
1/23/2003 Parallel Programming 1

Formulation of Parallel Computations

Four Steps in Developing a Parallel Program

1. Choose a Paradigm or Strategy
How to organize

2. Choose a Programming Model
How to structure – Communication Model

3. Choose a Programming System
How to represent

4. Choose an Execution Model
How to execute

Carriero and Gelernter cover the first three with the
coverage of the third topic restricted to Linda.

1/23/2003 Parallel Programming 2

Formulation of Parallel Computations

Carriero and Gelenter Approach

1. Choose a concept class or paradigm
result,agenda or specialist

2. Write a simple program in that paradigm.
(They use only Linda.)

3. Refine the program to make it efficient.
(Transform among paradigms.)

1. Formulate the problem in an appropriate paradigm
2. Choose a programming method
3. Choose a programming language
4. Write a program
5. Measure the programs behavior
6. Transform to obtain efficient program.

1/23/2003 Parallel Programming 3

Formulation of Parallel Computations

Paradigms:

Result - Define the data structure which will hold the result,
determine a computation which will generate the result
from the initial state and compute in parallel

Data Parallel - Partition the initial state data structure) and
define as sequence of functions which generate the final
state from the initial state in an SPMD mode.

Agenda of Activities - Create a list of tasks and invoke generic
workers to execute tasks from the list

Ensemble of Specialists - Create an ordered list of defined tasks
and execute in sequence by specialist units of
computations – Pipeline Parallelism

1/23/2003 Parallel Programming 4

Formulation of Parallel Computations

Result Model of Parallel Execution
Define the data structure which is the desired

result of the computation and design
parallel processes to construct the
elements of the data structure in parallel.

Example: Compute the sum of two vectors, A,B
construct a n-element vector
where the ith element is the sum
of the ith elements of A and B. Write a program
which sums two elements of a vector, create a
copy of this program for each element and
apply in parallel.

Applies where there is a well-defined result.
But not to control programs which don’t terminate.
(Contrast to Data Parallelism)

1/23/2003 Parallel Programming 5

Formulation of Parallel Computations

Agenda Model of Parallelism
The two elements are: a list of tasks to be performed
and a set of workers who can perform some task.
Example - Database search for record with minimum

value for some variable.
1. Put all records in a “bag.”
2. Select a coordinator
3. Direct each worker to take records from
the bag, examine them and send the smallest
found to the coordinator

Broadly applicable, may use family of workers, may be
communication limited. Dependence relations may
cause complexity.

1/23/2003 Parallel Programming 6

Formulation of Parallel Computations

Specialist Model of Parallelism
The computation is defined by a logical network of
tasks. Each task may require a specialized worker.
Examples: Physical System

Pipelines
N-Body problem partitioned by

spacial coordinates.
Truck Routing

Process for routing within a state.
Generate route by passing control

of a given route to
the processes for each
new state encountered
in the route.

1/23/2003 Parallel Programming 7

Formulation of Parallel Computations

Data Parallel Model of Parallelism
1. Partition initial data structure. D=>{di}
2. Define f1, f2 …..
3. Execute function each fj in sequence on each di

Special form of Agenda Parallelism?
or

Special form of Result Parallelism

Speculative Parallelism
“Or” parallelism
Commonly used to formulate search problems
Breadth first search of trees for specific information.

1/23/2003 Parallel Programming 8

Formulation of Parallel Computations

Programming Methods

Message Passing - Explicit transfer of information
across name space boundaries. Processes
persist.

Live Data Structures - Associate processes with
segments of a data structure. Processes are
spawned, execute to create a result for their
local transformation of the data structure and
die leaving behind a transformed value.

Distributed Data Structures - Processes communicate
through shared data objects. Processes are
persistent and process multiple units of data.
Sharing may involve communication.

1/23/2003 Parallel Programming 9

Formulation of Parallel Computations

Structure of parallel program is determined by
number of processes.

Send
Receive

Figure 1: Message Passing

1/23/2003 Parallel Programming 10

Formulation of Parallel Computations

Read

Create a process for each
element of the initial data
structure. Structure is
determined by the data
structure. Communication is
among instances of data
structures.

Figure 2. Live Data Structure

1/23/2003 Parallel Programming 11

Formulation of Parallel Computations

Write
Read

Processes

Figure 3. Distributed Data Structures

Each UC communicates with the other UCs by reading and writing
shared instances of data structures.

