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Abstract

Today, exponential growth in network content makes it
difficult to build and maintain a complete document in-
dex to support efficient search. Centralized search ser-
vices must actively and repeatedly probe the network for
new or changed content. The scope and rapid evolution
of the Internet means that even the best pull-based search
services will always be incomplete and inaccurate.

Recently, however, there has been tremendous interest
in a new, peer-to-peer model of publishing and distribut-
ing network content. Here, nodes spread across the In-
ternet cooperatively store and distribute network content
based on explicit requests from content publishers. Care-
ful state maintenance enables the location of any data
item, given its name, inO(lg n) steps. To date, how-
ever, there has been no support for search in this new
paradigm. We believe that there is an opportunity to build
a search system over a peer-to-peer content distribution
mechanism that is complete, current, and efficient. Thus,
we present the design, analysis, and evaluation of a fully
decentralized inverted index for use as a search engine
for peer-to-peer content location systems. Our results in-
dicate that our proposed infrastructure incurs acceptable
and configurable network overhead on a per-search basis
and scales with network size.

1 Introduction

Search is a fundamental part of any complete system for
distributing files and resources. Opaque keys suffice as
bookmarks and links, but locating unknown files by de-
scription — e.g., based on keywords or resource meta-
data — requires search. In current peer-to-peer systems,
an end user cannot retrieve content unless he knows its
unique name. In contrast, web search services allow
users to search by content. However, these services must
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actively and repeatedly index Internet content by follow-
ing hyperlinks from one resource to another. The web’s
current search infrastructure is limited by its centralized
design and by the pull-based nature of HTTP.

The current move toward peer-to-peer systems for file
distribution [18, 14, 15] affords us the opportunity to
improve search substantially. Where web searching is
centralized, peer-to-peer searching can be entirely dis-
tributed, and, thus, more scalable and reliable. Where
web searching depends on crawlers to discover new or
updated content, a peer-to-peer search system can take
advantage of insert operations to build a current index of
all networked content.

Recent research peer-to-peer systems, such as
Chord [18], CAN [14], and Pastry [15], perform map-
pings from keys to locations in an entirely distributed
manner. Just as importantly, location of a particular piece
of content given its full name scales with system size,
requiringO(lgn) per-node storage andO(lg n) routing
steps. However, retrieving content requires knowledge
of the exact name of the object; these systems provide no
search capability. The principal contribution of this work
is the design and evaluation of a fully distributed search
system that effects a qualitative shift in the accuracy and
completeness of an index of network content.

While it is demonstrably possible to build a high-
performance centralized search service, we believe that
the search infrastructure for distributed peer-to-peer con-
tent storage should also be distributed. By leveraging the
same redundant, distributed infrastructure that supports
peer-to-peer content storage and retrieval, we are able to
achieve much of the same increased availability, scala-
bility, and load balancing. One natural way to build a
distributed search system is to use an inverted index with
keywords evenly distributed among available servers.
Existing peer-to-peer lookup mechanisms [18, 14, 15] in
effect provide a scalable distributed hash table that al-
lows individual keys to be mapped to nodes across the
network. When a node wishes to publish content, it first
hashes the contents of the file to discover the node re-
sponsible for storing it. To enable accurate and complete
search, the node could then update the inverted index for
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all keywords associated with the file as well. While there
is some overhead associated with explicitly updating an
inverted index, we believe this cost is typically offset by
avoiding the overhead associated with repeated spider-
ing of web content. Once keywords are distributed to
the proper nodes, a primary challenge to the scalabil-
ity of such a distributed search infrastructure is minimiz-
ing the bandwidth required to perform multiple-keyword
searches.

This paper describes the design of a distributed in-
verted index, with particular emphasis on three tech-
niques to minimize the bandwidth used during multiple-
keyword searches: Bloom filters, caching, and incremen-
tal results. Bloom filters are a compact representation of
membership in a set, eliminating the need to send en-
tire document match lists among servers. Caching re-
duces the frequency with which servers must transfer the
Bloom filters. Incremental results allow search opera-
tions to halt after finding a fixed number of results, leav-
ing the cost of searching proportional to the number of
documents returned rather than to the total number of
documents in the system.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the details of our assumed system
model. Section 3 then describes our architecture support-
ing search in a fully decentralized, peer-to-peer system
and presents analytical results supporting the benefits of
our three proposed techniques. Section 4 discusses the
simulation environment we used to explore more fully
the structure and benefits of our search architecture, and
Section 5 presents the results of our experiments. We dis-
cuss related work in Section 6 and conclude in Section 7.

2 Architecture and System Model

Our design is based on the traditional search engine ser-
vice model [3]. A client searches for documents con-
taining one or more keywords. The system sends back
the unique names for a set number of documents con-
taining all of the requested keywords, as well as the ti-
tle for each document and a few words of context for
each keyword match. If documents are ordered accord-
ing to some relevance metric [3] (for instance, documents
that are linked to more frequently might be considered to
have higher “relevance”), we can return the best match-
ing documents. However, our system can work without
any relevance ranking.

To build a peer-to-peer distributed search infrastruc-
ture, we assume the a system model based on recent work
on peer-to-peer lookup services [18, 14, 15, 21]. While
our general approach is general to any of these tech-
niques, for simplicity, the following discussion assumes
an architecture closely related to that of Chord [18] or
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Figure 1:Distributing an inverted index across a peer-to-peer
network.

Pastry [15]. Each system, however, has its own set of
tradeoffs and interesting design decisions; we do not be-
lieve that such intricacies are likely to affect our high-
level results and conclusions. We assume the presence
of a large number of computers, on the order of thou-
sands to millions, spread across the network willing to
take on the task of indexing Internet content. The system
as a whole must maintain an inverted index, a structure
that maps each potential keyword to the set of documents
that contain that word. We assume the presence of a hash
function [10] that maps each keyword to a random num-
ber within some range. The same hash function maps
each computer (e.g., based on its IP address) participat-
ing in the distributed search system to another number
within the same range.

