
10/11/2001 CS392c - Performance Of Parallel
Programs

1

Performance of Parallel Programs

Lecture Coverage

Performance Issues

Computation Time

Communication Time

Wait Time

Performance Measures

Speed-up

Scalability

Isoefficiency

Models and Formulas

Amdahl’s Law

Contention Free
Models

Operation counts and
Asymptotic Analysis

10/11/2001 CS392c - Performance Of Parallel
Programs

2

Performance of Parallel Programs

Amdahl's Law
Amdahl's Law states that potential program speedup is defined by the

fraction of code (P) which can be parallelized:
1

speedup = --------
1 - P

If none of the code can be parallelized, P = 0 and the speedup = 1 (no
speedup).

If all of the code can be parallelized, P = 1 and the maximum speedup is
infinite (in theory).

If 50% of the code can be parallelized, maximum speedup is 2, meaning
the code will run twice as fast. (Assuming an infinite number of processors
and no communication or wait time.)

10/11/2001 CS392c - Performance Of Parallel
Programs

3

Performance of Parallel Programs

Amdahl’s Law - Continued
Introducing the number of processors performing the parallel fraction of
work, N, the relationship can be modeled by:

1
speedup = ------------

P/N + S
where P = parallel fraction, N = number of processors and S = serial fraction.

There are limits to the scalability of parallelism. For example, at P = .50,
0.90 and 0.99 (50%, 90% and 99% of the code is parallelizable):

speedup

N P = .50 P = .90 P = .99
----- ------- ------- -------

10 1.82 5.26 9.17
100 1.98 9.17 50.25
1000 1.99 9.91 90.99
10000 1.99 9.91 99.02

10/11/2001 CS392c - Performance Of Parallel
Programs

4

Performance of Parallel Programs

10/11/2001 CS392c - Performance Of Parallel
Programs

5

Performance of Parallel Programs

Simple Analytic Models - Comp+Comm+Idle

Execution behavior of a program

10/11/2001 CS392c - Performance Of Parallel
Programs

6

Performance of Parallel Programs

Effect of Communication and Idle Time

T = T (N,P,U,-----)
Tj = Tj

comp + Tj
comm + Tj

idle
If all processors take the same length of time to complete
T = (Tj

comp+ Tj
comm + Tj

idle)
But if all processors don’t take the same time then
T = max (Tj

comp + Tj
comm + Tj

idle)
= max (Tj)

i=1

P

∑
i=1

P

∑
i=1

P

∑

10/11/2001 CS392c - Performance Of Parallel
Programs

7

Performance of Parallel Programs

Parallel efficiency in partitioning of a 2-D grid.

Efficiency as a function of
communication cost.

1-D partitioning of a 2-D
grid

a) Partition among two
processors. E decreases
with respect to a)

b) Partition 128 points
among four processors. E
is the same as for a)

10/11/2001 CS392c - Performance Of Parallel
Programs

8

Performance of Parallel Programs

Efficiency and Speed-up

Let P be the number of processors.

Erelative = T1 / (P Tp)

Srelative = P * E1 = T1 / Tp

Eabsolute = T1 (best sequential) / (P Tp)

10/11/2001 CS392c - Performance Of Parallel
Programs

9

Performance of Parallel Programs

Scalability Analysis

What will be the speed-up or efficiency on P processors for
N = M?

S = f(N,P), E = L(N,P)

What size problem can I reasonably solve on P processors?
T g(N,P)∝

E = T1 / (Tcomp+ Tcomm + Tidle)

For constant efficiency then T1 must increase at
the same rate as the parallel execution time.

10/11/2001 CS392c - Performance Of Parallel
Programs

10

Performance of Parallel Programs

Scalability Analysis

Isoefficiency metric - Establish a relationship between the amount
of work, W, to be accomplished and the number of
processors,P, such that E remains constant as P increases
Let

Tcomm + Tidle = Toverhead
Toverhead = T - Tcomm - Tidle = TO
TO = TO (W,P) , Tcomp = Tcomp(W)
W = W(problem size)
For simple matrix multiply,

problem size ~ N3

10/11/2001 CS392c - Performance Of Parallel
Programs

11

Performance of Parallel Programs

Isoefficiency metric

TP = (W + To (W, P))/P, W = T1

S = W/Tp = WP/(W + To)

E = S/P = W/(W + To(W,P))
To(W,P) is an increasing function of P so,
if W is constant and P increases then E decreases.
E will remain constant if To(W,P)/W is constant
To obtain constant E, W must increase as P is
increased.

or
W = K(N)* To(W,P), K = isoefficiency function

10/11/2001 CS392c - Performance Of Parallel
Programs

12

Performance of Parallel Programs

Hypercube Interconnection Networks for 1,2,3,4 dimensions.

10/11/2001 CS392c - Performance Of Parallel
Programs

13

Performance of Parallel Programs

Adding Numbers on a Hypercube (4 Processors)

3
2
1
0

7
6
5
4

11
10
9
8

15
14
13
12 4

7∑ 8

11∑ 12

15∑0

3∑
0 1 2 3 0 1 2 3

(a) (b)

8

11∑0

7∑ 8

15∑
0 1 2 3 0 1 2 3

10/11/2001 CS392c - Performance Of Parallel
Programs

14

Performance of Parallel Programs

Adding Numbers on a Hypercube

Let an add take 1 unit of time
Let a unit communication take 1 unit of time
Adding n/p numbers => n/p + 1
T1 ~ W ~ n – 1
TO ~ log p
Tp ~ n/p + log p
S ~ n/(n/p + log p) = np/(n + p log p)
E ~ S/p = n/(n + p log p)
E ~ W/(W+p log p)
To make E constant when p is increased to p’,

W ~ n * p’ log p’/ p log p
K = p’ log p’/ p log p

10/11/2001 CS392c - Performance Of Parallel
Programs

15

Performance of Parallel Programs

Scalability of Adding Numbers on a Hypercube

E = .8 for n = 64, p = 4
Then for E = .8 for 8 processors
W = n*8*3/4*2 = n * 3 = 192

E = .8 for n = 192, p = 8