1/23/2003 Parallel Programming 12

Formulation of Parallel Computations

Mappings from Paradigms to Programming Models

Specialist => Message Passing
Create processes for each task.
Network Routing - Pass off trucks
from process to process

Result => Live Data Structures
Vector Sum - Associate a process
with each element of the Sum Vector

Agenda => Distributed Data Structures
Data Base Search - Common data
structure is “bag” of tasks.

1/23/2003 Parallel Programming 13

Formulation of Parallel Computations

N-Body Problem as Example

Result Parallelism - Live Data Structure

Result - A matrix M(i,j) such that M(i,j) is the
position of the ith particle after the jth step
of particle motion with column 0 of M
containing the initial positions.

Define position(i,j,M(i,j-1)) to be a function which
generates M(i,j) from M(i,j-1).

Invoke position(i,j,M(i,j-1) on each element of row i
at each time step.

Parallelism of degree N where N is number of particles.

1/23/2003 Parallel Programming 14

Formulation of Parallel Computations

Each hexagon holds a
particle and a copy of
M(i,j). Blue indicates
the computation is
complete, green that
the computation is
ongoing and red that
the computation is
waiting for the next
column to the left to be
completed.
Position(i,j,M(i,j))
fetches the entries in
the left column or
accesses them.

Step 1 Step 2 Step 3

1/23/2003 Parallel Programming 15

Formulation of Parallel Computations

N-Body Problem as Example

Agenda Parallelism - Distributed Data Structure - “Bag of Tasks”
1. Create a task description for each particle which gives its

current state.
2. Create k processes which execute the function

“compute next position” and leave a new task
description for the next time step in the “bag.”

3. The k processes will compute all the new positions
and leave the task descriptions for advancing
from the new position in the bag.

4. The jth time step can begin begin when all the particles
have been advanced to their position in (j-1)st
time step.

Note: Each worker must have access to positions of
all particles at last time step.

1/23/2003 Parallel Programming 16

Formulation of Parallel Computations

N-Body Problem as Example

Specialist Parallelism - Message Passing among Independent
Processes

1. Create a process for advancing the position of
each individual particle.

2. After each time step each process exchanges location
information with all other processes.

3. Each process computes the position of its
particle for the next time step and initiates
data exchange in preparation for the next time
step.

Note - Each process must still have position of each
charge at the last completed time step.

1/23/2003 Parallel Programming 17

Formulation of Parallel Computations

LINDA

All communication and synchronization is through "tuple space"

Tuple = ordered set of typed values where type name is
placeholder for all values of a given type.

P1, P2 …. are processes.
Analogy - Synchronized operations on a relational database

TUPLE SPACE
P4

P3

P2

P1

1/23/2003 Parallel Programming 18

Formulation of Parallel Computations

Processes execute operations which act on specified tuples in tuple space

Tuple Space Operations - in, inp, out, rd, rdp, eval.
Tuple space operations are defined as procedures invoked in c programs

out(5, "peter") - outputs a tuple (5, "peter") from a process to the tuple
space

out(6, 7, 8) - places (6, 7, 8) in tuple space

in(5, "peter") - removes this tuple from the tuple space and instantiates
it in the name space of the executing process. If no
such tuple exists in the TS then the executing process
BLOCKS.

inp(5, "peter") - = in(5, "peter") except that th executing the process will not
block if a matching tuple is not present

1/23/2003 Parallel Programming 19

Formulation of Parallel Computations

in(i : integer, 7, 8) - removes a tuple matching the pattern
(*, 7, 8) where "*" is any integer

example : let TS contain (3, 7, 8), (2, 7, 8) and (9, 7, 8).
in(i : integer, 7, 8) - non-deterministically return one of those

three tuples
"OR" firing rule
i : integer is a "formal", a typed placeholder
7, 8 are actuals, objects with a value

out(i : integer) - puts in tuple space a tuple that will match in(j) requests
for any value of j, in(6) or in(7).

In(“a string”,?f, ?I, “another string”) - rremoves from tuple space a tuple
with first element “a string”, second and third elements
with types matching f and I and a fourth element
“another string.”

1/23/2003 Parallel Programming 20

Formulation of Parallel Computations

rd(i : integer, "peter") - reads a matching tuple from TS but does not
remove the tuple from tuple space. rd blocks if no
match is found

rdp() - non-blocking version of rd.

eval("worker", worker(i)) - inserts in TS a tuple which has the values
obtained by evaluating its arguments. Here
worker(i) is a procedure which must be
executed to create a result value for the tuple.

eval(“e”, 7, exp(7)) - Creates a process which evaluates to a tuple with the
values (e,7,exp(7)) and leaves it in tuple space.

rd(“e”,7,?value) - block until exp(7) is evaluated and the tuple created.

eval(“Q”, f(x,y)) - the values of f, x and y have the same values bound to
them as in the invoking context..

