Introduction to MPI

Table of Contents

1. Program Structure
. Communication Model
Topology
Messages
. Basic Functions
. Made-up Example Programs
. Global Operations
. LaPlace Equation Solver
. Asynchronous Communication
. Communication Groups
9 MPI Data Types

[\°]

1NN AW

9/3/2002 Internet and Grid Computing - Fall
2002



Introduction to MPI

MPI Program Structure
1. MPIl is a set of precompiled library routines that the user links with their code.
2. An “MPI” parallel program is a sequential program which has been modified
to include calls to MPI routines and conditional statements to adapt the

execution of the program to its local context.

3. An “MPI” program is a set of processes, each running in a separate address
space and usually on a different processor.

4. Processes communication by sending messages. There are multiple message
modes.

S. The processors accessible to an MPI program are normally confined to a single
domain or a single common file system.

6. Each process in an MPI program belongs to one or more “communication
groups.”

9/3/2002 Internet and Grid Computing - Fall 2
2002




Introduction to MPI

7. Each processor has a position, called a rank, in the communication group
in which it was originally initiated. A processes rank is a unique
identifier for the process in its communication group. Messages
are addressed to a processor “rank.”

8. Each processor executes the same program using local processor id to
determine its behavior. Most MPI programs are structured with
some form of central control implemented in the processor with
rank “0.”

9. MPI distributes the programs to the processors, loads them and initiates
execution on each processor. MPI chooses processors upon which
to load a program from a list of processors stored in a file,
“machines.”

10. Environment specification and execution initiation is external to MPI

9/3/2002 Internet and Grid Computing - Fall 3
2002



Introduction to MPI

Computer Science Department MPI machines file
aspen.cs.utexas.edu% pwd
/stage/public/share/src/mpi/share
aspen.cs.utexas.edu% more machines. LINUX
yeenoghu
zorkmid
asmodeus
beartrap
bladnoch
bowmore
bruichladdich
bunnahabhain
clynelish

crom

9/3/2002 Internet and Grid Computing - Fall
2002



Introduction to MPI

MPYT THITCint F#argc, char *FEargw)
TnEteiate & conmaprete b o,
argc, argwv are reguired only in the O language binding,
where they are the momain programn’™s argurmments.

MFPFT _FINAT.TZEC()
Shut down @ computatEtore.

MPT _COMM STFE(comm, sSi=e)
Tretermine the pummbecr of processes 5 E commaputEtEoT.
IN . Omm communicator (handle)
ouT 2i=e mammber of processes in the group of comm [(integer)

MPT _COMM BANK (comm, pid)
Treterrmine the sdentificr of the cauryreot process.
IN . oI communicator (handle)
ouUT pid procesas id in the group of comm (integer)

MPYT SEND(buf, count, datatype, dest, tayg, comm)
Sernd E e ssEge.

IN buf addresa of send buffer [choice)

I count mamm ber of eletmenta to send (integer =0)
IN datatype datatype of send buffer elexments [{handle)
IN dest proceas id of destination proceaa [(integer)
IN t ag message tag [ integer)

IN . oI communicator (handle)

MPT _ RECVY(buf, count, datatype, source, tag, comm, statuas)
Hecefore = fmosszye.

ouT buf addresa of receive buffer [choice))

IN count size of receiwve buffer, in elemmments (integer ==0)

IN datatype datatype of receive buffer elemmentas {handle)

I 2 ouT Ce process id of aource proceas, or MEFT_ANY SOURCE (integer)
IN T By message tag, or MPT_ANY _TAG [integer)

IN . oI communicator (handle)

ouUT status status object [atatus)

9/3/2002 Internet and Grid Computing - Fall 5
2002




Introduction to MPI

Communication Model

1. A communicator (A variable of type MPI_Comm) is a collection of
processors that can send messages to each other. For basic programs,
the only communicator needed is MPI COMM_WORLD. It is
predefined in MPI and consists of all the processors running when
program execution begins. The default communicator created by
running an MPI program on the CS Linux systems would have the
MPI processes on yeenoghu, zorkmid, asmodeus and beartrap as its
membership.

2. Subsets of MPI_COMM_WORLD can be created to partition the
processors into smaller communication groups.

3. Message communicators much match between message sender and receiver.

9/3/2002 Internet and Grid Computing - Fall 6
2002




Introduction to MPI

Communication Model — Continued

4. Communicators can also be used to determine the number of processors
participating in a particular communicator set and the sequence
of the processor in the communicator.