As depicted in Figure 1, each computer is then respon-
sible for all keywords that map to the range between its
address and the address of the next computer in the hash
range (which can be thought of as a logical ring). Pre-
vious work [18, 15] shows how an arbitrary machine in
the system can locate the remote computer responsible
for a given keyword (based on its hash) inO(lg n) rout-
ing hops using onlyO(lg n) routing state at each node,
wheren is the number of system-wide peers. The de-
tails of these routing protocols are beyond the scope of
this paper. Roughly, each node maintains enough state to
route a request at least “halfway” closer to its final desti-
nation in the hash space.

Note that publishing documents in the above infras-
tructure is an explicit act. A user hashes the document
contents to an address using the hash function and then
routes a publish request to the node responsible for that
region of the address space. Subsequent requests for the
same document then similarly route their requests to the
appropriate node assuming that they know the unique key
for the file. However, if the key is unknown, it becomes
impossible to locate files in these systems. This approach
may be appropriate for archival filesystems, for example,
which may impose a hierarchical directory structure over
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Figure 2: Number of keywords per search operation in the
IRCache for a ten day period in January 2002.

the hash space. However, no keyword-based search is
provided.

Thus, we propose a model where the explicit step of
publishing a document to the storage infrastructure is
supplemented with the further explicit act of updating
a distributed inverted index for all the keywords asso-
ciated with the document. Such keywords may include
a small set of carefully chosen words by the user at one
extreme or may include the entire list of words contained
within text documents at another extreme. This process
involves performing a hash for each target keyword and
then contacting the appropriate peers (based on the peer-
to-peer host lookup/routing infrastructure) to update the
index. Performing a search for one or more keywords
then involves performing a hash on the keywords, con-
tacting the appropriate peers responsible for individual
keywords, and finally performing a join operation over
the individual sets of document names returned by each
peer. The primary contribution of this work is to demon-
strate that such multi-keyword searches can be carried
out across the Internet efficiently – that is, with low net-
work overhead and end-client latency and in a manner
that scales with system size.

Once we show that the basic infrastructure scales (i.e.,
demonstrate that the state per node and the communica-
tion required per request scale sub-linearly with system
size), one key challenge to deploying our system is min-
imizing the wide-area bandwidth consumed by multi-
keyword conjunctive searches; such improvements will
both make the infrastructure easier to deploy and and im-
prove the performance of individual queries. In the gen-
eral case,n wide-area peers must be contacted for ann-
keyword search. One interesting question is whether or
not it is important to design a system that performs well

for multi-keyword searches. If the overhead incurred by
performing a join across multiple peers (hosting individ-
ual keywords) were rare, it would not make sense to op-
timize aggressively for this case. To investigate the pop-
ularity of multi-keyword searches, we worked with the
administrators of the IRCache proxy cache system [19],
a ten cache system operating across the United States,
to obtain a trace of search requests to fifteen popular
search services over a ten-day period in January, 2002.
The IRCache has thousands of clients (both end users
and second-level caches) and currently receives approx-
imately 1.8 million total requests on a typical weekday.
Figure 2 plots the number of keywords searched for in
each of 99,405 search requests made during the period.
Interestingly, only 28.5% of search requests were for a
single keyword. Further, 67.1% of all searches were
for between 2-5 keywords, with the largest search in the
trace being for 302 words. We conclude that this data
confirms our intuition that multi-keyword searches are
indeed the common case and that any distributed search
infrastructure must reduce the potential overhead associ-
ated with join operations spread across the wide area.

2.1 Discussion

This model raises a number of interesting points. First,
this approach introduces the extra overhead of requiring
the client to notify the search service of updates to the
inverted index (up to one peer per keyword must be con-
tacted) whenever publishing or modifying a document.
However, we believe that inserts are rare compared to
searches. Further, the client may contact peers in paral-
lel and in the background. Finally, we believe the added
cost of insert is likely to be offset by savings realized by
eliminating the need to repeatedly spider web content, in
addition to the expected improvements in the complete-
ness and accuracy of the index.

Next, we must consider the value of distributing search
using a peer-to-peer infrastructure relative to the tradi-
tional centralized approach. While a centralized search
infrastructure is likely to be somewhat simpler, we be-
lieve that there are significant performance, scalability,
and availability benefits available from a fully distributed
peer-to-peer approach. Traditional centralized search
services such as Google attempt to improve performance
and availability through small-scale wide-area replica-
tion using DNS techniques for individual client redirec-
tion. However, a distributed denial of service attack [17]
against the site’s DNS server or an inopportune network
failure can potentially leave the entire service unavail-
able. Similar attacks against or failures at one of the
replicated sites could cause an outage or performance
degradation for a significant portion of the client popu-
lation. Massive replication in a peer-to-peer system im-
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plies that any outage or denial of service attack will only
affect a small portion of either the client population or
the keyword space.

One technique omitted from the implementation and
evaluation discussed in Section 3 is mapping individual
client keywords to more than one peer. Here, each key-
word is mapped to a total of thek nearest peers in the
ID space. The random nature of the hash function prob-
abilistically ensures that these peers are spread across
the network. Simple locality-based optimizations to the
routing infrastructure, as outlined in [15], enable for-
warding of requests to the peer topologically closest to
the requesting client, often with minimal overhead rel-
ative to native IP routing. In this manner, outages in
the middle of the network will not render the service un-
available, and many requests can be satisfied close to the
client rather than at some central location, reducing the
probability that network congestion is encountered along
the way.