1/23/2003 Parallel Programming 21

Formulation of Parallel Computations

Implementation of Useful Objects in Linda

Semaphores

V = out(“sem”), P = in(“sem”)

Bags

out(“task”, TaskDescription), in(“task”, ?NewTask)

Parallel Loop

for (<loop control>)

eval(“this loop”, somefunction()); somefunction() => value

for (<loop control>)

in(“this loop”, value);

Barrier

out(“barrier”, n);

in(“barrier”, ?val); out(“barrier”,val-1); rd(“barrier”, 0);

1/23/2003 Parallel Programming 22

Formulation of Parallel Computations

Bag of Indistinguishable Items

V(sem) = out(“sem”)
P(sem) = in(“sem”)

Out(“task”, TaskDescription)
in(“task”,? NewTask)

Name Accessed Structures
Barriers

out(barrier-37, n)

in(“barrier-37”, ? val)
out(“barrier-37”, val -1)
rd(“barrier-37”, 0)

1/23/2003 Parallel Programming 23

Formulation of Parallel Computations

Implementation of Useful Objects in Linda - Continued

Streams - dynamic list of values

View of Stream as it is built - Stream - head, tail, body
- head is index of “next” element
- tail is index of last position
- body is each element of list

View of Stream which is just read does not require head and tail entries.

1/23/2003 Parallel Programming 24

Formulation of Parallel Computations

Streams
in-streams, read-streams

read-stream - tuples with name, index and value items)
(“stream”, 1, val1)
(“stream” , 2, val2)
(“stream”, 3, val3)

in/out-stream - add head and tail tuples
(“stream”, “tail”, 14)
(“stream, “head” , 14)

in(“stream”, “tail” ? index)
out(“stream”, “tail”, index + 1)
out(“stream”, index, NewItem)

in(stream”, “head”, ? index)
out(“stream”, “head” index+1)
in(“stream”, index, ? element)

1/23/2003 Parallel Programming 25

Formulation of Parallel Computations

Implementation of Useful Objects in Linda - Continued

“Live” Streams - streams growing in tuple space.

for (i = 0,i < n)

eval(“stream”, i, f(i));

for (i = 0, i < n)

rd(“stream”, i, ?value);

1/23/2003 Parallel Programming 26

Formulation of Parallel Computations

Model of parallel computation
Units of computation - processes and argument evaluations
Name Model - Shared name at top category of taxonomy
Name space - local + tuple space
Relationships - shared name dependencies

- m<-->n communication topology

Simulation of partitioned name space or message model

P1 : out("P2" message) implements message
P2 : in("P2" message) communication between P1 and P2

P1 : out(i : integer, message)
P2 : rd(2, message) message from P1 to all
P3 : rd(3, message) processes (assuming processes use integers as

names)

1/23/2003 Parallel Programming 27

Formulation of Parallel Computations

To use the sieve of Eratosthenes to find the prime numbers up to 100, make a chart of the
first one hundred whole numbers (1-100):

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Cross out 1, because it is not prime.
Circle 2, because it is the smallest positive even prime. Now cross out every
multiple of 2; in other words, cross out every second number.
Circle 3, the next prime. Then cross out all of the multiples of 3; in other
words, every third number. Some, like 6, may have already been crossed out
because they are multiples of 2.
Circle the next open number, 5. Now cross out all of the multiples of 5, or
every 5th number.

Continue doing this until all the numbers through 100 have either been circled or crossed
out. You have just circled all the prime numbers from 1 to 100!

1/23/2003 Parallel Programming 28

Formulation of Parallel Computations

Prime Finder Example Programs

Result Model - Live Data Structure Program
Many processes - elegant but not efficient

Agenda Model - Shared Data Structure Program
Ugly but efficient

Specialist Model - Message Passing Program with Streams.
Simple but not efficient.

1/23/2003 Parallel Programming 29

Formulation of Parallel Computations

Structure of Result Parallel Sieve - Live Data Structure Approach

Main Program
Create a tuple with a worker to determine the primeness of

each integer in a range of integers .
Wait for all workers to complete
Print out list of integers

Worker Program for k
read in primes for all numbers up to Sqrt(k)
Check primeness of k for all primes up to Sqrt(k).
Leave tuple with true or false for primeness of k.