5. The processor's location in the communicator sequence is determined by
the MPI_Comm_rank function.

6. The total number of processors in the communicator can be determined
by executing the the MPI Comm_size.

9/3/2002 Internet and Grid Computing - Fall
2002




Introduction to MPI

Message Properties

1. The data of an MPI message is a one dimensional array of items and is
specified as the first argument of the send (MPI_Send) and receive
(MPI_Recv) functions.

2. There is an argument to indicate where the array starts for a given
member of a communicator. Arguments that specify the number of elements
in the array (count) and the type of each element (data type) are also passed
to the MPI functions.

3.The tag and comm arguments are used to differentiate multiple messages
originating from the same processor.

4. The status argument in the receive function stores information about the
source, size, and tag of the message. This is useful in cases where the receive is
allowed to receive a set of possible sources.

9/3/2002 Internet and Grid Computing - Fall 8
2002




Introduction to MPI

An Parallel Pseudo-Program Using the MPI Library

program main

begin

MPI INIT () //Initiate computation
MPI COMM SIZE (MPI_COMM WORLD, count)//Find # of processes
MPI_COMM RANK (MPI_ COMM WORLD, myid) //Find my id

print ("I am", myid, "of", count) //Print message
MPI_ FINALIZE () //Shut down
end

9/3/2002 Internet and Grid Computing - Fall 9
2002



Introduction to MPI

1. If the program on the previous slide is executed by four processes, we
will obtain something like the following output.

2. The order in which the output appears is not defined; however, we
assume here that the output from individual print statements is not
interleaved.

I am 1 of 4
I am 3 of 4
I am 0 of 4
I am 2 of 4

3. The output from an actual run was:

deerpark.cs.utexas.edus mpirun -np 4
HelloWorld

Hello world from process 0 of 4
Hello world from process 2 of 4
Hello world from process 3 of 4

Hello world from process 1 of 4

9/3/2002 Internet and Grid Computing - Fall 10
2002




Introduction to MPI

Foundry - Bridge Process

(a)

b) =0

bridge

0
@

9/3/2002

Internet and Grid Computing - Fall
2002

11




Introduction to MPI

pProgram main

beagin
MET _THITC)D Initialize
MET COMM STZEC(HMET _COMM WNORLD, count )
if count = Z then axit Bfusat be juat 2 proceasces
MPT _ COMM _RANK(MPTY _COMM WORI.IDX, myid)
if myid = © then I am process [:
Ffoundry(1O0o) Fxecute foundry
alse I arn process 1:
bridge () Execute bridge
andif
MPYT FINAT.TZEC() Shut down
and
procedurs foundry(numgirders) Code for porocesa [
beagin
for i = 1 to numgirders Send mesaages
MPT SEND(i, 1, MPT _IRT, 1, ©, HMPI _COMM _WORLD)
andfor
i = —1

Send shutdown moessape
MET SEND(Ci, 1, MPI _INT, 1, ©, MPFI_COMM_WORLD)

arnd
procedurs bridge Code for proceaa 1
beagin
MPT RECY(msg, 1, MPFT_TAT, ©, ©, WMPT_COMM WORLD, status)
while mag !'= —1 do Feceive messages
use_girder{(msgs) L aec moessame
MPI RECY (m=sg, 1, MPT_INT, O, O, MPI_COMM WORLD, status)
anddo
and

Program B.1 : MPT immplermenbabion of bridge coopabeocben peoblern . Thia puaoe
erares 18 desaipne] Lo e execuled by bwo prroscessasess,

9/3/2002 Internet and Grid Computing - Fall
2002

12




Introduction to MPI

Master Acknowledgement Program

1. Each process finds out about the size of the process pool, its own rank within
the pool, and the name of the processor it runs on.

2. Process of rank 0 becomes the master process.

3. The master process broadcasts the name of the processor it runs on to other
processes.

4. Each process, including the master process constructs a greating message
and sends it to the master process. The master process sends the
message to itself.