Another interesting consideration is the need to pro-
vide context for search results. That is, current search
services return a ranked list of documents that match the
user’s search criteria. Further, for each document, the
service also typically provides excerpts from the doc-
ument highlighting the target keywords and some sur-
rounding text to better enable the user to select the ap-
propriate document from the returned set. Our system
can also support this functionality, though it would re-
quire each update to the inverted index to include text
surrounding the use of the keyword in the document.
This approach increases the overhead associated with in-
dex update, but can aid in the process of multi-keyword
search queries in the case where target keywords appear
close to one another in the document.

Finally, we consider the issue of validating the con-
tents of inverted indices. A malicious publisher may at-
tempt to insert entries into the inverted index for key-
words that do not accurately reflect the contents of a doc-
ument. There are several ways to address such a potential
attack. First, if the search service performs ranking based
on the number of incident hypertext links [3], it is likely
that documents with inaccurate keywords will be unpop-
ular (people will not link to documents that misrepresent
their content). Hence, most users would not see the page
as part of their search query. Next, a manual feedback
system might allow end users to identify search results
that did not match their expectations, perhaps further re-
ducing the popularity of the document. Finally, each peer
could periodically and probabilistically choose a set of
documents to retrieve to verify the keyword mapping.
Users inserting inaccurate keywords might be restricted
in some way from making future insertions.

serversA serversB

client

(1) request (3)A \ B

(2)A

A B

3 4

3 4
5 6

1 2
3 4

1 2 3 4

Figure 3: Network architecture and a simple approach to
“AND” queries. Each server stores a list of document IDs cor-
responding to one keyword.

3 Efficient Support for Peer-to-
Peer Search

In the previous section, we discussed the architecture
and potential benefits of a fully distributed peer-to-peer
search infrastructure. The primary contribution of this
work is to demonstrate the feasibility of this approach
with respect to individual end user requests. Conduct-
ing a search for a single keyword consists of looking up
the keyword’s mapping in the index to reveal all of the
documents containing that keyword. This involves con-
tacting a single remote server, an operation with network
costs comparable to accessing a traditional search ser-
vice (though in Section 2 we argue that massive replica-
tion could improve the performance and availability of
such requests relative to a centralized approach by bring-
ing content “closer” to individual clients). A boolean
“AND” search consists of looking up the sets for each
keyword and returning the intersection. As with tradi-
tional search engines, we return a small subset of the
matching documents. This operation requires contact-
ing multiple peers across the wide area, and the requisite
“join” operation across the sets returned by each peer can
become prohibitively expensive, both in terms of con-
sumed network bandwidth and the latency incurred from
transmitting this data across the wide area.

Consider the example in Figure 3, which shows a sim-
ple network with serverssA andsB . ServersA contains
the set of documentsA for a given keywordkA, and
serversB contains the set of documentsB for another
keywordkB . jAj andjBj are the number of documents
containingkA andkB , respectively.A \ B is the set of
all documents containing bothkA andkB .

The primary challenge in performing efficient key-
word searches in a distributed inverted index is limit-
ing the amount of bandwidth used for multiple-keyword
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searches. The naive approach, shown in Figure 3, con-
sists of the first server,sA, sending its entire set of match-
ing document IDs,A, to the second server,sB , so that
sB can calculateA\B and send the results to the client.
This is wasteful because the intersection,A\B, is likely
to be far smaller thanA, resulting in most of the infor-
mation inA getting discarded atsB . Furthermore, the
size ofA (i.e., the number of occurrences of the key-
word kA) scales roughly with the number of documents
in the system. Thus, the cost of naive search opera-
tions grows linearly with the number of documents in
the system. We propose three techniques to limit wasted
bandwidth, to ensure scalability, and to reduce end-client
latency: Bloom filters, caches, and incremental results.
We discuss each of these approaches in turn and present
analytical results showing the potential benefits of each
technique under a variety of conditions before exploring
these tradeoffs in more detail through simulation in Sec-
tion 5.

3.1 Bloom filters

A Bloom filter [2, 7, 12] is a hash-based data structure
that efficiently represents membership in a set. By send-
ing a Bloom filter based onA instead of sendingA itself,
we reduce the amount of communication required forsB
to determineA \ B. The membership test returns false
positives with a low probability and never returns false
negatives. Thus, the intersection calculated bysB will
contain all of the true intersection, as well as a few hits
that contain onlykB and notkA. The number of false
positives falls exponentially as the size of the Bloom fil-
ter increases.

Given optimal choice of hash functions, the probabil-
ity of a false positive is

pfp = :6185m=n; (1)

wherem is the number of bits in the Bloom filter andn
is the number of elements in the set [7]. Thus, to main-
tain a fixed probability of false positives, the size of the
Bloom filter must be proportional to the number of ele-
ments represented.

Our method for using Bloom filters to determine re-
mote set intersections is shown in Figure 4 and proceeds
as follows.A andB are the document sets to intersect,
each containing a large number of document IDs for the
keywordskA and kB , respectively. The client wishes
to retrieve the intersectionA \ B. ServersA sends a
Bloom filter F (A) of setA to serversB . ServersB
tests each member of setB for membership inF (A).
ServersB sends the matching elements,B \F (A), back
to serversA, along with some textual context for each
match. ServersA removes the false positives fromsB ’s

1234
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(4)A \ B

(2)F (A)

(3)B \ F (A)
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Figure 4:Bloom filters help reduce the bandwidth requirement
of “AND” queries. The gray box represents the Bloom filter
F (A) of the setA. Note the false positive in the setB \ F (A)
that serversB sends back to serversA.

results by calculatingA \ (B \ F (A)), which is equiva-
lent toA \ B.

False positives inB \ F (A) do not affect the correct-
ness of the final intersection but do waste bandwidth.
They are eliminated in the final step, whensA intersects
B \ F (A) againstA.