Parallelism
n processes where n is the range of integers.
Amount of parallelism - about nlog(n)

1/23/2003 Parallel Programming 30

Formulation of Parallel Computations

#define LIMIT 1000
real main()
{ {Int count = 0, i, is prime(), ok;
for(i = 2; i <= LIMIT; ++i) eval("primes", i, is_prime(i));}
for(i = 2; i <= LIMIT; ++i) {

rd("primes", i, ? ok);
if (ok) printf(''%d.\n'', count);}

}

is_prime(me)
int me;

{ int i, limit, ok;
double sqrt();
limit = sqrt((double) me) + 1;
for (i = 2; i < limit; ++i) {

rd("primes", i, ? ok);
if (ok && (me%i == 0)) return 0; }

return 1;}

1/23/2003 Parallel Programming 31

Formulation of Parallel Computations

Structure of Agenda Parallel Program - Message Passing - Master/Workers

Master Program
Create p workers
initialize data structures
Create first task of finding primes among the first

subrange of the range of integers to be sieved.
Build “Distributed Table’ of primes found.
Print count of primes found.

Worker Program
Read in task specifications for range of integers to be

sieved.
Output task specification for the next subrange of integers

to be sieved.
Read in list of primes found by predecessors.
Determine primeness of each integer in assigned subrange

by moding with all previously found primes.
On completion send new primes found in subrange to master

for addition to list of primes found.

1/23/2003 Parallel Programming 32

Formulation of Parallel Computations

Parallelism
Number of processes - p: determined by number of processors available
Amount of Parallelism - roughly p log(p).

1/23/2003 Parallel Programming 33

Formulation of Parallel Computations

#include “linda.h”

#define GRAIN 2000
#define LIMIT 1000000
#define NUM_INIT_PRIME 15

long primes[LIMIT/10+1] =
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};

long p2[LIMIT/10+1] =
{4,9,25,49,121,169,289,361,529,841,961,1369,1681,

1849,2209} ;

lmain(argc, argv)
int argc ;
char *argv [] ;

{
int eot, first_num, i, num, num_primes, num_workers ;
long new_primes[GRAIN], np2 ;

num_workers = atoi(argc[1]) ;
for (i = 0; i < num_workers ; ++1)

eval(“worker”, worker()) ;

num_primes = NUM_INIT_PRIME ;
first_num = primes[num_primes-1] + 2 ;

out(“next task”, first_num) ;

eot = 0 ; /* becomes 1 at “end of table” – i.e., table
complete */

for (num = first_num; num < LIMIT ; num += GRAIN) {
in(“result”, num, ? new_primes; size) ;

Prime Finder (master):
Agenda Parallelism

1/23/2003 Parallel Programming 34

Formulation of Parallel Computations

for (i = 0, i < size, ++1, ++num_primes) {
primes[num_primes] = new_primes[i] ;

if (!eot) {
np2 = new_primes[i]*new_primes[i] ;
if (np2) > LIMIT) {

eot = 1 ;
np2 = -1 ;

}
out(“primes”, num_primes,new_primes[i],np2);
}

}
}
/*“ ? int” means “match any int; throw out the value”*/
for (i = 0, i < num_workers; ::i) in(“worker”, 7 int) ;

printf(“%d: %d\n”, num_primes,primes[num_primes-1]);
}

Prime Finder (master): Agenda Parallelism
(Continued)

1/23/2003 Parallel Programming 35

Formulation of Parallel Computations

Prime Finder (worker):
Agenda Parallelism

worker ()
{

long count, eot, i, limit, num, num_primes, ok, start ;
long my_primes[GRAIN] ;

num_primes = NUM_INIT_PRIME ;

eot = 0 ;
while(1) {

in(“next task”, ? num) ;
if (num == -1) {

out(“next task”, -1) ;
return ;

}
limit = num + GRAIN ;
out(“next task”, (limit > LIMIT ? –1 : limit) ;
if (limit < LIMIT) limit = LIMIT ;

start = num ;
for (count = 0, num < limit ; num += 2) {

while (!eot && num > p2[num_primes-1]) {
rd (“primes”, num_primes, ? primes

[num_primes] , ? p2[num_primes]) ;
if (p2[num_primes] < 0)

eot = 1 ;
else

++num_primes ;
}
for (i = 1, ok = 1 ; i < num_primes ; ++i) {

if (!(num%primes[i])) {
ok = 0 ;
break ;

}
if (num < p2[i] break ;

1/23/2003 Parallel Programming 36

Formulation of Parallel Computations

}
if (ok) {

my_primes[count] = num ;
++count ;

}
}
/* Send the control process any primes found. */
out(“result”, start, my_primes ; count) ;

}
}

Prime Finder (worker): Agenda Parallelism
(Continued)

1/23/2003 Parallel Programming 37

Formulation of Parallel Computations

Specialist Parallelism - Dynamic Network of Processes
1. Set up sequence of processes which determine if the entries in

an increasing stream of integers are prime relative
to a given prime..

