of the nearparent.
Of course, since we must include the specification of
which is the selected ‘literal in every clause, nothlng
important has been goined.

In the general case a factor must specify which literal

has been deleteds Using this information will require

a recursive sweep down the clause. In SL we nmust also
include such information, but the deleted literal must have
been in the nmost recent cell (both fpr‘reductions'and
truncatidhs).b Thus the litérals in any cell, regerdless
of which operatiohs have taken place, will be just some
subset of the 1literals occuring in the input clause

that introduced that cell. Therefore we can pack into

the input parent reference a complete description of the

current cell (rather than retrieve the cell recursively) .

Because of the importance of the cellular structure of

SL chains it is convenient to regard each of the components
vf the SL-tuple to give information about exactly one of
three different objects: the current cell, the nearparent,
and the substitutions,



Recall that in order to share substructure we must manage to
standardize variobles apart and interpret substitutions dynanically
rather than apply them when generated. 1In order to achieve thesc
ends we voted that the branch a variable crme down in o derivation
was sufficient information to distinguish that wvariable from a1l
others of the same name. PFurthermore, since variables (1ike
terns end 1literals) are never created but found at the tips

of the tree representing each clouse, the branch along which

eech variable occurs is implicitly stored in the tuple. Ve
therefore only need a device that specifies which varisbles

we are referring *o in substitution components, i.e., which
branches are associated with the voriables mentioned in

substitutions.

However, note that in the below SL-derivation involving
n extensions, there nre only n + 1 possible branches variables

could be associated with at node n:

(input clauses) (top clause)

~ L3

7 node 0

N/
:\ ////’node 1
\ /

#* node 2 :

node n -~ 1§

node n

We have dcawn a daghed line down ome >f the possible braonches.
Clearly we can label eaczh such branch, that is, each path from

some input clouse to node n, by the number of the node produced

by extension with that clause, (For the branch marked above,

the associnted number would be 2.) Kote that if at node n

some variable, sny x, came down branch 2, then when we finnlly extend

at node n to node n + 1, the branch associated with that same »



10

will still be given the nanme 2. That is; by referring to
branches this way, branch nomes remain invariant under all
operations. This may seem like a triviel point; however, if we
:had instend chosen to represent branch 2 by the list (node n,
node n -1, «..... node 2) where nods i is the nachine pointer
tn the tuple representing that node, then the naome of that
breneh ot node n + 1 would be the new list, (node n + 1,

node N, ...o.. node 2)5

For historical reasons, the integer that deseribes & branch
in an SL-derivotion is colled the time of the branch, or node,
or term, or variaple. Form.lly, the time of a node is the
number of extensions performed on the branch when the cell

defined at that node was first created.

It should now be clear how bronches standardize voriables
opart. Lssume thrt 2t node n we have enougn information stored
to define the input literals that form the most réeent cell,
the bindir.zs made, and the next node in the branch. Then any
variables occuring in the most recent cell of node n will
implicitly have time n., Any substitution conponent which binds
such a variable will specify *ime n, and will point t» some
input term and specify ihe time of that term. OFf course,
variables of time other than'n nay be bound ot node n slso.

Any variable not occuring in the most recent cell of node n will
heve a time associated with it elséWhere'up the bronch in an
exactly similer fashion. Veriables are standardized apart

sinply becuase they come from different clauses.

Recders will note that there is nothing special about our
choice of assigning integers to eacch node in ordgr to label
branches with them. We could just as well hove lebelled
Bbranches with the pointer to the node. Integers have the

advantage that we can pack them into halfwords.




1"

Below is a conplete specification of the tuple that defines

o clause in our implementation of SL-remolution.