It is also possible to sendB \ F (A) directly fromsB
to the client rather than first sending it tosA and remov-
ing the false positives. Doing so eliminates the smaller
transfer and its associated latency at the expense of cor-
rectness. Given reasonable values forjAj, jBj, the size
of each document record, and the cache hit rate (see Sec-
tion 3.2), the false-positive rate may be as high as0:05
or as low as0:00003. This means thatB \ F (A) will
have from0:00003jBj to 0:05jBj extra elements that do
not containkA. For example, if 5% of the elements
of B actually containkA, then returning the rough in-
tersectionB \ F (A) to the client results in between

0:00003jBj
(0:05+0:00003)jBj = 0:06% and 0:05jBj

(0:05+0:05)jBj = 50%

of the results being incorrect and not actually contain-
ing kA, where each expression represents the ratio of the
number of false positives to the total number of elements
in B \ F (A). The decision to use this optimization is
made at run time, when the parameters are known and
pfp can be predicted. ServersA may choose anm value
slightly larger than optimal to reducepfp and improve
the likelihood thatsB can returnB \ F (A) directly to
the client.

The total number of bits sent during the exchange
shown in Figure 4 ism + pfpjBjj + jA \ Bjj, where
j is the number of bits in each document record. The fi-
nal term,jA\Bjj, is the size of the intersection itself. It
can be ignored in our optimization, because it represents
the resulting intersection, which must be sent regardless
of our choice of algorithm.
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The total number of excess bits sent (i.e., excluding
the intersection itself) is

m+ pfpjBjj:

Substituting forpfp from Equation 1 yields the total
number of excess bits as

m+ :6185m=jAjjBjj: (2)

Taking the first derivative with respect tom and solving
for zero yields an optimal Bloom filter size of

m = jAj log:6185

�
2:081

jAj

jBjj

�
: (3)

Figure 5 shows the minimum number of excess bits
sent for three sets of values forjAj, jBj, and j. The
optimalm for any givenjAj, jBj, andj is unique and
directly determines the minimum number of excess bits
sent. For example, whenjAj andjBj are10; 000 andj is
40,m is 61; 525, and the minimum number of excess bits
sent is82; 335, representing4:86 : 1 compression when
compared to the cost of sending all400; 000 bits (10; 000
documents, each with a40-bit ID) of eitherA orB.

As also shown in Figure 5, performance is not sym-
metric whenA andB differ in size. Withj constant at
40, the minimum number of excess bits forjAj = 2; 000
and jBj = 10; 000 is 23; 166, lower than the minimum
number forjAj = 10; 000 and jBj = 2; 000, which is
48; 837. 23; 166 bits represents3:45 : 1 compression
when compared with the80; 000 bits needed to send all
of A. The server with the smaller set should always ini-
tiate the transfer.

Our Bloom filter intersection technique can be ex-
panded to arbitrary numbers of keywords, as shown in
Figure 6. ServersA sendsF (A) to serversB , which
sendsF (B \ F (A)) to sC , and so on. The final server,
sZ , sends its intersection back tosA. Each server that

serversA serversB

client

(1) request (6)A \ B \ C

(2)F (A)

(5)A \ C \ F (B)

serversC

(3)F (B \ F (A))

(4)C \ F (B \ F (A))

Figure 6: Using Bloom filters for more than two key-
words
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Figure 7: Distribution of word popularity.

encoded its transmission using a Bloom filter must pro-
cess the intersection once more to remove any false pos-
itives introduced by its filter. Thus, the intersection is
sent to each server exceptsZ a second time. As above,
the expected number of excess bits is minimized when
jAj < jBj < jCj < : : : < jZj.

3.2 Caches

Caching can eliminate the need forsA to sendA orF (A)
if serversB already hasA orF (A) stored locally. We de-
rive more benefit from caching Bloom filters than from
caching entire document match lists, because the smaller
size of the Bloom representation means that a cache of
fixed size can store data for more keywords. The bene-
fit of caching depends on the presence of locality in the
list of words searched for by a user population at any
given time. To quantify this intuition, we use the same
ten-day IRCache trace described in Section 2 to deter-
mine word search popularity in Figure 7. There were
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a total of 251,768 words searched for across the 99,405
searches, 45,344 of them unique. Keyword popularity
roughly followed a Zipf distribution, with the most com-
mon keyword searched for4; 365 times. The dominance
of popular keywords suggests that even a small cache of
either the Bloom filter or the actual document list onA
is likely to produce high hit rates.

When serversB already has the Bloom filterF (A) in
its cache, a search operation for the keywordskA and
kB may skip the first step, in which serversA sends its
Bloom filter to sB . On average, a Bloom filter will be
in another server’s cache with probabilityr equal to the
cache hit rate.

The excess bits formula in Equation (2) can be adapted
to consider cache hit rate,r, as follows:

(1� r)m+ :6185m=jAjjBjj: (4)

Setting the derivative of this with respect tom to zero
yields the optimalm as

m = jAj log:6185

�
(1� r)2:081

jAj

jBjj

�
: (5)

Figure 8 shows the effect of cache hit rates on the ex-
cess bits curves, assumingjAj andjBj are both10; 000
andj is 40. Each curve still has a unique minimum. For
example, when the hit rate,r, is 0:5, the minimum ex-
cess number of bits sent is48; 381, representing8:27 : 1
compression when compared with sendingA or B. Im-
provements in the cache hit rate always reduce the min-
imum expected number of excess bits and increase the
optimalm. The reduction in the expected number of ex-
cess bits sent is nearly linear with improvements in the
hit rate. The optimalm increases because as we become
less likely to send the Bloom filter, we can increase its
size slightly to reduce the false-positive rate. Even with
these increases inm, we can store hundreds of cache en-
tries per megabyte of available local storage. We expect
such caching to yield high hit rates given even moderate
locality in the request stream.