5. The master process collects the messages and displays them on standard
output.

6. This is the way to organise I/O, if only certain processes can write to the
screen or to files.

9/3/2002 Internet and Grid Computing - Fall 13
2002




Introduction to MPI

Master Acknowlegement Program
#include <stdio.h>
#include <string.h>
#include <mpi.h>
#define TRUE 1
#define FALSE 0
#define MASTER RANK 0
main(argc, argv)
int argc;char *argv|];

{ int count, pool _size, my rank, my name length,i am_ the master =
FALSE;

char my name[BUFSIZ], master name[BUFSIZ],
send_buffer[BUFSIZ],recv_buffer|[ BUFSIZ];

MPI_Status status;

MPI_Init(&arge, &argv); MPI_ Comm_size(MPI_COMM_WORLD,
&pool size); MPI Comm_rank(MPI_ COMM_WORLD,
&my rank);

9/3/2002 Internet and Grid Computing - Fall
2002

14




Introduction to MPI

MPI_Get _processor name(my_name, &my name_length);
if (my_rank == MASTER RANK)
{ i_am_the master = TRUE;

strcpy (master name, my_name); }

MPI_Bcast(master name, BUFSIZ, MPI CHAR, MASTER RANK,
MPI_COMM_WORLD);

sprintf(send_buffer, "hello %s, greetings from %s, rank = %d",
master_name, my name, my_rank);

MPI_Send (send_buffer, strlen(send_buffer) + 1, MPI_CHAR,
MASTER RANK, 0, MPI COMM_WORLD);

if (i_am_the master)
{ for (count=1;
count <= pool_size; count++)
{ MPI_Recv (recv_buffer, BUFSIZ, MPI _CHAR, MPI ANY_ SOURCE,
MPI_ANY _TAG, MPI_COMM_WORLD, &status);
printf (""%s\n", recv_buffer); } }
MPI_Finalize();
}

9/3/2002 Internet and Grid Computing - Fall 15
2002




Introduction to MPI

This program in English

When you look at an MPI program and try to trace its logic, think of yourself
as one of the processors.

And so, you begin execution and the first statement that you encounter is
MPI_Init(&arge, &argv);

What this statement tells you is that you are not alone. There are others like
you, and all of you comprise a pool of MPI processes. How many there are in
that pool altogether?

To find out you issue the command
MPI_Comm_size(MPI_COMM_WORLD, &pool size);
which, translated into English means:

How many processes there are in the default communicator, which is guaranteed
to encompass all processes in the pool, MPI COMM_ WORLD? Please put the
answer in the variable pool_size.

9/3/2002 Internet and Grid Computing - Fall 16
2002




Introduction to MPI

hen this function returns you know how many colleagues you have. But the nex
pressing question is: how can you distinguish yourself from the others? Are you all
alike? Are you all indistinguishable? When processes are born, each process is
born with a different number, much the same as each human is born with
different DNA and different fingerprints.

That number is called a rank number, and if you are an MPI process you can find
out what your rank number is by calling function:

MPI_Comm_rank(MPI COMM_ WORLD, &my_rank);
The English translation of this call is:

What is my rank number in the default communicator MPI COMM _ WORLD?
Please put the answer in the variable my rank.

A process such as yourself can belong to many communicators. You always belong

to MPI_COMM_WORLD, but within the world you can have many sub-worlds,

or, let's call it states. If you have multiple citizenships, you will also have multiple

tax numbers, or multiple social security numbers, that would distinguish you from

other citizens of those states. By the same token a process that belongs to many

communicators may have different a different rank number in each of them, so
hen you ask about your rank number you must specify a communicator too.

9/3/2002 Internet and Grid Computing - Fall 17
2002




Introduction to MPI

OK, by now you know how many other processes there are in the pool, and
what is your rank number within that pool. You can also find the name of the
processor that you yourself run on.

You call function:
MPI_Get _processor name(my_ name, &my_ name length);
which translated to English means:

What is the name of the processor that I run on? Please put the name in the
variable my name and put the length of that name in my name_length.

So far every process in the pool would have performed exactly the same
operations. There has been no communication between you guys yet. But now
you all check if your rank number is the same as a predefined
MASTER_RANK number. Who defines what the MASTER RANK number is?
In this case it is the programmer, the God of MPI processes. But on some
systems all processes may go through additional environmental enquiries and
check for the existence of a host process or processes which can do I/0, and so
on, and then jointly decide on which is going to be the MASTER.

Well, here the MASTER has been annointed by God.

9/3/2002 Internet and Grid Computing - Fall 18
2002




Introduction to MPI

Only one process will discover that he or she is the annointed one. That one
process will place TRUE in the i am_the master variable. For all other
processes that variable will remain FALSE. This one process will laboriously
copy its name into the variable master name. For all other processes that
string will remain null.

But all other processes will know that they are not the master, and they will
know who the master is, because by now they all know that their rank is not
MASTER_RANK.