<tine, opro, bmask, selmask, bindings, nxbbecmp :)

where: o

time = the time of the cell defined at the node,

opno = on 11 bit integer specifying the number of
the input clause extended upon to produce the
cell ot this nosde., The list of literals
defining the clause is found at position opno
of an array, OPERLTOR.

bnask = on 11 bit rask specifying which literals in

OPERATOR (opno) are in the current cell,
The nth bit is on iff the nth literal in the

clause isg in the cell.

selmask = an 11 bit mask specifying which liternl in
OPERATOR (opno) is the selected literal of
this cell. If the nth literal of the input
clause is the selected litercl of this cell,
then the nth bit of selmask is on and is the
only ti: in the nosk which is on.

bindings = an arrcy of length 2n (m>=0) specifying the
n bindings made at this node. Vorinbles in
ench input cleuse are textually replaced by
the intcgers ¢ through 15 o input®. If the
binding ¢ar, timel,léefmlftimeé§ is to be
reprecented in.the array, then arrsy position i
is set to'the packed word which hes the waricble
in the top four bifé, tinel in the next nine,
end time2 in the low order nine.  Lrray

position 1 + 1 is a pointer to the term.

nxtoconp = a pointer to the nexs fuple in the bronch or
to the word NIL signifying the end of the

... branch,

6Since standordizing aport is cutomatie, input clauses do not
- have to be physicelly standardized. In fact, os in ALGOL,
the ith new vericble in every clause is denoted by the integer



{2

It should bc pointed out thrt the selmask ond the tine, and
the opno and the bmogk components of the nbove tuple con be
packed together. Thus, the tuple hns only four components in
the nachine representation. Any derived clouse requires exnctly
T+ 2n 22-bit words, where n is the number of variobles bound
in the unifying substitution. Notice that this is independent of
the number of literals in the clause or function mesting depth
since the clouse shores all the structure of its parents.

Beliow are three clouses (shoins) in this representotion,

The clouses have been reified (that is, their structure hos
been nnde conerete by interpreting the informotion at each node
ond writing down the result) below the tuple representation.

The bit nosks have been sbbreviated to only three bits, varisble
nomes are x end y instead of 0 and 1 and substitution components
are given as 4-tuples of the form <&ar, tinel, tern, timeé}

for recder convenience., Renders cre cncourcged to excnine

and understond this exanmple before proceeding.

Let OPERATORs 1 through 3 bc the following lists:
(1) ((+q(a) D(+py) denoting the clause Q(4,x)P(y)
(2) ((=p (£ D)(+ 1 x ) denoting the clause -P(F(x))R(x;x)
(3) ((+ q x (£ (v)))(-r (a) y)) denoting the clouse Q(x,P(B))-R(L,y)

Let operator 1 with selected liternl P(¥) be our top elruse. Then
the following three tuples represent the top chnin, an extension of

it via operﬂtor (2), and o further extension by operctor (3).

*1 <O,5,H0,m0,ermw,ml>

#2 C<_' 2, 010, 010, (<y,o (f 0, D, \

*3 &, 3, 100, 109, £ {x1,(2),25, ,<y,2,(a),2">;,\4 >

The reified claouses are as follows:

Reified *1 Q(4,x0) M / |

Reified *2 R(xl,x1) / Q(L,x0) P(F(x1)) /

Reified *3 Q(x2,7(B)) / R(L,4) / Q(a,20) P(F(4)) /
Voriables huve been subscripted with their times.

Note that the variables introduced by the variocus operctors
have not been confused. They h-ve been stonderdized nport by the



13

branches they came down in the derivation. That is, the 'x!

we encounter in the cell at node *3 is implicitly given time 2,
while that we encounter in the cell at node *2 is given time 1.
The subsiitution components have specified which x is being

bound,

It is slso inmportant to note that the terns (£ x), and
(a) referred to in the substitution components are not new
lists, but exactly those lists in the input operators thot
introduced those terms into the derivation. (i.e., not
only EQUAL but EQ).

The clause at node *3 can be reduced. The result will be
a tuple which specifies = cell exactly like that specified by *3
except that the 1liternl reduced uporn will have its bit turned
off. The subgtitution will bind x2 to L of time O and x0 to
F(B) of time 2. The nxtbeomp nust point back to *3 in order
to refer to the substitutions found there. Thus, a reduction

of *3 yielids:

x4 < 2, 3, 000, 000, < <x,2,(a),0> , &0,(£(v)),2>) , *3>

The recder may ask how the clause demoted by #4 is reified,
since its time is Jjust that of the previous node, Since each
node specifies the exact fom of the cell of the time of the node,
then in reifying ¥4 we ignore the cell specification of *3 in
favor of that of *4, but nmust respect the bindings made at *3,

The general algorithn for determining which cells are in a
clause 1s to ignore any cell specification whose time is greater

than or equal to the lsat cell in the clause.

