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Abstract. Programming massively-parallel machine is a daunting task
for any human programmer and parallelization may even be impossible

for any compiler. Instead, the functional programming paradigm may

prove to be an ideal solution by providing an implicitly parallel interface
to the programmer. We describe here the Sisal project (Stream and

Iteration in a Single Assignment Language) and its goal to provide a

general-purpose user interface for a wide range of parallel processing
platforms.

1 Introduction

The history of computing has shown shifts from explicit to implicit program-
ming. In the early days, computers were programmed in assembly language,
mostly with the purpose of utilizing the available memory space as e�ectively as
possible. This came at the cost of obscure, machine-dependent, hard to main-
tain programs, which were designed with high programming e�ort. Fortran
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was introduced to make programming more implicit, portable and less machine-
dependent. With the advent of massively parallel computers and their promise
of hundreds of giga
ops, we have seen a return to the explicit programming
paradigm. Using for example C with explicit message passing library routines
as \machine language," people attempt to utilize the available processing power
to the largest extent, again at the cost of high programming e�ort, machine-
dependent, and hard to maintain code. A compiler for an implicitly parallel
programming language alleviates the programmer from the task of partitioning
program and data over the massively parallel machine.

It is our view that explicit parallel programming is a transition stage in the
evolution of parallel computing and that implicit parallel programming languages
will eventually become the norm as did high-level languages in the sequential
paradigm. This will result in a tremendous improvement in programming qual-

ity in terms of programming e�ort, readability, portability, extendability and
maintainability of parallel code. Another consequence will be the accessibility
of parallel programming to a wider public that would make use of a wide spec-
trum of parallel computers: from a few processors on a chip to several thousand
processor-machines.

Functional programming [6] is an alternate programming paradigm which is
entirely di�erent from the conventional model: a functional program can be re-
cursively de�ned as a composition of functions where each function can itself be
another composition of functions or a primitive operator (such as arithmetic op-
erators, etc.). The programmer need not be concerned with explicit speci�cation
of parallel processes since independent functions are activated by the predeces-
sor functions and the data dependencies of the program. This also means that
control can be distributed. Further, no central memory system is inherent to the
model since data is not \written in" by any instruction but is \`passed' from"
one function to the next.

Sisal (Stream and Iteration in a Single Assignment Language) [22] is such a
functional language which was originally designed by collaborating teams from
the Lawrence Livermore National Laboratory, Colorado State University, the
University of Manchester and Digital Equipment Corporation. The goal of the
project was to design a general-purpose implicitly parallel language for a wide
range of parallel platforms.

The goal of this paper is to describe the last phases of this project as we are
currently undertaking them. In section 2, a short tutorial will present the basic
principles of Sisal. An early compiler implementation for shared memory systems
is described in section 3. Sisal 90 and its foreign language interface is introduced
in section 4. We turn our attention to Distributed Memory implementations in
section 5, while section 6 introduces implementation of multithreading principles.
Section 7 concludes.



2 The Sisal language: a short tutorial

Sisal is a functional language that o�ers automatic exploitation and management
of parallelism as a result of its functional semantics. In Sisal, and all functional
languages, user-de�ned names are \identi�ers" rather than variables, and they
refer to values rather than memory locations. The values produced and used
in a Sisal program are all dynamic entities, and their identi�ers are de�ned, or
bound to them, only for the duration of their existence in an execution. This is
the dynamic of the data 
ow graph, in which graph nodes are operations, and
values are carried on the arcs connecting the nodes. The extent of the existence
of a value is the set of arcs on which it travels between the point of its de�nition
and the point of its �nal consumption. The values that are de�ned by the graph
arcs may or may not have names assigned to them within a program.

All Sisal expressions and higher-level syntactic elements evaluate to and re-
turn values based solely on the values bound to their formal arguments and
constituent identi�ers. This eliminates any possibility of side e�ects, and allows
much richer analyses of program by the compiler than is typically the case for
imperative languages.

To best illustrate these points, consider the following brief code fragment.
It is written in Sisal 1.2, the language currently accepted by the Optimizing
Sisal Compiler. The Sisal language is undergoing expansion and re�nement, as
discussed in other sections, but the syntax of version 1.2 will su�ce for this
example.

type OneDim = array [ real ];

type TwoDim = array [ OneDim ];

function generate( n : integer returns TwoDim, TwoDim )

for i in 1, n cross j in 1, n

t1 := real(i) * real(j);

t2 := real(i) / real(j)

returns array of t1

array of t2

end for

end function % generate

The �rst two statements de�ne type names for arrays. Note that no sizes
are provided; all Sisal aggregate data instances are dynamically created, resized,
and de-allocated at runtime. Only the dimensionality and element types are
relevant to the type speci�cations. The header for function \generate" shows
that one integer argument, \n", is expected, and two unnamed values will be re-
turned. The returned values are two dimensional arrays of single precision reals,
but again, only typing and not sizing is speci�ed. Names can be bound to these
returned values at the site of invocation of function generate if the programmer
wishes. An invocation of a function is semantically equivalent to the reproduc-
tion of the function code at that site, with appropriate argument substitution.



This equivalence, called \referential transparency" is a fundamental property of
functional languages, and is responsible for the strengths of the Sisal language.
This strength lies in a simpli�ed analysis process for the compiler. Functions can
run in parallel if no data dependency exists between the functions. Functions
with equivalent inputs will always return equivalent values.