Cache consistency is handled with a simple time-to-
live field. Updates only occur at a keyword’s primary lo-
cation, and slightly stale match list information is accept-
able, especially given the current state of Internet search
services, where some degree of staleness is unavoidable.
Thus, more complex consistency protocols should not be
necessary.

3.3 Incremental results

Clients rarely need all of the results of a keyword search.
By using streaming transfers and returning only the
desired number of results, we can greatly reduce the
amount of information that needs to be sent. This is,
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Figure 8:Improving cache hit rates reduces the amount of data
sent and increases the size of the optimal Bloom filter.

in fact, critical for scalability: the number of results for
any given query is roughly proportional to the number of
documents in the network. Thus, the bandwidth cost of
returning all results to the client will grow linearly with
the size of the network. Bloom filters and caches can
yield a substantial constant-factor improvement, but nei-
ther technique eliminates the linear growth in cost. Trun-
cating the results is the only way to achieve constant cost
independent of the number of documents in the network.

When a client searches for a fixed number of results,
serverssA andsB communicate incrementally until that
number is reached. ServersA sends its Bloom filter in
chunks and serversB sends a block of results (true inter-
sections and false positives) for each chunk until server
sA has enough results to return to the client. Because a
single Bloom filter cannot be divided and still retain any
meaning, we divide the setA into chunks and send a full
Bloom filter of each chunk. The chunk size can be set
adaptively based on how many elements ofA are likely
to be needed to produce the desired number of results.
This protocol is shown in Figure 9. Note thatsA and
sB overlap their communication:sA sendsF (A2) assB
sendsB \ F (A1).

When we stream data, caches store several fractional
Bloom filters for each keyword rather than storing the en-
tire Bloom filter for each keyword. This allows servers
to retain or discard partial entries in the cache. A server
may get a partial cache hit for a given keyword if it needs
several chunks but already has some of them stored lo-
cally. Storing only a fraction of each keyword’s Bloom
filter also reduces the amount of space in the cache that
each keyword consumes, which increases the expected
hit rate.
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Figure 9: ServerssA andsB send their data one chunk at a
time until the desired intersection size is reached.

3.4 Discussion

Two of the techniques described here, Bloom filters and
caching, yield constant-factor improvements in terms of
the number of bytes sent and the end-to-end query la-
tency. Bloom filters compress document ID sets by about
one order of magnitude, in exchange for either added
latency or a configurable probability of false positives.
Caching exploits temporal locality in the query workload
to reduce the probability that document ID sets need to
be sent. However, even together, these techniques leave
both bytes sent and end-to-end query time roughly pro-
portional to the number of documents in the system.

The third technique, incremental results, reduces the
number of bytes sent and the end-to-end query latency to
a constant in most cases. As long as the user wants only
a constant number of results, only a constant amount of
work will be done, regardless of how many possible re-
sults exist in the system. Incremental results yield no
improvement in some unusual cases, however. If the
user searches for several keywords that are individually
popular but mostly uncorrelated in the document space,
there may be a small but nonzero number of valid re-
sults.1 If the number of results is nonzero but smaller
than the number that the client requests, the system must
consider the entire search space, rendering incremental
results useless. In cases such as this, the entire search
space must be considered, and incremental results will
increase, rather than decrease, the number of bytes sent
and the end-to-end query latency. However, caching
may alleviate the problem if the words used are popular
in search queries, and Bloom filters still yield approxi-
mately a ten-to-one compression factor.

We expect that searches containing popular but un-

1One example of a difficult search is “OpenBSD birthday pony,”
suggested by David Mazi`eres at New York University. On the web,
these three keywords match one million, six million, and one million
documents, respectively. Only seven documents contain all three.

correlated keywords will be rare. In our IRCache
search trace, most of the queries with small numbers
of results had uncommon (often misspelled) keywords.
Uncommon keywords—i.e., those with few matching
documents—are easy to handle, as discussed in Sec-
tion 3.1. The system considers the least common key-
word first, bounding the maximum size of any intersec-
tion set sent for the remainder of the query.

4 Simulation Infrastructure

The simple analysis described above in Section 3 pro-
vides some insight into the potential benefits of our
three approaches toward efficiently supporting peer-to-
peer search. However, the actual benefits and tradeoffs
depend heavily upon target system characteristics and ac-
cess patterns. To test the validity of our approach under
a range of realistic circumstances, we developed a simu-
lation infrastructure implementing our three techniques.
In this section, we discuss the details of this simulation
infrastructure before presenting the results of our evalu-
ation in Section 5.

4.1 Goals

Our goal in writing the simulator was to test the sys-
tem with a realistic workload and to test the effects of
parameters and features that did not lend themselves to
tractable analysis. In particular, we tested the effects
of the number of hosts in the network, the use of vir-
tual hosts, the Bloom filter threshold, Bloom filter sizes,
caching techniques, and the use of incremental results.
We also tested the system’s sensitivity to varying net-
work characteristics.

One key concern in a peer-to-peer system is the inher-
ent heterogeneity of such systems. Randomly distribut-
ing functionality (e.g., keywords) across the system runs
the risk of assigning a popular keyword to a relatively
under-provisioned machine in terms of memory, CPU,
or network capacity. Further, no hash function will uni-
formly distribute functionality across a hash range. Thus,
individual machines may be assigned disproportionate
numbers of keywords (recall that keywords are assigned
to the host whose ID is closest to it in the hash range).
virtual hosts [6] are one technique to address this poten-
tial limitation. Using this approach, a node participates
in a peer-to-peer system as several logical hosts, propor-
tional to its request processing capacity. A node that
participates as several virtual hosts is assigned propor-
tionally more load, addressing heterogeneous node ca-
pabilities. Thus, a node with ten times the capacity of
some baseline measure would be assigned ten virtual IDs
(which means that it is mapped to ten different IDs in the
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hash range). An optional system-wide scaling factor for
each node’s number of virtual hosts further reduces the
probability that any single node is assigned a dispropor-
tionately large portion of the hash range. This effect is
quantified in Section 5, but consider the following exam-
ple. With 100 hosts of equal power, it is likely that one or
more hosts will be assigned significantly more than 1%
of the hash range. However, with a scaling factor of 100,
it is much less likely that any host will be assigned much
more than 1% of the range because an “unlucky” hash
(large portion of the hash region) for one virtual host is
likely to be cancelled out by a “lucky” hash (small por-
tion of the hash region) for another virtual host on the
same physical node.