Note that.*4ﬂmay be truncated since the cell specified
there ié.empty. (The bmaék is all_zezos). To truncate we
go down the clauée testing to see if when the selected literal
is deleted fron a cell, the cell is enpty, if so we jump to the
next node in the clause and repect the test. When we find &
non-enpty cell, a tuple is built which specifies the sane cell
with its selected litewal deleted; the bindings of the tuple
will be the empty arrey, and the next branch component must point
to the clause at which the truncation was initiated (to refer to

substitutions nade previously). Thus, *4 when truncated gives:

*5 {0, 1, 100, 000, nilarray, %4 >



14

gs the cell at *2 (whichi’is empty when the selected literal is
deleted). ' ‘

Below is a complete copy of the derivation just carried

out, foliowed by & version in reified terms.

*1 <0, 1, 110, 010, nilarray, nil> (top)

*2 {1, 2, 010, 010,4<7,0,{(f x;, 1)), *1 > (extension)
*3 2, 3, 100, 000, (<x,1,(2),2> , £5,2,(8),2>D>, *2> (extension)
*4 <2, 3, 000, 000, {(x,2,(a),0) , & 0,(£(1)),2>, *3Hreduction)

*5 <:0, 1, 100, 000, nilarray, '*4:> (truncation)
input .
clause 2 a(4,x0) B(y0)/ (nods *1)

input clause

3 r(ztxt) / a(4, ) 7 p(x1))/ (node *2)

(x2,7(B)) / R(4s8) / Q{L,x0) P(F(4))/ (node *3)
/R(Ly4) / Q(tx,F(B)) P(F(4))/ (node *4)

Q(A,f<3))/  S -‘. _ | | ; "  (node *5)

It is possible to decide what.operation'producéd a clause
sinply by inspecting the time of its most recent cell, timel, and
the time of the mnost recent cell in the previous clause, time2.
The clause was produced by extension if timel > time2. = It
was preduced by reduction if timel = time2 and it was produéed

by truncation if timel < time2.

In order to spéed up the process of determining if a
variable is bound on a particular branch, we have included in
our inplementation of SL an array of bindings, known as the
Vi.LUE arréy. When a chain is to be extended upon, wé nake a
single pass up the branch inserting into VLLUE(V, t1). the



W

15

binding of the variable v of time t1 on this branch. Later
to determine if v of t1 is bound, the function ISBOUND is
called with the two arguments, v, and tl. It inspeects

VILUE (v,t1) and if it finds a term and time there it returms
the truthvalue 'true' and the tern and time to which the

variable is bound, otherwise it returns the truthvalue 'false'.

When a unification attenpt is made for the clause, the
bindings produced by the UNIFY algorithn are inserted into
V.IUE, and a note saying the binding was made is pushed onto
a binds stack. Of course, if the unification fails, the
stack is popped and +the bindings erased. However, if it
succeeds they are left in the V.LUE orray and the stack is
left intact. If we then try to rcduce the clause produced by
extension, its new bindings ere available through ISBOUND as
before, .8 we recursively reduce, more bindings are entered
into VLLUE and pushed on the stack. Upon finishing the
reduction and coming out of the recursion the stock is used
to restore VLiLUE to its configuration upon entry. Thus, while
any particular clause is being extended upon and its offspring
checked for reduction and admissibility, the VLLUE array plays
the part of the system dictionary of variable values which is

recursively updated.

When s new clause is to be extended its values are swapped
in. This use of the array allows our implementation to retrieve
variable bindings with a single access rather than o search up
the branch. It is primarily for this reason that we used
integers for variables and branch codes (times) rather than

identifiers and machine pointers (respectively).

Our unificotion algorithn is almost identical to troditional
list structured implenentotions. This is because literals and
terns are lists as usuel ~ they just happen to be the original
input lists end must be interpreted in the context (e.g. branch)
in which they occur. The algorithn is given below in POP-2
code. Recders unfamilisr with POP-2 will note that ISBOUND
leaves the tern and its time on the users stack if it finds
a binding. These are retrieved by two assignment statenents
- TERM{:; - TIME{:; If in unificotion we wish to Bin& TERM1 of
TIME! to TERM2 of TIME2 we execute BIND(TERMi,]TIME1, TERNM2, TIME2).