All Sisal expressions, including whole functions and programs, evaluate to
value sets. In the above case, the function evaluates to two arrays, which are the
values of the expression contained in the function de�nition. The for-expression
shown is a loop construct, which is an indicator of potential parallelism to the
Sisal compiler. This loop has an index range de�ned as the cross product of two
simpler ranges. This means that the body of the loop will be instantiated as
many times as there are values in the index range, in this case n*n, and each
body instantiation will be independent, since no data dependencies exist among
them. The set of independent loop bodies can be executed in parallel or not,
based on the compiler's and the runtime system's analyses of their costs, as well
as on options speci�ed by the programmer.

The appearance of the names \t1" and \t2" within the body of the loop
should not be considered a reuse of these names in the sense of the reassignment
of a variable in an imperative program. Instead, the names are used to de�ne
the computation in the loop body, and in fact these names will likely have
no real existence within the executing program. The important point here is
that each instance of the loop body, containing speci�c values for i and j, will
independently compute speci�c instances of the values de�ned as real(i)*real(j)
and real(i)/real(j); then all these separate values will be gathered together into
a pair of arrays and returned. The positions of the values in the result arrays are
determined by the loop's index ranges, as are the overall size and dimensionality
of the returned arrays. In this case, two two-dimensional arrays are returned,
with index ranges from 1 to n in each dimension. The use of loop-temporary
names is optional, and the return-clause above could be rewritten as:

returns array of real(i)*real(j)

array of real(i)/real(j)

with no change in the ultimate results. The loop body, then, would appear to
be empty, but in fact, the language treats the expressions in the array-of clause
as anonymous temporaries.

Further syntactic elements of the Sisal language include let-in statements,
which allow for name de�nition and use; if-statements, which allow conditional
name de�nition; record and union types, which allow for 
exible data aggrega-
tion; streams, which allow for producer-consumer computations; and sequential
loops, which allow true iteration, with speci�ed data dependencies existing be-
tween iterations. I/O in Sisal is performed by passing inputs as arguments to,
and receiving outputs as the results of, the outermost function. The values used
for inputs and returned as outputs obey a syntax called \Fibre", which allows
the demarcation of dynamically sized aggregates.

The Optimizing Sisal Compiler translates source programs into executable



memory images, including the runtime system components required to auto-
matically manage memory, tasking, and I/O. The amount of parallelism to be
exploited by a program can be controlled by user options, and once compiled, a
program can be executed by any number of worker processes, by way of a single
runtime parameter. Similarly, compiler optimization behavior and runtime per-
formance can be observed and controlled by options applied at various points
during compilation and execution.

3 An Early Implementation: The Optimizing Sisal

Compiler

Early implementations of the Sisal language were basic proofs of concept. Var-
ious interpreters have been implemented, like DI[36], TWINE[23], and SSI[24]
but for greatest execution speeds, a compiled code was needed. Sisal was ported
to novel architectures like the Manchester Data
ow Machine [7], but complete
acceptance for the language required porting to newly emerging shared memory
parallel machines then coming to market (HEP[1], Encore, Sequent[27], Cray).

3.1 Update in place and copy elimination

Several key obstacles emerged. The �rst of these came from Sisal's semantic
concept of making \copies" to preserve single assignment and referential trans-
parency. A fragment like

let

A := array[1: 1,2,3];

B := A[2 : 999];

in

A,B

end let

returned [1: 1,2,3], [1: 1,999,3]. The original value of A had to be preserved, so
a copy was made to enable the replacement.

Consider instead swapping two elements of an array. In Sisal, one would
write something like:

C := array[1: 1,2,3,4,5];

% Read as E is identical to C

% Except index 3 has C[4] in it

% Index 4 has C[3] in it

E := C[3: C[4]; 4: C[3] ];

The semantics (not the implementation) of Sisal calls for making a copy of the
array to make the �rst replacement, and making another copy for the second
replacement. A FORTRAN programmerwould never do this, instead they would
write:



ITEMP = IARRAY[3]

IARRAY[3] = IARRAY[4]

IARRAY[4] = ITEMP

This program has no (array) copies and is done in place. Similarly, many 'in-
place' algorithms that are e�cient in space and time have been designed in
imperative languages that would run poorly if all data structures had to be
copied. Clearly there was room for improvement[38]. Consider the original Sisal
swap broken down into individual steps:

C := array[1: 1,2,3,4,5];

T0 := C[3];

T1 := C[4];

D := C[3: T1];

E := D[4: T0];

When the array replacement is done on line 3, the value in \C" is dead. When
the replacement is done, the C value can be thrown away. Instead of making
a copy for D and throwing C away, we can safely use C's container instead.
Similarly, the second replacement on line 4 is the last use of D, so E can use
D's container. This analysis is simpli�ed because of the functional semantics of
Sisal. The Optimizing Sisal Compiler (OSC) makes heavy use of \update-in-
place" and copy elimination analysis to eliminate many unnecessary copies[9].
In its simplest sense, update-in-place migrates reader operations before writers.
Here, the C[3] and C[4] readers were moved before the replacement operations in
order to maximize the chances that C would be a "dead" value for the update.