The Bloom filter threshold refers to the document set
size below which a host transmits a full list rather than
a Bloom-compressed set. For small documents, the to-
tal bandwidth consumed for transmission to a remote
host (for set intersection) may be so small that it may
not be worth the CPU time required to compress the set.
Eliminating the Bloom step further eliminates the need
to return to the transmitting host to eliminate false posi-
tives from the join. Typically, we find that the extra CPU
overhead and network overhead of returning the result is
worth the substantial saving in network bandwidth real-
ized by using Bloom filters. In Section 5, we quantify
this effect for a variety of Bloom thresholds.

Bloom filter sizes affect the number of false positives
transmitted during the search process. If the client is
willing to accept some probability of false positives (a
returned document containing only a subset of the re-
quested keywords), sufficiently large Bloom filters can
meet the client’s accepted false-positive rate and elimi-
nate the need to revisit nodes to remove false positives,
as described in Section 3.1. That is, small Bloom filters
result in significant compression of a keyword-set size at
the cost of either generating more false positives in the
result returned to the client or requiring the transmission
of the intersection back to the originating host for false
positive elimination.

4.2 Design

The simulator runs as a single-threaded Java application.
We implement the inverted index, word-to-host mapping,
and host measurement (in this case, random generation)
in separate classes so that much of the simulator could be
reused in a full implementation of our protocol. Our sim-
ulations use a real document set and search trace. The
document set totals 1.85 GB of HTML data, compris-
ing 1.17 million unique words in105; 593 documents,
retrieved by crawling to a recursion depth of five from
100 seed URLs [4]. The searches performed are read
from a list of95; 409 searches containing45; 344 unique

keywords. The search trace is the IRCache log file de-
scribed in Section 2. Note that the results presented in
this paper are restricted to these particular traces. How-
ever, we do not expect the benefits of our techniques to
differ significantly for other workloads.

Hosts in the network are generated at random based
on configurable distributions for upload speed, down-
load speed, CPU speed, and local storage capacity. We
use three distributions for network speeds: one with all
modems, one with all backbone links, and one based on
the measurements of the Gnutella network performed by
Saroiu et al [16]. This last heterogeneous set contains a
mixture of modems, broadband connections (cable/DSL)
and high-speed LAN connections. Our CPU speed distri-
bution is roughly a bell curve, with a mean of 750 MIPS,
and our local storage distribution is a heavy-tailed piece-
wise function ranging from 1 MB to 100 MB. We exper-
imented with a broad range of host characteristics and
present the results for this representative subset in this
paper. To generate random latencies, we place hosts at
random in a2; 500-mile square grid and assume that net-
work packets travel an average of100; 000miles per sec-
ond.

The time required to send a network message is the
propagation time, as determined by the distance between
the hosts involved, plus the transmission time, as de-
termined by the minimum of the sender’s upload speed
and the recipient’s download speed, and the size of the
packet. The total network time for a search is the sum
of the latency and transmission time for all packets sent
among server nodes processing the query. We ignore the
time spent by the client sending the initial query and re-
ceiving the results because these times are constant.

Document IDs are assumed to be 128 bits. The time
required to look up words in a local index or perform
intersections or Bloom filter operations is based on the
CPU speed and the following assumptions for opera-
tion costs: 1; 500 simple operations per hit to look up
words in an index,500 simple operations per element to
intersect two result sets, and10; 000 simple operations
per document ID inserted into a Bloom filter or checked
against a Bloom filter received from another host. We
believe that in general, these assumptions place an upper
bound on the CPU cost of these operations. Even with
these assumptions, we find that network time typically
dominates CPU time for our target scenarios.

We determine the number of virtual hosts to assign
each simulated node based on its network and CPU
speeds when compared to a baseline host. The baseline
host has a57:5 MIPS CPU and30 Kbit/s network links.
These speeds were chosen as those required to compute
and transmit5; 000 Bloom operations per second. Each
node is compared to the baseline host in three categories:
upload speed, download speed, and CPU speed. The
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nodes’s minimum margin over the baseline host in these
three categories is rounded down and taken to be its num-
ber of virtual hosts.

To perform each query, the simulator looks up each
keyword in the inverted index, obtaining up toM results
for each, whereM is the incremental result size. Each
host intersects its set with the data from the previous host
and forwards it to the subsequent host, as described in
Section 3.1. Each node forwards its current intersected
set as either a Bloom filter or a full set, depending on
whether or not the set is larger than the Bloom thresh-
old. After each peer performs its part of the join, any
node that sent a Bloom filter in the first pass is poten-
tially revisited to remove false positives. If the number
of resulting documents is at least as large as the the de-
sired number, the search is over. Otherwise,M is in-
creased adaptively to twice what appears to be needed to
produce the desired number of results, and the search is
rerun.

At each step, a host checks its cache to see if it has data
for the subsequent host’s document list in its local cache.
If so, it performs the subsequent host’s portion of the join
locally and skips that host in the sending sequence.