16
FUNCTION UNTFY TERM! TIME! TERMZ? TIME2
100P1: | -
IF ISVLR (TERM1) .ND ISBOUND (TERM1, TIMET)
THEN
<> TERM1; —> TIME{;
GOTO LOOP1;
CLOSE;
LOOP2:
IF ISVLR (TERM2) LND ISBOUND (TERM2, TIME2)
THEN
> TERM2; —> TIME2;
GOTO LOOP2;
CLOSE;
IF TERM! = TERM2 LND TIME! = TIME2
THEN TRUE;
BELSEIF ISVLR (TERMY)
THEN
IF OCCUR (TERM1, TIME1, TERM2, TIME2)
THEN FLLSE;
ELSE
BIND (TERM1, TIME!1, TERM2, TIME2);
TRUE ;
CLOSE;
ELSEIF ISV.R (TERM2)
THEN
IF OCCUR (TERM2, TIMEZ2, TERM1, TIME?)
THEN
FLLSE
ELSE .
BIND (TERM2, TIME2, TERM{, TIME1);
TRURE:
CLOSE ;
ELSEIF HD(TERM1) = HD(TERM2)
THEN
UNIFY.RGS:
TL(TERM1) —> TERM1;
TL(TERM2) ~> TERM2;
IF TERM! = NIL
THEN TRUE;
ELSEIF UNIFY (HD(TERM1), TIME!, HD(TERM2), TIME2)
THEN GOTO UNIFYLRGS;
ELSE FLLSE; CLOSE;
ELSE F/ISE: CILOSE:



Y}

v

17

It should be cleer that due to our ability in SL to
reference bindings through an updatable array, and the fact that
our inplementation preserves the list structure or literals and
terns, ws have sacrificed almost nothing to gain a trenendous

anount of shared substructure.

However, now consider how machine oriented the thrée SIL
operations are. Wo extend a clausc we nerely check that the
unification succeeds; if it dces we use the binds stack and
V.LUE to set up 2 permanent binding array for the new clausc.
We construct two bit nasks, increcent the tine count for the
branch and pack these into two words with the operator nunmber,
We then construct a four-tuple for the new elause that consists
of the two packed words, the hinds array, and a pointer to the

nearparent.

In order to rcduce we perforn the unification and set up
the bind array, then clobber one bit fronm the mask of the
reduced claouse and set up the new four-tuple. 4 fruncation is
necessary when the logical LND of the logical NOT of the sclnask
andthe bnask is zero. The cesult is a record whose conponents
are taken from the tuple at which the truncation storped and

the one 7t which it s+*orcted,

Finally note that sweeping through o clause for reduction
or adnissibility is just the normal cdr operation within a cell
except that one leftshifts the bmask with each cdr and inspects
the literal only if the highorder bit is set.

Thus, using this inplementotion one preserves the fast and
natural recursive unificotion algorithm while one is able to
build clauses with low-level sequences of logical ANDs, ORs, NOTs

ond SHIFTs (which are very efficient indeed).

It is thus clear that our irpplenentation is oxtrenely well
suited to nachines. However, we also clain it is very naturcl.
Veriables are stondardized apcrt in the most naturcl woy possible:
they nre not confused becnuse they come from differcnt clauses.
Terns nnd literals arc never constructed, they cre just rednterpreted
The cell structure of SL-resolution is perfectly represented while
literals and terms retain their nost noturel 1list structure.
Every clause is also its own derivation, depending upon how one

chooses to interpret the node. The secrch tree itself is indeed



x18 .

a tree that shares substructure anong derivations with common
pasts. L1l informetion concerning the hiStory of a variable,
tern, literal, clause, or derivation, is availeble, including
all the MGU's. Furthermore, this information is not available
because it is stored in addition to the clruses produced; but

becouse it in fact represents the clauses produced.

The debugged £OP-2 code for the SL-implementation is

available to interested readers.



by

19

PART TIT

The General Resolution Implementation.

The generalized structure sharing represéntation hes been
implenented in two ways which differ ohly ip'the nanner .used to
refer to branches. The firét.way is extremely elegant and is a
clear demonstration of ‘the syllogism in P/RT I - that is, that
no work at all must be done to standardize variables aprrt.