3.2 Build in place

Other important optimizations had to be developed [30]. For instance, many
functional programs work on pieces of a large structure and then \Glue" the
computed fragments together. For instance:

L := F(0,A[1],A[2]);

R := F(A[N-1],A[N],0);

III := for i in 2,n-1 ...

LIII := array_addl(III,L);

LIIIR := array_addh(LIII,R);

Semantically, this says: 1) Build piece L, 2) Build piece R, 3) Build size n-2
array III, 4) Allocate T1, a size n-1 array, 5) Copy L and III into T1, 5) Allocate
LIIIR, a size n array, 6) Copy LIII and R into LIIIR This seems to require two
allocations and a two large data copies. OSC introduced the idea of \BUFFERS"
and persistent memory to the BACKEND of the compiler { leaving the frontend
unchanged. Using a bu�er system, the same operation proceeds as follows:



Build Buffer LIIIR of size n

Compute L and put in LIIIR[1]

Compute R and put in LIIIR[n]

Compute III in LIIIR[2]...LIIIR[n-1]

This trick can be played even if the left and right pieces are loops. The beauty
of this \Build-in-place" system is that memory can be preallocated and parallel
computations can simply stick values where they belong { even if the original
computation parts were from distant parts of the computations.

3.3 Reference Counting Optimization

We have seen that we can take advantage of an object ending its life just as we
would otherwise need to copy. Reference counts were introduced to help know
when: 1) a value can be updated in place and when 2) a value's memory can
be recycled. Reference counting can be a very expensive operation on sequential
machines { on parallel machines it is much worse!!! Parallel reference counts
must be updated in a critical section. This operation keeps banging on locks
every few operations, swamping the machine. Luckily, programs tend to have
simple patterns of use for aggregate values and OSC can cleverly eliminate[35]
nearly all reference counting in a program through lifetime analysis and operation
merging.

3.4 Vectorization

On vector machines all the speed advantages come from routing array operations
through temporary vector registers. OSC has �ne control of loop placement so
that reader/writer chains can be established. In imperative languages, this gen-
erally requires very careful writing of loops in order to clearly establish vector
relationships between loops. The semantics of Sisal's underlying data
ow repre-
sentation make loops easy to move and so OSC can vectorize extremely well[11].

3.5 Loop Fusion, Double Bu�ering Pointer Swap, and Inversion

On scalar and scalar/parallel machines, loop overhead and memory fetch time
tends to dominate computations. OSC can accommodate these machines by
applying aggressive loop fusion. Fusion can rewrite loop code like

T0 := for i in 1,n returns

array of A[i]*2

end for;

T1 := for i in 1,n returns

array of B[i]*3

end for;



X := for i in 1,n returns

array of T0[i] + T1[i]

end for;

into

X := for i in 1,n returns

array of A[i]*2 + B[i]*3

end for;

eliminating the generation of two temporary arrays and setting values that can
stream into internal registers from the cache. FORTRAN90 has similar seman-
tics for its array operations: X = A*2 + B*3. Sisal's OSC compiler can imple-
ment this more e�ciently than a FORTRAN90 compiler because FORTRAN
must know absolutely that neither A nor B is aliased to X. Sisal's functional
semantics insure that a left-hand-side of a de�nition is never an alias for a
right-hand-side.

A typical scienti�c computation proceeds as follows:

for initial

A := start_values()

while not done(A) repeat

A := time_step(old A)

...

Here, a new version of A the same size is generated at each time step. A naive
implementation of Sisal would allocate a new bu�er for each time step and throw
away the old even though it was the right size. OSC notices this and initially
allocates a bu�er outside the loop and pointer swaps the original and secondary
bu�ers.

Consider a 1D smoothing function that averages values using a three point
stencil { X[i] = (A[i-1] + A[i] + A[i+1])/3.0 At the endpoints a two point stencil
is used instead. This is most easily expressed as:

X := for i in 1,n

v := if i = 1 then (A[1]+A[2])/2.0

elseif i = n then (A[n-1]+A[n])/2.0

else (A[i-1] + A[i] + A[i+1])/3.0

end if

returns array of v

end for

The if-tests appear to introduce a large overhead and to inhibit parallelism,
vectorization and pipelining. The loop can be specialized doing the boundary
computations separate from the inner computations. The inner computation is
simple:



inner := for i in 2,n-1 returns

array of (A[i-1]+A[i]+A[i+1])/3.0

end for

Now we just need to glue on the lower bound computation and the upper
bound computation. We need to be careful to handle zero trip loops here! This
is done by producing an array of for the boundary values. In zero trip case, an
empty array is generated. In all other cases, an array of size 1 is generated.

leftbound := for i in 1,min(1,n) returns

array of (A[i]+A[i+1])/2.0

end for;

rghtbound := for i in max(2,n),n returns

array of (A[i-1]+A[i])/2.0

end for;

X := leftBound || inner || rghtBound;

The max/min function calls make sure the zero trip cases are handled grace-
fully. The �nal catenation puts the results in the correct form. The catenations
will actually be removed by build-in-place optimizations later in the optimization
process.

4 Sisal90

The original Sisal de�nition has been extended and modernized. The new lan-
guage includes language level support for complex values, array and vector oper-
ations, static polymorphism and type-sets, higher order functions, user-de�ned
reductions, rectangular arrays, and an explicit interface to other languages like
FORTRAN and C. See [14] for a detailed description of Sisal90 and a comparison
with Sisal 1.2.

