
9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

1

Specification of Model Behavior

Lecture Topics

Behavioral Model

State Machines

Relation to Other Behavioral Models

Derivation of State Machines for Single Classes

Derivation of State Machines from System Level

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

2

Behavioral Models

1. Software system is collection of interacting entities.
2. Each entity has a behavior by which it interacts with other

entities.
3. We have discussed a method of identifying entities and

representing them as classes.
4. We must determine and specify the behaviors of each

class.
5. Behavior:

1. What the class does
2. How it interacts with other classes

6. We must determine and specify the behaviors of the entire
system.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

3

Behaviors as State Machines

• We model the behavior of each class as a state machine.
• A state machine is specified for each active class. An active

class has multiple states.
• A separate state machine is created for each instance of a

class that is created. That is: the behavior of each instance of
a class (object) is controlled by an instance of the class state
machine which acts on the local values of attributes of the
class instance.

• The behavior of the entire system is determined by the
interactions among the state machines of the classes.

• We can derive state machines for single classes or use
system level structure to derive state machines. (More later
on this.)

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

4

State Machines

States. Each state represents a stage in the life cycle of a typical
instance of the class.

Events. Each event represents an incident that causes a a state
transition to happen.

Transitions. A transition rule specifies what new state is achieved
when an object in a given state receives a particular event.

Procedures. A procedure is an activity or operation that must be
accomplished when an object arrives in a state. Each state
has its own procedure. Procedures comprise actions.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

5

STATE MODELS

State ≡ assignment of
values to

attributes
Event is associated
with each
transition

Associated with every state is an action which is executed upon
entry to the state and a selection of exits which is executed at the
end of the action. The actions generate the events which cause
state transitions.
There is a single state model for each class but a separate
instance of the state model for each instance of the class. Just
like just Java methods are common to all class instances.

Start E2

E1

E3

E4

E5

E6

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

6

Types of State Machines

1. Moore - A state machine in which the present state depends only
on its previous input and previous state, and the present output
depends only on the present state. An action (possibly no-op) is
associated with a state. The action associated with a state is
executed upon entry to the state.

2. Mealy - A type of state machine in which the outputs are a
function of the inputs and the current state. The actions are
associated with transitions. An action is executed when a given
transition is taken.

3. Statecharts – An integration of Moore and Mealy machines which
includes invocation on both entry to a state and exit from a state
and a number of further complexities.

4. xUML uses a Moore state machine subset of Statecharts

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

7

1. Control Flow Graph = State Machine (single classes)
sequential

2. Execution Tree at Procedure level
sequential

3. Data Flow – Data flow graphs (system level)
Parallel or interleaved

4. Object-Oriented – Method invocations
Sequential

4. Interacting State Machines
sequential, parallel or interleaved

Execution Models for Programs

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

8

Execution Models for Systems of Interacting State Machines

• Asynchronous Interleaved

• Asynchronous Parallel

• Event queuing – with or without?

• Atomicity of action execution?

• Communication – Entity to entity or
broadcast/multicast?

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

9

Approach

• UML has three diagrams, use cases, sequence diagrams and
collaboration diagrams to represent execution of a classes or
interacting classes.
– Use Cases -

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
– Sequence Diagrams -

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
– Collaboration Diagrams -

http://www.agilemodeling.com/artifacts/communicationDiagram.htm
• We summarize these into tabular or spreadsheet models.

– Object-Based Analysis Paper

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

10

Microwave Oven Specification

This simple oven has a single control button. When the oven
door is closed and the user presses the button, the oven will cook (that
is, energize the power tube) for 1 minute.

There is a light inside the oven. Any time the oven is cooking,
the light must be turned on, so you can peer through the window in the
oven's door and see if your food is bubbling. Any time the door is
open, the light must be on, so you can see your food or so you have
enough light to clean the oven.

When the oven times out (cooks until the desired preset time),
it turns off both the power tube and the light. It then emits a warning
beep to signal that the food is ready.

The user can stop the cooking by opening the door. Once the
door is opened, the timer resets to zero.

Closing the oven door turns out the light.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

11

Environment Specification – Use Cases

Door is opened
Door is closed
Button is pushed
Timer completes cooking period.
Use Case: some sequence of the set of externally

originated events which starts from a specified
state.