The second way is the straightforward generalization of the
SL-implementation of PLRT II. |

One wey to Tefer to the branches that start at some node N
at the root of 2 binary derivation tree is to describe the path
of the Pranch through'the’tree by a bit string or logical word.
We will cali such‘aibranch description a 'map'. If N is a node
other than an input nbde, énd the branch mapped by M. starts at
N, then ths branch ~lso contains onc of the two parents of N.

We will agree thaf the bfanch containg the first parent if the
high order bit of M is dff, and it contains the second pareﬁt if
the high order bit is on. Tovdiscover which of the parent's
parents is in the branzh, we left shift M by 1 and use the same

test egain, until we arrive at an input clause.

For excmple, in the following tree, the branch starting at
node N with map 001011 is narked by a deshed line. Note that
since in tracing a map one can detect when the terminal (input)

node is reached, maps do not have to specify how nany of their

bits are significant.

branch mapped
by 001011 ‘ D - -
from node N node N




20

One can now define a clause to be 2 record of the forn:

<:'parent1, litnot, parent2, 1litno2, bindings :> = N
where ‘ ’

parent! = the first parent of the clause denoted by N

litno! = the number of the literal in parent! to be
. deleted to form N

parent2 = the second parent of N -

litno2 = the number of the literal in parent2 to be

deleted to form N

bindings = an array of length 4n representing the
n bindings made at this node. Array
position 1 contains the variable bound,
position 2 contains the variable's map,
position 3 the term, and position 4 the
termn's map. Positions 5 through 8
contain the second substitution component, ete.
In our impiementation of this representation, we also store
the total number of literals in a clause. This of course is
recursively defined as LEN(N) = LEN(parentl) + LEN(parentZ) - 2
however, its inclusion speeds up processing. We can pack the
length, and two literal numbers into a word if we limit ourselves
to 127 literals in the longest clause. Ls a result, a clause

requires exactly 6 + 4n words.

The word size in our machine limits our maps to 22 bits, or

derivations to a meximun depth of 22. -

Input clauses are stored with NIL in one of the parents and
the list of literals defining the clnuse in the other. Factors
are stored with a dummy unit clouse in one parent, which make then

easily recognized but recursively identical to resolvents.

In order to determine the nth literal of such 2 clause, one
merely asks whether it came from the first or second parent, based
on the length of the first parent and the liter=l deleted in that
parent. Then one decrenments n accordingly and moves to the
appropriote parent to ask the same question. When an input list
is finally encountered, the nth element is retrieved as the literal

and returned with the nap of how it was reached.

Retrieving the bindings of a variable, v, with some nap, m,
in o tree whose root is N, is similar to how it is done dynamically
in the SL-implementution (i.e. without the use of VALUE), However,

there is a difference since there are meny possible paths to follow.




21

One asks whether v of m is bound in the bindings at N. If ,
not, one branches to the first or second parent depending upon

the high order bit in m. Then n is leftshifted by 1 and the
question is repeated. The process continues until either an
input clause is encountered, which neans v of the original n is
unbound, or a binding substitution component with term T and nmap M
is found at some ncae N!', Of:course, nop M is only a map from the
input parent that Introduced T to the node N'. It must be updated
to be accurate rclative to the original N. To’do-this, that part
of the original m that led fron N to N' nust be 'appended'"onto M.
This is easily done with threec logical oper=tions, Howéver, a
nore elegan%, if slightly slower, nethod is to write the function
recursively. Upon exiting from the reccursion when a temrn is
found, M should bde rightshifted by 1 and the high order bit
shifted out of o atbfhat lével should be inserted. When the
process returns to the top, M would have been transformed
oppropriately. This nethod illustrates how our nmaps are like

individual push down stacks for cach variable or term.

The unification routine is precisely that given for the
SL-implementation. The ISBUUND function alwaye responds relative
to sone globally defined root node, and BIND just inserts the four

word binding into a working space for UNIFY,

There is no counterpgrt to the VLLUE array since maps are
unwieldy objects to index over (hash ooding will cut down the
seorch sonewhat). ISBOUND can be speeded up by ordering the maps
at each node so that it only need consider naps lower than the ome
for which it is looking. The speed of the unification algorithnm
is directly proportional to the depth of the terms involved, since
ISBOUND rust search up the branches. Tests have shown that the
inplenentation is from 10 to 2 times faster than character strip
versions (2 times faster in the depth 22, worst-possible nap orders

crses) .