At this stage all processes that are not the master subject themselves to
receiving a broadcast from the master. All processes, including yourself
(regardless of whether you are the master or not), perform this operation at
the same time, and all of them end up with the same message in the variable
master_name. This message is the name of the processor the master process
runs on. The name has been copied from the variable master name of the
master process and written on variables called master name that belong to
other processes. The MPI machine will have done all that.

9/3/2002 Internet and Grid Computing - Fall 19
2002



Introduction to MPI

This operation is accomplished by calling:

MPI_Bcast(master name, BUFSIZ, MPI CHAR, MASTER RANK,
MPI_COMM_WORLD);

In plain English the meaning of this call is as follows:

Copy BUFSIZ data items of type MPI CHAR from a buffer called master name
that is managed by process whose rank is MASTER RANK within the

MPI COMM WORLD communicator, to which I must belong too, to my own
buffer also called master name.

At this stage whether you are a slave process or a master process you are very
knowledgeable about your MPI_COMM_WORLD universe. And, if you are a
slave process, you are prudent enough to prepare and send a congratulatory
message to the master process.

And so first you write the message on your send buffer:

sprintf(send_buffer, ""hello %s, greetings from %s, rank = %d'"', master name,
my_ name, my_ rank);

9/3/2002 Internet and Grid Computing - Fall 20
2002




Introduction to MPI

And observe that you write this message even if you are the master. Well there is
nothing wrong with congratulating yourself. Some people do it all the time.
Having prepared the message you send it to the master process, and if you are
the master process you send it to yourself, which is fine too. Some people seldom
receive messages from anyone else.

Here is how you will have accomplished this task:

MPI_Send (send_buffer, strlen(send buffer) + 1, MPI_CHAR,
MASTER_RANK, 0, MPI_ COMM_WORLD);

In plain English the meaning of this operation is as follows:

Send strlen(send_buffer) + 1 data items (don't forget about the terminating null
character, for which function strlen does not account) of type MPI CHAR, which
have been deposited in send_buffer to a process whose rank is MASTER RANK.
Attach a tag 0 to that message (to distinguish it from other messages that the master

process may receive from elsewhere, perhaps). The ranking and communication
refer to the MPI COMM _WORLD communicator.

If you are a slave process then this is about all that you are supposed to do in this
program, so now you can relax and spin, or go home.

9/3/2002 Internet and Grid Computing - Fall 21
2002




Introduction to MPI

But if you are a master process you have to collect all those messages that have
been sent to you and print them on standard output in the receive order.

How many messages are you going to receive, master? There will be pool_size
messages sent to you from all processes including yourself. So you can just as
well enter a for loop and receive all those pool_size messages, knowing, when you
count the last one, that your job is done too.

To receive a message you do as follows:

MPI_Recv (recv_buffer, BUFSIZ, MPI_CHAR, MPI_ANY_ SOURCE,
MPI_ANY _TAG, MPI_ COMM_WORLD, &status);

which in plain English means:

Let me receive up to BUFSIZ data items of type MPI CHAR into my array
recv_buffer from any source (MPI ANY SOURCE) and with any tag

(MPI ANY TAG) within the MPI COMM _WORLD. The status of the received
message should be written on structure status.

9/3/2002 Internet and Grid Computing - Fall 22
2002



Introduction to MPI

It is possible to find out a lot about a message before you are going to receive it.
You can find how long it is, where it comes from, what type are data items inside
the message, and so on. But in this case the master process doesn't bother. The
logic of the program is simple enough. God, i.e., the programmer, told the master
process to receive pool _size messages, so receive them it shall. And it shall it print
them on standard output as it receives them.

Once this point in the program is reached, all processes hit
MPI_Finalize;

which is the end of the world for them.

If you want to look at more examples 1n this style, go to

9/3/2002 Internet and Grid Computing - Fall 23
2002


http://beige.ucs.indiana.edu/B673/node120.html
http://beige.ucs.indiana.edu/B673/node120.html

Introduction to MPI

Ring Communication

Write a program that takes data from process zero and sends it to all of the other
processes by sending it in a ring. That is, process 1 should receive the data and
send it to process i- erocesss ‘ -

Process 1

wes Process size-1
Assume that the data consists of a single integer. Process zero reads the data
from the user.