An important objective was to enhance the language de�nition while main-
taining compatibility with the Sisal 1.2 de�nition. We could not delay our ap-
plication work waiting for the new de�nition and compilers, nor disenfranchise
the extant Sisal community. Additionally, enhancement rather than overhaul
implies fewer changes to the backend and permits us to reuse existing software.
The desired new features prompted a full rewrite of the parser and a complete
rethinking of how the low-level operations had to be speci�ed.

A second objective was to increase Sisal's appeal to scienti�c programmers.
To this end, we adopted Fortran 90 array operations where possible, improved
support for mixed-language programming, and included features, perhaps not
consistent with a strict interpretation of functional dogma, that simplify the
programmer's task. We do not believe that functional languages can survive
on their own; however, they can play a critical support role. Most of the code



in a large scienti�c application pertains to problem speci�cation, termination,
I/O, and fault handling. These sections are not functional and not parallel;
write them in your favourite imperative programming language. However, often
the computational kernel is parallel and functional. Here Sisal can play a cru-
cial role, as it can reduce development costs, insure determinacy, and improve
portability without sacri�cing performance. We perceive a gradual merging of
the functional and imperative programming communities where functional con-
structs form either a set of language extensions or an integrated core. We hope
that the Sisal 90 de�nition will accelerate this process.

4.1 The Foreign Language Interface

Parallel programming traditionally involves the management of concurrent tasks
and machine resources in addition to the speci�cation of the computation, greatly
increasing the programmer's burden. Most parallel programs are not written for
parallel execution from the outset. More often, they begin as existing sequential
programs, written in an imperative language, and are augmented with parallel
constructs from a vendor-speci�c enhanced imperative language. The program-
mer who is assigned the task of parallelizing such a code must preserve the
semantics of the program; the parallel code must execute e�ciently on the par-
allel machine of choice and must exhibit some scalability; the code should port
easily to other parallel machines, in particular new generations of the target
machine, and development costs should be kept as low as possible. As these
goals are contradictory, there may be no best solution. Since minimizing pro-
gramming costs is an important objective, the programmer usually identi�es
the most computationally intensive parts of the code, and parallelizes only the
parts that will provide the most gain from parallel execution. By considering
only these parallelizable sections, the imperative programmer maximizes perfor-
mance and minimizes development costs. The Sisal language supports mixed
language programming through its Foreign Language Interface (FLI). The FLI
allows Sisal programs to call or be called from Fortran or C, and to invoke exist-
ing libraries or solvers. This allows relatively easy recoding of the computational
kernels of an existing code for parallelism.

The use of the Sisal FLI involves four steps. First, the appropriate level of
parallelism, and the portion of the original code that contains it must be iden-
ti�ed. The size of computational grains to be parallelized and the amount of
communication they will do must be considered. There may be one identi�able
code region which is appropriate for parallelization, or there may be many sev-
eral, separated by sequential portions of the code. Second, the data that must be
communicated into and out of Sisal must be identi�ed. This is important, since
Sisal's functional semantics require a strict separation of inputs and outputs.
The mere determination of the input and output data may be nontrivial, since
the imperative language may hide the data in global variables, common blocks,
and aliased variables, and their use as input, output, or both, may be di�cult
to discern or may be situation dependent. The third step is usually easy, once
the �rst two have been achieved; it is the translation of imperative source code



into Sisal. While no automatic machanisms have been developed to do this, due
to its dependency on human intelligence and information gleaned from the �rst
two steps, it is can usually be accompished by a straightforward set of edits.
The fourth step deals with the data movement between Sisal and the imperative
language, and the initiation and termination of the Sisal Run Time System.

We will not address the �rst two steps, mentioned above, as they represent
an entire genre of know-how and experimentation by themselves. Step three
will require familiarity with both Sisal and the imperative language code under
consideration. Since most practically exploitable potential parallelism in existing
imperative codes will come from loops, they should be examined �rst. Sisal does
quite well at slicing its parallel loops. Other sorts of parallelism, such as function
parallelism (independent functions that can potentially execute concurrently)
and producer-consumer parallelism (e.g. software pipelines) are not currently
exploited by the Sisal compiler and Run Time System, so they can be ignored.
Once a loop has been identi�ed as a target for parallelism, it must be examined
for inter-iteration dependencies. These will inhibit parallelism, and must be
eliminated from the parallel loops that result from the translation step. Separate
interative loops may need to be built in Sisal to handle these portions of the
code. The imperative loops will often have false dependencies in them arising
from the reuse of variables where no real data dependency is present. These can
be eliminated by the use of loop temporary names in Sisal. Imperative loops
also often have assignments with indexed array names as their targets; these
mush also be leiminated, and can usually be rewritten with loop temporaries,
given appropriate index arithmetic. Once the programmer is used to dealing
with these exigencies, the translation process can be quick and easy. Following
are two code fragments illustrating these details.

temp = 0.0

Do 100 i = M, N

temp = temp + A(i)

B(i) = func( A, i )

C(i) = C(i-1) + A(i)