4.3 Validation

We validated our simulator in two ways. First, we cal-
culated the behavior and performance of short, artificial
traces by hand and confirmed that the simulator returns
the same results. Second, we varied the Bloom filter size,
m, in the simulator and compared the results to the an-
alytical results presented in Section 3.1. The analytical
results shown in Figure 8 closely resemble the simulated
results shown in Figure 13.

5 Experimental Results

The goal of this section is to understand the performance
effects of our proposed techniques on a peer-to-peer
search infrastructure. Ideally, we wish to demonstrate
that our proposed peer-to-peer search system scales with
system size (total resource consumption per search grows
sub-linearly with the number of participating hosts) and
that techniques such as Bloom filters and caching im-
prove the performance of individual requests. Primar-
ily, we focus on the metric of bytes sent per request.
Techniques such as caching and the use of Bloom filters
largely serve to reduce this metric. Reducing bytes per
request has the added benefit of reducing total time spent
in the network and hence end-to-end client perceived la-
tency. We also study the effects of the distribution of
network and CPU characteristics on overall system per-
formance. One challenge with peer-to-peer systems is
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Figure 10:The number of bytes sent increases very little be-
yond networks of 100 hosts. Enabling virtual hosts reduces the
number of bytes sent by about 18%. Scaling the number of
virtual hosts reduces the number of bytes sent by an additional
18%.

addressing the subset of hosts that have significantly less
computation power and network bandwidth than is re-
quired to support a high-performance search infrastruc-
ture.

Finally, although we implemented incremental results,
we do not present results for this technique here because
our target document set is not large enough to return large
numbers of hits for most queries. For our workload, this
optimization reduces network utilization by at most 30%
in the best case. However, we believe this technique will
be increasingly valuable as the document space increases
in size.

5.1 Scalability and Virtual Hosts

A key goal of our work is to demonstrate that a peer-
to-peer search infrastructure scales with the number of
participating hosts. Unless otherwise specified, the re-
sults presented in this section all assume the heteroge-
neous distribution [16] of per-peer network connectivity
and the default distribution of CPU power described in
Section 4. Caching and Bloom filters are both initially
turned off. As shown in Figure 10, increasing the num-
ber of hosts in the simulation has little effect on the total
number of bytes sent. With very small networks, several
keywords from a query may be located on a single host,
resulting in entirely local handling of parts of the query.
However, beyond 100 hosts, this probability becomes in-
significant, and eachn-keyword query must contactn
hosts, independent of the size of the system.

In addition to demonstrating the scalability of the sys-
tem, Figures 10 and 11 also quantify the benefits of the
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Figure 11:Virtual hosts cut the amount of time spent transmit-
ting by up to 60%. Scaling the number of virtual hosts yields a
small additional improvement.

use of virtual hosts in the system. Recall that when vir-
tual hosts are turned on, each node is assigned a number
of hosts based on its capacity relative to the predefined
baseline described in Section 4. The virtual host scaling
factor further multiplies this number of hosts by some
constant value to ensure that each physical host is as-
signed a uniform portion of the overall hash range as dis-
cussed in Section 4. Overall, virtual hosts have a small
effect on the number of total bytes sent per query. This is
because enabling virtual hosts concentrates data mostly
on powerful hosts, increasing the probability that parts
of a query can be handled entirely locally. Virtual host
scaling results in better expected load balancing, which
very slightly decreases the amount of data that must be
sent on average.

Although virtual hosts have little effect on how much
data must be sent, they can significantly decrease the
amount of time spent sending the data, as shown in Fig-
ure 11. By assigning more load to more capable hosts,
the virtual hosts technique can cut network times by
nearly 60%. Using virtual host scaling further decreases
expected network times by reducing the probability that
a bottleneck host will be assigned a disproportionate
amount of load by mistake. Thus, while total bytes sent
decreases only slightly as a result of better load balanc-
ing, total network time decreases significantly because
more capable hosts (with faster network connections) be-
come responsible for a larger fraction of requests.

5.2 Bloom Filters and Caching

Having established the scalability of our general ap-
proach, we now turn our attention to the additional bene-
fits available from the use of Bloom filters to reduce net-
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Figure 12:Increasing the Bloom filter threshold – i.e., using
Bloom filters less often – significantly reduces the amount of
data sent by eliminating the need to revisit nodes to eliminate
false positives in certain cases.

work utilization. In particular, we focus on how large the
Bloom filter should be and for what minimum data set
size it should be invoked. Using Bloom filters for every
transfer results in substantial unnecessary data transmis-
sions. Any time a Bloom filter is used, the host using it
must later revisit the same query to eliminate any false
positives. Thus, Bloom filters should only be used when
the time saved will outweigh the time spent sending the
clean-up message. Figure 12 shows the total bytes trans-
mitted per query as a function of the Bloom filter thresh-
old, assuming the default value of 6 bits per Bloom entry.
We find that the optimal Bloom filter threshold for our
trace was approximately 300. Any set below this size
should be sent in its entirety as the savings from using
Bloom filters do not outweigh the network (not to men-
tion latency) overhead of revisiting the host to eliminate
false positives.

Next, we consider the effects of varying the number
of bits per entry in the Bloom filter and of caching on
total network traffic. Figure 13 plots the total number of
bytes transmitted as a function of the Bloom filter size.
The two sets of curves represent the case when we en-
able and disable caching. Within each set, we set a max-
imum rate of allowable false positives in the set of docu-
ments returned to the user for a particular query, at 0%,
1%, and 10%. When the client allows 1% or 10% false
positives, false-positive removal steps may sometimes be
eliminated; increasing the Bloom filter size enhances this
effect. Figure 14 shows that allowing false positives has
significantly more effect on varying total network time
than it does on bytes transferred as it eliminates a num-
ber of required message transmissions.
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The effects of caching shown in Figure 13 are sim-
ilar to those derived analytically in Figure 8. Caching
decreases the total amount of data sent and increases
the optimal Bloom filter size: in this case, from 18 bits
per entry to 24 bits per entry. For optimal Bloom filter
sizes of 18 and 24 bits per entry in the no-caching and
caching cases respectively, our caching technique intro-
duces more than a 50% reduction in the total number of
bytes transmitted per query.