9/3/2002 Internet and Grid Computing - Fall 24
2002




Introduction to MPI

#include <stdio.h>
#include "mpi.h"
int main( argc, argv )
int argc;
char **argv;
{
int rank, value, size;
MPI_Status status;
MPI_Init( &arge, &argv );
MPI_Comm_rank( MPI_ COMM_WORLD, &rank );
MPI_Comm_size( MPI_ COMM_WORLD, &size );

9/3/2002 Internet and Grid Computing - Fall
2002

25




Introduction to MPI

do {
if (rank == 0) {
scanf( "%d", &value );
MPI_Send( &value, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD
)
}
else {
MPI_Recv( &value, 1, MPI_INT, rank - 1, 0, MPI COMM_WORLD,
&status );
if (rank <size - 1)
MPI_Send( &value, 1, MPI_INT, rank + 1, 0,
MPI_COMM_WORLD );
}
printf( "Process %d got %d\n", rank, value );
} while (value >= 0);

MPI_Finalize( );
return 0;

}

9/3/2002 Internet and Grid Computing - Fall 26
2002




Introduction to MPI

Processcs

l

Global Communication Operations

data ———

A
onc-to-all broadcast
[ :>
MEPE T BOA =T
F-9
a all-to—-one gather
- | :>
F-9
2 MET__CGATHER
g
P W = O o O e

onc-to-all scatter

. =

MPT =SCATTER

9/3/2002

Internet and Grid Computing - Fall
2002

27




Introduction to MPI

Global Communication Operations

O 1
- f"l.// <0 s
=GR G GE
e e ~

9/3/2002

Internet and Grid Computing - Fall
2002

28




Introduction to MPI

(L)

(2)

(3)

<4y

(3)

Global Communication Operations

MFT ECAZST

¥

[ ]

MPT SCATTER
]

MPT SEMNDSRECY [ e """ |

MPT CGaAaTHER | |
b

9/3/2002

Internet and Grid Computing - Fall
2002

29




Introduction to MPI

MPT BPARRT ER (comm )
trinobef synclhronizEtEior.
ITH . omm communicator (handle)

MPYT PCAST(C(inbuf, incnt, intype, root, comm)
EBrosdeoest dete _from oot to il processes.

IHOUT inbuf addresa of input buffer, or output buffer at root [(choice))
IN inmcnt number of elemments in input buffer (integer)

IH intype datatype of input buffer celements (handle)

IN rookt process id of root procesa (integer)

IH . Omm comrmunicator (handle)

MPI _GATHERC inbuf, incnt, intype, outbuf, outcnt, outtype,
root, comml)

MPTI SCATTER(inbuf, incnt, intype, outbuf, ocutcnt, outtype,
root, comml)

Codiective date moverment functions.

ITH inbuf addresaa of input buffer [choice)

ITH incnt number of elements sent to each [(integer)

ITH intype datatype of input buffer elerments (handle)

ouT outbuf addresa of output buffer [(choice)

IN outcnt mnumber of elerments received fromm each (integer)
IN outtype datatype of output buffer elements (handle)

ITH rookt process id of root process [(integer)

IN C omm communicator (handle)

MPI _REDUCE inbuf, outbuf, count, type, op, root, comm)
MPI _ATTL.REDUCE. intuf, outbuf, count, type, op, comm)
Codlective reduction functions.

IH inbuf address of input buffer [choice)

ouUT outbhuf addresa of output buffer [(choice)

IH count mnum ber of elerments in input buffer (integer)
IN Type datatype of input buffer elementa (handle)
IH o operation; see text for list (handle)

IH ookt proceas id of root proceass [(integer)

ITH C Omm comrmunicator (handle)

9/3/2002 Internet and Grid Computing - Fall
2002

30




Introduction to MPI

MPI Program for Parallel Implementation of Jacobi iteration for
approximating the solution to a linear system of equations.

We solve the Laplace equation in two dimensions with finite differences.
Any numerical analysis text will show that iterating

while (not converged) {

for (i,j)

xnewli][j] = (x[i+1][j] + x[i-1][j] + x[i] [j+1] + x[i][j-1])/4;
for (i,))

x[i][j] = xnewl[i][j];
]

will compute an approximation for the solution of Laplace's equation.

9/3/2002 Internet and Grid Computing - Fall
2002

31




Introduction to MPI

Replacement of xnew with the average of the values around it is applied only in
the interior; the boundary values are left fixed. In practice, this means that if
the mesh is n by n, then the values

x[011j]
x[n-1][j]
x[i][0]
x[i][n-1]

are left unchanged. These refer to the complete mesh; you'll have to figure out
what to do with for the decomposed data structures (xlocal).

Because the values are replaced by averaging around them, these techniques
are called relaxation methods.