The second representation of brandhes is clnsely reldtqd to
the SL-inplementation device that ﬂﬁmbers tips in such a-way that’
each nunber represents o unique path to £he tip. Tips can be numbered
relative to nodes loWéf in the tree, so that if the same input clause
ocours os two different tips, it is assigned two different numbers
according to the path which led.to it., These numbers are called
tpaths!,



22

Let T(N) be the set of all tips in the tree whose root is
N. Let S(N) be the number of nodes in the tree., Let K(N',N)

be the integer associcted with node N' relative to node N.

If N is an input node, then let K(N,N) = 0. Now let N be
any node such that $(N) < n. Assume inductively that for all
Nt € ™(N), 0 < K(Nt,W) < s(N) - 1. Let M be n node such that
s(M) = m, and let P1 and P2 be the parents of M.
Then, S(Pi)-< n, for i =1, 2, Thus, for all P! e T(Pi), i=1, 2,
it is the case that 0 5:K(P£,Pi) 5;S(Pi) - 1. Therefore for all
M' € T(M)_define K(M',4) as follows:

KMY, P2) if M' € T(PZ)

K(Mt,M) =
g, P1) +8(p,) if M' 7(2,)
!. [

which verifies the induction hypothesis.

The exrnple below illustrotes how the node numbers assigned

by N are related to those assigned by P1 and P2.

3
T, 2
(0),

node P, | ’node Py
node N
Numbers in parentheses are relative to py or p, according to
the subscript. The unparenthesized numbers are those relative to

N. DNote that Py and N share a node. The two‘paths from that -

node to N are given distinct numbers.

L/



v

23

Using this notation, we can define a clause to be a record
of the form:
(paseref, delta, parentl, litnol, parent2, 1litno2, bindings = Nt>

where:
baseref = S(N)
delta = S(parent2).
parent! =
litnol = —)
parent2 = as in previous representation
litno2 =

bindings = an array of 2n words containing the n substitution
conpcnents for this node. The components are
packed as in the SL-implementation except that
'times' are replaced by !paths!.
Again, due to packing, the actual number of words per clause
is T + 2n, if we limit ourselves to 512 nodes in any single
derivation. Note that baseref and delta are recursively computable.

They are siored for faster processing.

In this representation, the algorithm for determining if a
variatle is bound is similar to the one outlined above. If it is
not bound at the current node, one jumps to the first or second
parent depending upon whether the path of the variable is greater
thar or equal to delta or not. If one jumps to the first parent,
the path of the variable is decremented by delta., If one finds a
binding the associated term's path is incremented by the total
anount of decrementing that occurred, to transform it into the
original node'!s frame of reference. The recursive version is
similar; one just adds in the delta substracted from the varisble's

path upon exiting from cach level of +he recursion.

However, this version allows VALUE to bLe used. Bindings made
in a tree can be appropriately incremented and written into
VLLUE(VAR,PATH) as before. Substitution components produced on
the basis of the incremented paths in VALUE are of course accurate
herceforth, since they are correctly interpreted Later. LAfter
the VALUF array has been loaded, the unification, factoring, and
other algorithms are as fast as those in the SL-implementation.
Loading the array is somewhat more complex since a tree rather

than 2 branch nmust be traced.



24

It should also be noted that the literals of a clause can
be loaded into a list with their paths. Once this operation has
been performed, the'implementation is very similar to list
structured ones, without the additional overhead of many copies

of terms and literals and stanaardizing apart.

The primary reason this particular method of referring to
Pranches is preferable to the logical map method is that if we
limit ourselves to n bits in the item that represents a map or
path, the map version limits us to a depth of n, regardless of
the number of nodes in the tree, while the path version limits
us only to a maximum of 2" nodes. So while the two are equiva-
lent for full binary trees, the path version is less restrictive
otherwise, since it is sensitive to the shape of the tree. 1In
addition, the p;th version assigns consecutive integers that are

easy to index over.

The POP-2 code for both of these implementations is

available to the interested reader.

Il