Basic Sequence: Initial state DoorClosed(DC)
Door is opened;
Door is closed;
button is pushed[i];
Timer completes;
Door is opened.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

12

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User Open Door RC State change$ DO

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes

$ Event to be sent to Light

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

13

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

Open Door RC State change$ DO

Close Door DO State change$ RC

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes

$ Event to be sent to Light

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

14

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

User

Open Door RC State change DO

Close Door DO State change RC

Push Button RC Turn on PT,L and T* C

* Composite action involving sending events to other entities.

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

15

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

User

User

Open Door RC State change DO

Close Door DO State change RC

Push Button RC Turn on PT,L and T* C

Push Button C Add minute to T CE

* Composite action involving sending events to other entities.

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

16

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

User

User

Timer

Open Door RC State change DO

Close Door DO State change RC

Push Button RC Turn on PT,L and T* C

Push Button C Add minute to T CE

Timer Interrupt CE Off PT,L and T* CC

* Composite action involving sending events to other entities.

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

17

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

User

User

User

Open Door RC State change DO

Close Door DO State change RC

Push Button RC Turn on PT,L and T* C

Push Button C Add minute to T CE

Open Door CE Off PT,L and T* CI

* Composite action involving sending events to other entities.

Pre-Condition: Door closed, nothing in oven

Script – Cook item in oven for two minutes but interrupt
cooking to stir after one and a half minute.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

18

Use Cases – Spreadsheet or Table

Originator Event Initial State Action New State

User

User

Open Door RC State Change DO

Push Button DO No Change DO

Pre-Condition: Door closed, nothing in oven

Script – User Error

How to represent in State Model??

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

19

Use Cases – Spreadsheet or Table

Originator Event Receiver Action New State

User

User

User

Oven

Oven

Oven On Timer T/Off State change T/On

User Push Button

Open Door Oven/RC State change# Oven/DO

Close Door Oven/DO State change$ Oven/RC

Push Button Oven/RC Turn on PT,L and T* Oven/C

On PT PT/Off PT state transition PT/On

On Light L/Off State change L/On

Light should be turned on
$ Light should be turned off
* Composite action involving sending events to other entities.

Pre-Condition: Door closed, nothing in oven
Script – Expand Event Sequence from Actions

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

20

State Machine View of Use Cases

State machine for all useful sequences

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

21

User-Environment with actions

State Machine for Arbitrary Sequence of User Actions

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

22

Figure 9.7 from
M&B

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

23

1. Determine the allowed states of the object.
2. Determine the set of allowed transitions.
3. Determine each event which causes a state

transition to occur.
4. Define the actions for each state transition.
5. Build state transition graphs.
6. Verify that state transitions are atomic.
7. Verify that actions are context free.
8. Build state transition table.

Rules For Constructing State Models – Individual Classes

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

24

1. A given state machine executes only one action at a time.
2. Multiple state machines can be simultaneously active. (for different

objects or different instances of the same object)
3. An action takes time to execute.
4. Actions are atomic.
5. Multiple events can be outstanding for a given instance of a state

model. Events are never LOST.
6. Events are consumed by the execution of the receiving action.
7. At the end of the execution of the action associated with the

acceptance of an event, the state model is in the new state.
8. Generated events are instantaneously available.
9. A state machine always accepts pending events as quickly as

possible.
10. Events from a given source are received in order as generated.
11. Event receipt from multiple sources is non-deterministic.

A Possible Set of Consistency Rules For State Models

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

25

Competitive Relationships

Consider a service and commission management system
for an upscale Women’s Ware Store. The customers come into
the store and wait for a clerk to show them merchandise. There
are typically only a few clerks and at some times of day there are
more customers than clerks.

This is an example of a competition for resources. It is
representative of a commonly occurring circumstance. The
competition for resources requires a special type of state machine
which has access to a set of data spanning multiple classes – an
assigner state machine.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

26

State Models for Associative Objects

1. Customer - CS
*CustomerID
(Attributes)

3. Service S
*CustomerID
*ClerkID

is
serving

is being
served

by

2. Clerk - CL
* ClerkID
(Attributes)

0..*

1..1

A

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

27

Problems: 1. State models execute for instances of
objects

but
a service object may not be created until
both customer and clerk are chosen.
2. Assume there are more clerks than
customers. Multiple clerks may descend
upon a single customer and a fight may
occur.

Solution: Create state machine of special properties to
queue and match events as well as manage
service object instances – class-based state
machine assigner state machines.