We wish to compute this approximation in parallel. Write an MPI program to
apply this approximation.

9/3/2002 Internet and Grid Computing - Fall 32
2002




Introduction to MPI

For convergence testing, compute

diffnorm = 0;
for (i)

diffnorm += (xnew[il[j] - x[il[jl) * (xnew[il[j] - x[il[j]);
diffnorm = sqrt(diffnorm);

Use MPI_Allreduce for this. (Why not use MPI_Reduce?)

Process zero will write out the value of diffnorm and the iteration count at
each iteration. When diffnorm is less that 1.0e-2, consider the iteration
converged. Also, if you reach 100 iterations, exit the loop.

For simplicity, consider a 12 x 12 mesh on 4 processors.

The boundary values are -1 on the top and bottom, and the rank of the process
on the side. The interior points have the same value as the rank of the process.

9/3/2002 Internet and Grid Computing - Fall 33
2002




Introduction to MPI

Process 3
Process 2
Process 1
Process [

& BEoundary point
& [nterior point

34

Internet and Grid Computing - Fall
2002

9/3/2002



Introduction to MPI

This is shown below:

-1-1-1-1-1-1-1-1-1-1-1-1
333333333333
333333333333
222222222222

222222222222
222222222222

111111111111
111111111111
111111111111
000000000000
000000000000

A-1-1-1-1-1-1-1-1-1-1-1

35

Internet and Grid Computing - Fall
2002

9/3/2002



Introduction to MPI

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12
int main( argc, argv )
int argc;
char **argv;
{
int rank, value, size, errcnt, toterr, i, j, itcnt;
int i first, i last;
MPI_Status status;
double diffnorm, gdiffnorm;
double xlocal[(12/4)+2][12];
double xnew|(12/3)+2][12];

MPI _Init( &arge, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

9/3/2002 Internet and Grid Computing - Fall
2002

36




Introduction to MPI

MPI_Comm_size( MPI_COMM_WORLD, &size );
if (size !=4) MPI_Abort( MPI_COMM_WORLD, 1);
/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */

/* Note that top and bottom processes have one less row of interior
points */

i first=1;

i_last = maxn/size;

if (rank == 0) i first++;

if (rank == size - 1) i_last--;

/* Fill the data as specified */

for (i=1; i<=maxn/size; i++)
for (j=0; j<maxn; j++)

xlocal[i][j] = rank;

for (j=0; j<maxn; j++) {
xlocal[i_first-1][j] =-1;
xlocal[i_last+1][j] = -1;

j

9/3/2002 Internet and Grid Computing - Fall
2002

37




Introduction to MPI

itcnt = 0;
do {
/* Send up unless I'm at the top, then receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank <size - 1)
MPI_Send( xlocal[maxn/size], maxn, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD );
if (rank > 0)
MPI_Recv( xlocal[0], maxn, MPI_DOUBLIE, rank - 1, 0,
MPI_COMM_WORLD, &status );
/* Send down unless I'm at the bottom */
if (rank > 0)
MPI_Send( xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD );
if (rank <size - 1)
MPI_Recv( xlocal[maxn/size+1], maxn, MPI_DOUBLE, rank + 1, 1,
MPI_COMM_WORLD, &status );

9/3/2002 Internet and Grid Computing - Fall
2002

38




Introduction to MPI

/* Compute new values (but not on boundary) */
itcnt ++;
diffnorm = 0.0;
for (i=i_first; i<=i_last; i++)
for (j=1; j<maxn-1; j++) {
xnew|i][j] = (xlocal[i][j+1] + xlocal[i][j-1] +
xlocal[i+1][j] + xlocal[i-1]][j]) / 4.0;
diffnorm += (xnewli][j] - xlocal[i][j]) *
(xnew]i][j] - xlocal[i][j]);
}
/* Only transfer the interior points */
for (i=i_first; i<=i_last; i++)
for (j=1; j<maxn-1; j++)
xlocal[i][j] = xnew][i][j];

9/3/2002 Internet and Grid Computing - Fall
2002

39




Introduction to MPI

MPI_Allreduce( &diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD );
gdiffnorm = sqrt( gdiffnorm );
if (rank == 0) printf( "At iteration %d, diff is %e\n", itcnt,
gdiffnorm );
} while (gdiffnorm > 1.0e-2 & & itent < 100);

MPI_Finalize( );
return 0;

}

9/3/2002 Internet and Grid Computing - Fall
2002



Introduction to MPI

Asynchronous Communication OQperations

MPTI _TPREOBE(source, tag, comm,

flag, status)
FPolf for @ pendEng messEre.