2. Each time a prime is found create a new process to
continue sieving with the prime which discovered the
new prime.

3. Continue the original process sieve with the newly discovered
prime.

Parallelism
Creates as many processes as primes found.

1/23/2003 Parallel Programming 38

Formulation of Parallel Computations

real main()
{

eval("source", source());
eval("sink", sink());}

source()
{ int i, out index=0;
for (i = 5; i < LIMIT; i += 2) out("seg", 3, out index++, i);
out("seg", 3, out_index, 0);}

sink()
{ int in index=0, num, pipe seg(), prime=3, prime count=2;
while(l) {

in("seg", prime, in_index++, ? num);
if (!num) break;
if (num % prime) {
++prime count-
if (num*num < LIMIT) {
eval("pipe seg", pipe seg(prime, num, in_index));
prime = num;
in_index = 0;}}}

1/23/2003 Parallel Programming 39

Formulation of Parallel Computations

printf("count: %d.\n", prime count)

pipe seg(prime, next, in index)
{
int num, out mdex=0;
while(l) {

in("seg", prime, in index++, ? num);
if (!num) break;
if (num % prime) out("seg", next, out_index++, num);
}

out("seg", next, out index, num);
}

1/23/2003 Parallel Programming 40

Formulation of Parallel Computations

Matrix Multiplication

long dim;
long workers;
lmain(argc, argv)
int argc;
char **argv;{

long col[MAX], row[MAX];
long index, true_result;
long result[MAX], row_index, col_index;
LINDA_BLOCK COL, RESULT, ROW;
if (argc != 3) {

printf("Usage; %s <workers> <dim> \ n", *argv);
exit(1);}

/* LINDA_TRACE_ON;
LINDA_LIST_ON; */
workers = atol(*++argv);
dim = atol(*++argv);
printf("matrix -- workers: %d, dim: %d.\ n", workers,

dim);
start_timer();

1/23/2003 Parallel Programming 41

Formulation of Parallel Computations

Matrix Multiplication
(Continued)

/*start workers */
for (index = 0; index < workers; ++index) {

eval("worker", worker());}
COL.data = col;
COL.size = dim;
ROW.data = row;
ROW.size = dim;
for (index = 0; index < dim; ++index) {

row[index] = 3;
col[index] = 5;}
for (index = 0; index < dim; ++index) {
out("row", index, ROW);
out("col", index, COL);}

timer_split("done setting up");
out("task", 0);

1/23/2003 Parallel Programming 42

Formulation of Parallel Computations

RESULT.data = result;
true_result = 15 * dim;
for (index = 0; index < dim; ++index) {

in("prod", ? &row_index, ? &RESULT);
for (col_index = 0; col_index < dim; ++col_index) {

if (result[col_index] != true_result) {
printf("got result(%ld, %ld) : %ld. \ n",

row_index, col_index, result);}}}
timer_split("all done");
print_times();

for(index=0, index<workers; ++index) in("worker, ? int *);}
worker() {
long col_index, dot, index, next_index, row_index
long *cp, col[MAX], result[MAX], row[MAX], *rp;
LINDA_BLOCK COL, RESULT, ROW;
COL.data = col;
RESULT.data = result;
RESULT.size = dim;
ROW.data = row;

Matrix Multiplication
(Continued)

1/23/2003 Parallel Programming 43

Formulation of Parallel Computations

while(1) {
in("task", ? &row_index);
if (row_index < 0) {

out("task", -1);
return;}

next_index = row_index + 1;
if (next_index < dim)

out("task", next_index);
else

out("task", -1);
rd("row", row_index, ? &ROW);
for (col_index = 0; col_index < dim; ++col_index) {

rd("col", col_index, ? &COL);
dot = 0;
rp = row;
cp = col;
for (index = 0; index < dim; ++index, ++rp, ++cp) {

dot += *rp * *cp;}
result[col_index] = dot;}

out("prod", row_index, RESULT);}}

Matrix Multiplication
(Continued)

1/23/2003 Parallel Programming 44

Formulation of Parallel Computations

Distributed
Data
Structures

Live
Data
Structures

Message
Passing

Abstraction

Specialization

Implicit and Partitioning

Abstraction - Detach from
context.

Specialization - Bind process
to object.

Abstraction

Explicit and Clumping

	LINDA
	Model of parallel computation
	Matrix Multiplication
	Matrix Multiplication(Continued)