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

28

State model
for fashion store

1. waiting for idle
clerk

2. being served

3. done

1. idle

2. serving a
customer

3. done service

CS2: clerk assigned

CS3: service complete

CUSTOMER CLERK

CS2: clerk assigned

CS3: sale complete

(Permanent Pool of Clerks)CS1: Customer Arrives

generate CS4:Customer leaves
delete customer instance

generate SA-2: Idle Clerk

delete service instance
generate CL1: clerk to idle

create customer
instance
generate SA-1:
CS-Waiting

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

29

1. waiting for customer

2. waiting for idle clerk

3. assigning clerk to customer

if "customer waiting"
generate SA-1

if "clerk idle"instance
exists then generate SA-2

SA-1
customer
waiting

SA-2
clerk
available

SA-3: assignment
executed

select customer
select clerk
create instance of service
generate SA-3
generate CS-2
generate CL-2

Class State Model for
Associative Class
Service – Assigner
State Model

What is knowledge
assumed to be available
to the assigner model in
this instance?

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

30

Parking Garage Arm Motor Controller

There is a sensor controlled parking garage arm which controls
admission to a parking garage. Its rest position is down. When a
car arrives and the ticket button is pressed the arm rises to allow the
car into the garage. When the car passes through the gate the
driver must push a button on the garage side of the gate to make
the arm descend. The motions of the arm take a finite duration to
execute.

Garage Arm
* Arm ID
. status

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

31

States and Events for Garage Arm Motor

States - down,raising,up, lowering

Events - turn on motor to raise arm (GA1)
turn off motor after raising arm (GA4)
turn on motor to lower arm (GA2)
turn off motor after lowering arm (GA3)

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

32

1. Up

2. lowering

3. Down

4. raising

GA4: Arm arrives
at full up

GA2: Lower arm button
pushed

GA3: Arm arrives at full
downGA1: raise arm

button pushed

Railroad Crossing Access Arm Example

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

33

GA1 GA2 GA3 GA4

1. lowering turn motor off

2. lowering down turn motor on

3. down raising in down mode

event

up

4. raising

up

turn motor on in
up mode

action

State Transition Table

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

34

GA1 GA2 GA3 GA4 action

1. lowering turn motor off

2. lowering down turn motor on

3. down raising turn motor off

event

up

4. raising up turn motor on

State Transition Table

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

35

event

1. up

4. raising

GA1
up button
pushed

GA2
down
button
pushed

GA4
arm
arrives
at full up action

event
ignored

lowering can't
happen

can't
happen

turn motor off

2. lowering ? event
ignored

down can't
happen

turn motor
on for up

3. down raising event
ignored

can't
happen

can't
happen

turn motor off

event
ignored

? can't
happen

up turn motor
on for up

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

36

GA1 GA2 GA3 GA4 action

1. up

2. lowering raising?

3. down

event

4. raising lowering?

GA1
up button
pushed

GA2
down
button
pushed

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

37

GA4 GA2

GA1
GA3

GA2

GA1

1. up

4. raising 2. lowering

3. down

turn motor off

turn motor
on for up

turn motor
on for down

turn motor off

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

38

FAULT TOLERANCE
Up to 80% of system code may be error analysis and recovery

OOA provides a means for integration of error analysis and fault tolerance directly in system
design.

Information Model

• External attribute domains to include fault conditions and recognizable errors
• Define consistency relations among attribute values

State Models

• Define events resulting from faults
• Define state models to support diagnosis
• Extend state models to include fault states
• Design actions to diagnose for errors on initiation of action
• Integrate time-out behavior into state model

9/8/2008 CS371S - Fall 2008 Behavior and
State Machines

39

Garage Arm Example
1. up

4. raising 2. lowering

3. down

5. broken

GA4 GA2
- turn off motor
- generate TIM2:
(reset timer)

- turn on motor
for up

- generate TIM1
(TID, 1 min,

GA10, arm ID)

- turn on motor
in down
direction

- generate TIM1
(TID, 1 min,
GA11, arm ID)

GA2

GA1

GA1

GA3

GA10: Timer expires GA11: Timer expires
- sound alarm

Note: Extension of attribute domain requires redo of all parts of OOA

	Behaviors as State Machines
	STATE MODELS
	Approach
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	Use Cases – Spreadsheet or Table
	User-Environment with actions
	Rules For Constructing State Models – Individual Classes
	FAULT TOLERANCE
	Garage Arm Example