ITH 2 ouTrce id of aource procesas, or MEPT_ANY SOURCE (integer)
N T A messame tag, or MPFT_ANY TAG [(integer)

ITH c omm communicator (handle)

ouUT £flag (logical f Boolean )

ouUT status status object [statuas)

MPTI _PFROBE(source, tag, comm, status)
Return wlhien messege 5 pending.

e 2 ouTrce id of source process, or MEFI_ANY SOURCE (integer)
ITH * a message tag, or MPT_ANY TAG [(integer)

IN C omm communicator (handle)

ouUT status status object [statuas)

MPI_GET _COUNT(status, datatype, count)
Deterrmine size of 2 MmessEge.

I status status variable from receive [atatus)
I datatype datatype of receive buffer elermments (handle)
ouT count

mumber of data elements in measage (integer)

9/3/2002

Internet and Grid Computing - Fall
2002

41




Introduction to MPI

Creating Communication Groups

MEPET _COMM DU comm, es Co-mm )

Crrente e COTNMRUTECEioT. SETRE roup, et contect
IN . oI communicator (bhandle)
ouUT e O communicator (handle)

MPT_COMM _SPLIT(comm, color, key, newcomm)
FPortition gyroupe snto disioeint subprosps.

IN . oI communicator (bhandle)
INH coloxr subgroup control (integer)
ITH Eay proceas id control (integer)
ouUT n ewcomm communicator (handle)

MPTI _THETERCOMM CREATE comm, leaader, peasr, rleader, tag, intexr)
Clrente G Ente rooTie TR T E CrEd o,

IN G omm local intracommunicator (handle)

INH leader local leader [(integer)

IN paer peer intracommunicator (handle)

IN rleadeax process id of remmote leader in paar (integer)
IN T ayE tap for communicator set up (integer)

ouUT intexr new intercommunicator (handle)

MPY _COMM _FREE (comm)
IFlestroy & OO ETE cEl o,
IN . oI communicator (bhandle)

9/3/2002 Internet and Grid Computing - Fall
2002



Introduction to MPI

Communication Groups

A call of the form

MPI COMM SPLIT (comm, color, key, newcomm)creates one or
more new communicators.

It must be executed by each process in the process group associated with
comm.

A new communicator is created for each unique value
of color other than the defined constant
MPI UNDEFINED.

9/3/2002 Internet and Grid Computing - Fall
2002

43




Introduction to MPI

Communicators from Partitioning

cEach new communicator comprises those processes that
specified its value of color in the MPI COMM SPLIT
call.

*These processes are assigned identifiers within the
new communicator starting from zero, with order
determined by the value of key or, in the event of
ties, by the identifier in the old communicator.

*Thus, a call of the form MPI COMM SPLIT(comm, O, O,
newcomm) in which all processes specify the same color and key, is
equivalent to a call MPI COMM DUP (comm, newcomm)

9/3/2002 Internet and Grid Computing - Fall
2002

44




Introduction to MPI

The following code creates three new communicators if comm contains at
least three processes.

MPI Comm comm, newcomm;

int myid, color;

MPI Comm rank (comm, &myid);

color = myid%3;

MPI Comm split(comm, color, myid, &newcomm) ;

For example, if comm contains eight processes, then
processes 0, 3, and 6 form a new communicator of size
three, as do processes 1, 4, and 7, while processes 2
and 5 form a new communicator of size two.

0 1 e = | S = F

/.l" N o

9/3/2002 Internet and Grid Computing - Fall 45
2002




Introduction to MPI

Task Model versus Process Model

sionm 1801

9/3/2002

Internet and Grid Computing - Fall
2002

46




Introduction to MPI

Communication Pattern for Program on Next Slide

ofli1]z2|z2]lals]|s| 7]

9/3/2002

Internet and Grid Computing - Fall
2002

47




Introduction to MPI

integer comm, intercomm, isesrr, status(MPI STATUS STEE)
[ For asimplicity, we reguire am ewven onurmmber of proceaaes
call MEPT COMM STEZE(HMPT _ COMM _WORLLD, count, iesxrx)
if(mod({count,2Z) .ne. O) stop
[ Split proceasecs into two proups: odd and even muambered
call MPT COMM RANKCHMPT COMM WORI.D), myid, idexrx)
call MPT COMM _SPLIT(MPY _COMM WORLD, mod(myid,2), myid,
L comm, iaxrT)
= Determaine process id in new group
call MEPT COMM _RANKE(comm, newid, jiesrrT)
if(mod(myid,2) .eg. O0) thean