A(i) = A(i)*2.0

100 continue

The �rst loop is in Fortran. Its inputs are a scalar, temp, an array, A and
an array C; its outputs are the scalar temp, and arrays A, B, and C. Note that
array C has an index range apparently di�ering from those of A and B by one:
it has an element C(M-1), while A and B may not have an element indexed less
than M. The calculation of temp seems inherently sequential, but in fact it can
be accomplished in a parallel loop in Sisal. Here is a translation of the above
loop into Sisal:



temp, New_A, B, New_C :=

for i in M, N

A_sub_i := A[i] ;

B_sub_i := foo( A, i );

C_sub_i := C[i-1] + A_sub_i;

New_A_sub_i := A_sub_i * 2.0;

returns value of sum A_sub_i

array of New_A_sub_i

array of B_sub_i

array of C_sub_i

end for

The syntactic di�erences should be obvious, as should the simplicity of the
translation between them. It should be noted that the Sisal fragment is arti�-
cially lengthened by the presence of the simple expressions in the loop body. In
fact, all those expressions could be in the returns clause, which would make the
Sisal loop no longer than the Fortran version. However, we �nd clarity to be
more important than brevity, in many cases where parallelism is the goal and
accuracy is at risk, so we tend to use loop temporaries, as shown above, to help
make Sisal code readable, and to err on the side of of readability where style is
arguable.

Step four involves building argument lists for the Sisal Run Time System to
use in invoking the outermost Sisal function, and return value lists for the RTS
to pass back to the invoking inmperative code. Scalar data can simply be passed
in and returned without special e�ort, but arrays are more complicated. Arrays
in C and Fortran are contiguous blocks of primitive type elements stored row-
wise (in C) and column-wise (in Fortran). Arrays in Sisal are vectors of scalars
or vectors, which are contiguous only in the most primitive dimension, and are
stored row-wise. When passing an array between an imperative program and
a Sisal function, a descriptor must be provided in addition to the array, that
allows the Sisal Run Time System to correctly handle the data and mange the
storage it uses. Since all data items in Sisal ("values", as opposed to "variables"
in imperative languages) are dynamic, storage must be managed by the RTS.
It does this well, and normally requires no help from the programmer. Mixed
language programming requires extra e�orts in the form of array descriptors.
Each array requires a descriptor, and each descriptor contains �elds for each
dimension of the target array that describe that dimension's physical and logical
index range, whether the data is read-only or writeable, and whether it must be
transposed in passage. Fortran arrays, for example, if of more than one dimen-
sion, must be transposed by the RTS, since they are allocated in column major
order in Fortran and row major order in Sisal. The descriptors are themselves
small arrays which must be allocated in the imperative code, and which must
be provided for each array argument and result. The provision of this informa-
tion can conceivably be automated by the compiler, but at present it must be
performed manually by the programmer.



In addition to the above, the Sisal Run Time System must be started and
stopped at points in the imperative program that are appropriate to the parallel
work that will be done. Normally, the RTS is started and stopped automatically
during the execution of a pure Sisal program, but this code must be explicitly
included and invoked in the loading and execution of a hybrid program. Since
it is expensive in terms of CPU time to do this, it is not appropriate that it be
done repeatedly within a loop that contains calls to the Sisal code. Rather, the
RTS should be started once, the Sisal code invoked wherever appropriate, and
the RTS should be shut down before the normal termination of the program. It
costs relatively little to leave the RTS running between invocations of the Sisal
code, so this method is not particularly wasteful of machine resources. The RTS
is started by a simple call which contains a few of the parameters normally used
in te execution of a Sisal program. These include the program heap size (the
memory pool used by the RTS), the number of worker processes to be used (the
amount of parallelism exploited).

At this point it is worth mentioning that the Sisal FLI was built as an exper-
iment, and as such is still in a somewhat rougher state than would be desired in
a production parallelization system. Its use, as documented above, can present
di�culties that can e�ectively undo some of the advantages of applicative par-
alleism. For instance, the generation of the array argument and result descriptors
adds to the programmer's burden. In addition, arrays of dimension greater than
one will currently be copied across the FLI, a source of overhead at exectute
time that is inimical to parallel performance goals. Therefore, in the work we
have done with it, we have routinely used aliasing to hide the multidimensional
nature of such arrays, and index arithmetic to allow arbitrary access to their
elements.

In addition, we must confess that the goals of machine independence are not
always met in parallel programming, and this is at least as true in mixed lan-
guage programming for parallelism. It sometimes happens that the Sisal code
resulting from the translation of step three, above, must be modi�ed for perfor-
mance purposes. For instance, column-wise accesses to two-dimensional arrays
usually causes performenace degradation in systems containing cache memories.
However, this by itself is usually no more serious a constraint than would be im-
posed by such system architectures during a parallel port in any other language.

Notwithstanding the problems mentioned above we believe the FLI o�ers
two distinct advantages to the parallel programmer. First, it provides a means
of rapidly parallelizing existing application codes by concentrating programmer
e�ort where it will provide the best return. And second, it o�ers a develop-
mental path for codes ranging from experimentation on cheap workstations to
production on expensive supercomputers.