5.3 Putting It All Together

We now present the end-to-end average query times con-
sidering all of our optimizations under a variety of as-
sumed network conditions. We break down this end-to-
end time into the three principal components that con-

Figure 15:Isolating the effects of caching, virtual hosts, and
different network characteristics for optimal Bloom threshold
(300) and Bloom filter sizes (18/24 for caching on or off).

tribute to end-to-end latency: CPU processing time, net-
work transmission time (bytes transferred divided by the
speed of the slower network connection speed of the two
communicating peers), and latency (determined by the
distance between communicating peers). Recall from
Section 4 that we do not measure the time associated with
either the client request or the final response as the size of
these messages is independent of our optimization tech-
niques.

Figure 15 shows three bar charts that break down total
end-to-end search time under the three network condi-
tions described in Section 4: WAN, Heterogeneous, and
Modem. For each network setting there are four individ-
ual bars, representing the effects of virtual hosts on or
off and of caching on or off. Each bar is further broken
down into network transmission time, CPU processing
time, and network latency. In the case of an all-modem
network, end-to-end query time is dominated by network
transmission time. The use of virtual hosts has no effect
on query times because the network set is homogeneous.
Caching does reduce the network transmission portion
by roughly 30%. All queries still manage to complete
in 1 second or less because, as shown in Figure 13 the
use of all our optimizations reduces the total bytes trans-
ferred per query to less than1; 000 bytes for our target
workload; a 56k modem can transfer 6 KB/sec in the
best case. However, our results are limited by the fact
that our simulator does not model network contention.
In general, we expect the per-query average to be worse
than our reported results if any individual node’s network
connection becomes saturated. This limitation is signif-
icantly mitigated under different network conditions as
individual nodes are more likely to have additional band-
width available and the use of virtual hosts will spread
the load to avoid underprovisioned hosts.
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In the homogeneous WAN case, network time is negli-
gible in all cases given the very high transmission speeds.
The use of caching reduces latency and CPU time by
48% and 30%, respectively, by avoiding the need to cal-
culate and transmit Bloom filters in the case of a cache
hit. Enabling virtual hosts reduces the CPU time by con-
centrating requests on the subset of WAN nodes with
more CPU processing power. Recall that although the
network is homogeneous in this case we still have het-
erogeneity in CPU processing power as described in Sec-
tion 4.

Finally, the use of virtual hosts and caching together
has the most pronounced effect on the heterogeneous
network, together reducing average per-query response
times by 59%. In particular, the use of virtual hosts re-
duces the network transmission portion of average query
response times by 48% by concentrating keywords on the
subset of nodes with more network bandwidth. Caching
uniformly reduces all aspects of the average query time,
in particular reducing the latency components by 47% in
each case by eliminating the need for a significant por-
tion of network communication.

6 Related Work

Work related to ours can be divided into four categories:
the first generation of peer-to-peer systems; the second-
generation, consisting of research peer-to-peer systems;
web search engines; and database semijoin reductions.
We dealt with research peer-to-peer systems in Section 1.
The others, we describe here.

The first generation of peer-to-peer systems consists
of Napster [13], Gnutella [8], and Freenet [5, 9]. Nap-
ster and Gnutella both use searches as their core loca-
tion determination technique. Napster performs searches
centrally on well-known servers that store the metadata,
location, and keywords for each document. Gnutella
broadcasts search queries to all nodes and allows each
node to perform the search in an implementation-
specific manner. Yang and Garcia-Molina suggest tech-
niques to reduce the number of nodes contacted in a
Gnutella search while preserving the implementation-
specific search semantics and a satisfactory number of re-
sponses [20]. Freenet provides no search mechanism and
depends instead on well-known names and well-known
directories of names.

Web search engines such as Google [3] operate in a
centralized manner. A farm of servers retrieves all reach-
able content on the web and builds an inverted index. An-
other farm of servers performs lookups in this inverted
index. When the inverted index is all in one location,
multiple-keyword searches can be performed with en-
tirely local-area communication, and the optimizations

presented here are not needed. Distributing the index
over a wide area provides greater availability than the
centralized approach. Because our system can take ad-
vantage of the explicit insert operations in peer-to-peer
systems, we also provide more up-to-date results than
any crawler-based approach can.

The general problem of remotely intersecting two sets
of document IDs is equivalent to the database problem of
performing a remote natural join. We are using two ideas
from the database literature. Sending only the data nec-
essary for the intersection (i.e., join) comes from work on
semijoin reductions [1]. Using a Bloom filter to summa-
rize the set of document IDs comes from work on Bloom
joins [11, 12].

7 Conclusions

This paper presents the design and evaluation of a peer-
to-peer search infrastructure. In this context we make
the following contributions. First, we show that our ar-
chitecture is scalable; global network state and message
traffic grows sub-linearly with increasing network size.
Next, relative to a centralized search infrastructure, our
approach can maintain high performance and availability
in the face of individual failures and performance fluctu-
ations through replication. Finally, through explicit doc-
ument publishing, our distributed keyword index deliv-
ers improved completeness and accuracy relative to tra-
ditional spidering techniques.

One important consideration in our architecture is
reducing the overhead of multi-keyword conjunctive
searches. We describe and evaluate a number of cooper-
ating techniques—Bloom filters, virtual hosts, caching,
and incremental results—that, taken together, reduce
both consumed network resources and end-to-end per-
ceived client search latency by an order of magnitude for
our target workload.
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