[ (Froup [J: create intercommunicator and send mmmessage
- Arpuments: U=local leader; 1=remote leader; §i=tae
call MPT _THETERCOMM CREATE(comm, &, HMPT_COMM WORTI, 1, D,
L intercomm, isrx)
call MPT SEND(msg, 1, type, newid, O, intercomm, isxrx)
alsea
[ (Group 1: create intercommunicator and receive noessape
o Mote that remmote leader has id 0 in MPT_COMM _&W ORI
call MPT _THTERCOMM CREATE(comm, ©, MPTI_COMM WORLD, O, 95,
intercomm, isTrx)
call MPT BEECY(msg, 1, type, newid, O, intercomm,
status, isxrx)
andif
= Free communicators created during this operation

call MPT oO0OMM _FREE( intercomm, jiarxT)
call MPT COMM _FREE(comm, iaxrx)

Propram B.T @ Ao MPT propraon illuvabceabio g orceambioon aod wvese of an o lecooon -
mun icalbor.

9/3/2002 Internet and Grid Computing - Fall
2002

48




Introduction to MPI

MPI Data Type Creation Operations

MPT _TYFE CORNTIGUOUS(count, oldtype, newtype)
Clonstruct detatype Fom contiguous cfoments,
. | count number of elemmenta (integer =>=0)
ITH oldtype input datatype (bhandle)
ouUT newtyp e output datatype [(handle)

MPT _TYFE VECTOR(count, blocklen, stride, oldtype, newtyps)
Construct deatetype Fom dfocks seporeted by strede.

IH count mumber of elemmenta (integer =>0)

. | blocklan sclementa in a block [(integer =>=0)

ITH stride elemnents between astart of each block [(integer)
. | oldtype input datatype [(handle)

ouUT newtype output datatype [(handle)

MPTI _TYFE TNDEXZED(count , hlocklens, indices, oldtype, newtype)
CTonstract doatatype with vericblc fndicos and sfze s

IN count mumber of blocks (integer =0)

IN blocklens cletnents in each block (array of integer =0)
ITH indiceas displacementsa for each block [ array of integer)
INH oldtypea input datatype (bhandle)

ouUT newtype output datatype [handle)

MPT _TYPE COMMIT(types)
Clormnait detatype so At £t cee bo ased £ comTR U ECEtE o7
ITHOUT type datatype to be cormmmitted (handle)

MFI _TYPE FREE(type)
Free 2 derdived dotatype.
INOUT type datatype to be Freed (handle)

9/3/2002 Internet and Grid Computing - Fall
2002

49




Introduction to MPI

MNorth: rowtwpa

1 5 S5 |13 1721
WWest: & |LO(14(18 East:
ool bywp e 7 11l 1519 ool bowp e
=1 S |Lz2|la|20124

South: rowtwpe

9/3/2002

Internet and Grid Computing - Fall
2002

50




Introduction

to MPI

inteager coltype, rowtype, comm, IisrrT

C The derived type coltype ia 4 contiguous reals.

call MPI _TYPE CONTIGUOUS(4, MPFT REAT., coltype, iexx)
call MPTI _TYPE COMMIT (coltype, iexrx)

C The derived type rowtype ia 6 reals, located 4 apart.

MPFT _TYPE VECTOR(S, 1, 4, MPTI REAT., rowtype, iaxrT)
MPT _TYPE COMMIT(rowtype, iearrT)

call
call
call
call
call
call
call
call

MPFT SERD(array(1,1),. 1
MPFT SEND(array(l1,5), 1
MPFT SEND(array(1,1), 1
MPFT SERD(array(4+,1) ., 1

MPFT TYFPE FREE(TowtLyp®,
MPFTI _TYFE FREEE(coltype,

Propgram B.B :

The wariables weaet, eaet, north, and

Tamp deriverd Lypres

coltype, west, O, comm, iesrxrr)
coltype, esast, O, comm, iesrT)
rowtype, north, O, comm, iexrx)
rowtype, gouth, 0, comm, iexrxT)

L I

dmrT )
desxrT )

Loy cormrmun wcalbe @ Moabe dillerenoe abencil.
eouth reler oy Lhe procesas™s peiph b,

9/3/2002

Internet and Grid Computing - Fall

2002

51