5 A Prototype Distributed-Memory SISAL Compiler

In this section we present D-OSC, a prototype SISAL compiler for distributed-
memory machines. D-OSC is an extension of OSC[12]. A new analysis phase for
loop and array distribution has been added and the code generation phase has
been modi�ed to produce C plus MPI[15] calls. The run-time system has been
modi�ed to support array distribution and communicating threads. Information
needed to perform distributed memory optimizations is established by the anal-
ysis phase and provided to the code generator by decorating the appropriate IF2
nodes and edges.

The D-OSC model of execution is activation-based. A master process is re-
sponsible for dividing parallel loops into slices which will be executed by slave

processes running in parallel. A slice is represented by an activation record,
which contains a code pointer, the loop range, a unique loop identi�er, input
parameters to the slice, and destinations for values to be returned upon termi-
nation. Activation records are distributed over the machine and each processor
maintains a local activation record queue. Upon completion of a slice, the slave
process sends a completion message to the master and updates global results
with locally-computed values. As a slice may contain a parallel loop, each slave
can become a master and distribute its inner loop. Each processor must be able
to receive a request for service from other processors, such as a read, write or
allocate request. This is achieved by having a listener thread always active on
every processor.

D-OSC is implemented in four phases, where each phase relies on the previous
one.

{ Base. This phase employs no analysis whatsoever, hence the code generated
is very naive. Arrays and loops are distributed equally among processors.
Message passing is used to access remote array elements. This compiler
version serves as a reference for further implementations, providing useful
information about the e�ectiveness of certain optimizations.

{ Rectangular Arrays. The standard implementation of higher-dimensional
arrays as arrays of arrays is replaced, where possible, by rectangular arrays
with a single descriptor. Arrays and the loops creating or using arrays can
be distributed by rows, block or columns. Not all loops are distributed.

{ Block Messages. The reading and writing of remote array elements within
certain loops is optimized by combining all the messages directed to the same
processor into a single block message.

{ Multiple Alignment. In previous phases arrays partitioning created disjoint
sections of an array. In this phase overlapping array sections are created.
This optimization reduces the number of messages passed, at the cost of
using more space for the overlapping array sections.

5.1 Base Compiler

In OSC, the representation of arrays consists of an array descriptor, which con-
tains information such as bounds, reference count, size, and other information,



and a pointer to the physical array. OSC assumes a shared-memory model, and
the pointers to the array descriptor provide a unique array identi�er. An ev-
ident problem on a distributed-memory machine is that the descriptor pointer
cannot be used as a unique identi�er, since the address of the array descriptor is
di�erent for each processor. Hence a unique array identi�er is created explicitly
as the index in an array table that exists on each processor. The design of the
array table permits a great deal of compatibility with existing array operations
since the OSC concept of a unique array descriptor is preserved.

Arrays are partitioned according to the distribution of the creating loop. In
the Base compiler each loop, and hence each array dimension, is distributed
equally among processors. To create the unique identi�er for distributed arrays,
the master process that creates the loop slices, allocates the array identi�er and
sends it as part of the activation message to the slaves. Each slave then executes
a slice in parallel and updates its local entry in the array table.

Array access in the base compiler is straight-forward. The processor that
owns the array element is determined. In the base case this amounts to a simple
computation involving the array size and the number of processors. If the owner
is the local processor, the array element is read directly from local memory,
otherwise a request message is sent to the listener thread of the processor that
owns the array element. The listener thread directly performs the array access.

5.2 Rectangular Arrays

Rectangular arrays have only one descriptor per array, regardless of its dimen-
sionality. Only one possibly remote memory access to fetch the array element
is needed, where an arrays of arrays implementation of an nD array requires n
memory accesses to fetch an element. With one array descriptor per array tradi-
tional distributions, such as row, block and column, are easier to implement. A
disadvantage of rectangular arrays is that sub-arrays cannot be shared. However,
sharing also has disadvantages since update-in-place cannot be performed, and
access functions are less e�cient. Another disadvantage of rectangular arrays is
that ragged arrays cannot be represented.

Arrays are created using IF2 AGather nodes. Consider the case of a Sisal
triple cross product for loop that returns a three-dimensional array. In the orig-
inal IF2, AGather nodes in the result graphs of all three nested loops create
arrays. In the rectangular array case, the actions that the various AGather

nodes perform are di�erent. The outermost AGather node must perform the
allocation of the physical space for the whole 3D-array, and the allocation of the
single array descriptor. The innermost AGather node �lls in the elements of the
array. The AGather node in the middle loop does not perform any action.

In the original IF2 an arrays of arrays access consists of multiple AElement
nodes scattered over the dependence graph, each with one index input. For a
rectangular array this must be transformed into one AElement node with all
indices as input. The analysis phase identi�es the tree of AElement nodes that
is spanned by the output edge of a root AElement node and marks these nodes



with information such as the level of the node in the tree and back-edges to
ancestor nodes.

5.3 Block Messages

The implementation of array access operations described above is not always
e�cient for array references in loop bodies, as performing remote exchanges for
individual elements is less e�cient than performing at most one block exchange
per producer-consumer processor pair. Our algorithm for obtaining block mes-
sages is a modi�cation of the algorithm presented in [16].

5.4 Multiple Alignment

The last phase of the compiler implements the overlapping allocation of array
sections presented in [17] for one-dimensional arrays. Overlapping allocation is
applied to loops with restricted a�ne references as in the following loop model,
where the cjs are constants.

for i in lo, hi

returns array of f(B1[i+c1],...,Bm[i+cm])

end for

In the case of single alignment, i.e. m = 1, the �rst element of the consumer
array is aligned with element 1 + c1 of the producer array. For the general case,
the analysis phase identi�es restricted a�ne loops, that create one-dimensional
arrays while accessing elements from other one-dimensional arrays. Multiple
alignment is achieved by identifying all the unaligned references required, and
the maximum and minimumo�sets of these with respect to the consumer index.
The contiguous set of indices thus obtained is a superset of the producer array
elements needed. Loops are marked RightOverlap and LeftOverlap to be used
in the code generation phase to determine the upper and lower bounds for each
slice.

5.5 Results

The benchmark programs used here to assess the e�ectiveness of the various
optimization phases are Livermore loops 1, 2, 3, 6, 7, 9, 12, 21, and 24, run on a
network of four workstations. Since the initial objective is to reduce communi-
cation, we measure the total number of messages exchanged - the �rst number
in table 1, and the total volume of communication - the second number in the
table.

Rectangular arrays decrease the number of messages exchanged for some of
the programs that use 2-D arrays. However, sometimes the number of messages
increases, as in loop 21. The reason for this is that the partitioning of the loops
and arrays performed by the base compiler matches the accesses of the array
elements better than the rectangular arrays implementation.



Table 1. Number of Messages, Communication Volume (4 PEs).

Program Type Base Rect Arrays Block Mssgs Multiple Algn

ll1 1D 6605, 132132 6603, 211368 603, 31368 303, 12168

ll2 1D 6443, 126656 6443, 213128 6443, 213128 6443, 213128

ll3 1D 3, 96 3, 168 3, 168 3, 168

ll6 1D, 2D 10533, 213036 13223, 430408 13223,430408 13223, 430408

ll7 1D 4807, 86568 7503, 225168 953, 18968 303, 8568

ll9 2D 5883, 117136 2403, 76968 603, 28968 603, 28968

ll12 1D 9005, 180132 3003, 96168 1503, 24168 3, 168

ll21 2D 471, 8520 14403, 460968 123, 58728 123, 58728

ll24 1D 29703, 594096 29703, 950568 29703, 950568 29703, 950568

Most of the programs that access arrays bene�t greatly from the implemen-
tation of block messages. The greatest improvements occur for loops 1 and 21.
Loops 2 and 24 are sequential and the current implementation only generates
block messages for references accessed in parallel loops. Loop 6 contains sub-
script expressions that use non loop variables.

Multiple alignment reduces the number of messages for the programs with
producer consumer relations of one-dimensional arrays, such as loops 1,7 and
12.

The volume of communication does not always decrease and varies with pro-
gram characteristics. In loop 24, where the number of messages exchanged
remains the same for all the compiler phases, the volume of communication in-
creases. This is because the implementation of rectangular arrays increases the
size of messages required to access array elements in order to accommodate the
multiple indices of rectangular arrays.

5.6 Further Work

D-OSC is a prototype implementation that helps us to quantify compiler opti-
mizations for distributed-memory machines. The following are some of the tasks
that must be performed to improve D-OSC. A more e�cient run-time system

is needed. There are situations where run-time reference counting is necessary.
If one processor owns a reference count, each remote processor that updates the
reference counter must contact this processor. When deallocating an array, the
responsible processor must notify all processors that have partial copies of the
array to deallocate the space. The implementation of function call parallelism is
very easy under the activation-based model. However, inter-functional analysis
is required to determine when and where to spawn functions. Currently loops
are always distributed over all processors. If an analysis phase can estimate the

computation cost of a loop body, then it is possible to generate code that decides
the number of processors to be used. Parallel I/O must be implemented.



6 Architecture Support for Multithreaded Execution

Multithreaded execution has been proposed as a model for parallel program
execution. As a model, or rather a family of models, multithreading views a
program as a collection of concurrently executing sequential threads that are
asynchronously scheduled based on the availability of data. This de�nition is
intentionally wide in that it attempts to capture the common features among
various multithreaded execution models proposed to date. It is important to note
that in this de�nition the multithreaded execution model does not specify any
form of memory hierarchy (it is common though to expect a single logical address
space, shared by many threads and mapped over several nodes), any speci�c
language feature, whether threads are user speci�ed or compiler generated, the
mechanism for communication and/or synchronization among threads, or the
order of thread execution. There is no standard de�nition of a thread. In this
document we will de�ne a thread as the set of sequential instructions executed
between two synchronization points. Note that this de�nition does not preclude
any architecture from exploiting the instruction level parallelism within a thread
or the locality of access to a storage hierarchy.

Because of its functional properties, the Sisal language is particularly well
suited as a source for multithreaded code. In this Section we present some
results related to the evaluation of multithreaded execution. The performance of
multithreaded execution is determined by the complex interaction of a number
of inter-related architectural and compilation issues such as code generation,
thread �ring rules, synchronization schemes and thread scheduling. The relation
between these issues and the tradeo�s between various alternatives for each
of these issues is complex and requires extensive experimental evaluation. For
example, the thread �ring rule (which determines when threads are enabled) can
be based on either a blocking or a non-blocking strategy. The blocking strategy
is adopted in Iannucci's Hybrid Architecture [20], the Tera MTA [2] and the
EARTH machine [19]. The non-blocking strategy is adopted in Monsoon [28,
29], *T [25] and the EM-4 [34] among others. The Threaded Abstract Machine
(TAM) [13] is a software implemented multithreaded execution that has been
ported to a number of platforms (such as the TMC CM-5 and the Cray T3D),
it implements the non-blocking model.

In this section we summarize the results of an experimental and quantitative
evaluation of these two execution models. The evaluation includes their respec-
tive code generation strategies, its implications on data distribution and access
and the performance of their respective storage hierarchies.

6.1 Blocking and Non-Blocking Models

The two multithreaded execution models considered here are based on data-
driven dynamic execution with statically generated threads. This section presents
a detailed description of these two models.



The blocking thread execution model: In this model a thread may be suspended
and its execution resumed later. This model requires the underlying architecture
to support context switching: i.e., the saving of the thread state and the selection
of a new thread. Usually, a thread is suspended after initiating a long latency
operation such as a remote memory access.

In this model the synchronization and storage mechanisms rely on the Frame
model: A frame represents a storage segment associated with each invocation

of a code-block5. The Frame model is used in several multithreaded machines
(e.g. TAM [13], StarT-NG [3] and the EM-4 and EM-X [21]). All the threads
within the code-block instance refer to its associated frame to store and load
data values. Frames are of variable size and contiguously allocated in the virtual
address space. The size of a frame is determined by the maximum number of
data values associated with the code-block. When an instance of a particular
code-block is invoked, a frame is �rst allocated in local memory of a processor
and all the data values generated within that code-block instance will be stored
in that frame. The virtual address carried by a token is of the form:

<frame pointer, frame o�set>

A synchronization slot in the frame is associated with each thread. The
synchronization slot is a counter initialized with the count of the number of the
inputs to the thread and is decremented with the arrival of each input. The
thread is ready when the count reaches zero. A data value that is shared (i.e.
read) by several threads in the same frame occupies only one location. Data
values generated by the executing threads are sent to the Synchronization Unit
which writes them in the frame. The frame is deallocated when all the threads
in the code-block have terminated.

The non-blocking thread execution model: In this model a thread is activated
only when all its input parameters are available. Therefore, once a thread starts
its execution it runs until termination. All memory accesses are performed as
split-phase accesses: the request is issued by a thread but the result is returned
to another thread. In this mode the thread never has to block, and be switched
out, while waiting for a remote memory access.

The synchronization and storage mechanisms for the non-blocking threads is
the Framelet model. A framelet is a �xed sized unit of storage that is associated
with each thread instance. Each framelet has one synchronization slot for that
thread instance. In the Framelet model a data value that is shared among several
threads within a same code-block would be replicated in the framelet of each
thread instance. The framelet is deallocated when the thread instance completes
its execution. Because their size is �xed, framelets are aligned with cache blocks.
The virtual address of a data value in the Framelet model is of the form:

<context #, thread #, framelet o�set>

Example. A code-block consisting of four threads is shown in Figure 1. The
corresponding Frame memory model is shown in the Figure 2. The input a

5 A code-block is a semantically distinguishable unit of code such as a loop or function
body.



which is used by both threads A and B is stored at only one place in the frame
memory. Each of the values in the frame memory is accessed by the frame base
address and the o�set into the frame. The �rst four slots are the counters for
the threads. Thus when value c is stored only the counter for D is decremented.
But when a is stored both counter for A and B are decremented but only one
copy of a is stored in the frame.

The Framelet memory model corresponding to the same code block is shown
in Figure 3. There are four separate framelets. Each framelet contains the
counter for the corresponding thread and a memory location for all the inputs
to the thread. Hence framelet A corresponds to one particular activation of
thread A. The a is stored in the framelets of both threads A and B and both
counters are decremented. This accomplished as two separate store operations.

6.2 Code Generation

The source language used for the generation of multithreaded code is Sisal.
The compilation process converts the programs into two intermediate forms:
MIDC-2 (non-blocking) and MIDC-3 (blocking) which are both derived from the
Machine Independent Data
ow Code (MIDC) [33]. MIDC is a graph structured
intermediate format: The nodes of the graph correspond to the von Neumann
sequence of instructions and the edges represent the transfer of data between
the nodes. MIDC has been used to generate the executable code for other
multithreaded machines (e.g Monsoon and EM-4). Both MIDC-2 and MIDC-3
are highly optimized codes with optimization done both at the inter- and intra-
thread level.

The code generation compiler is guided by the following objectives [32] :

{ Minimize synchronization overhead: by merging threads (thread fusion) and
by allocating related threads to the same code block (in the blocking model).

{ Maximize intra-thread locality: achieved by thread fusion.
{ Assure deadlock-free threads: circular dependencies can create a potential
for deadlock.

{ Preserve functional and loop parallelism in programs.

The �rst phase of the code generation is the same for both models, it involves
compiling the Sisal programs to IF2 using OSC [10].

The second phase di�ers for the two models in the handling of structure store
accesses and the data storage models (frames or framelets). The long latency
operations consist of remote memory reads, memory allocations, function calls
and remote synchronizations. The remote memory references can be handled
either as a split-phase access or a single-phase access. In the split-phase access
the request is sent by one thread and the result is forwarded to another thread.
In the single-phase access the result is returned to the same requesting thread. In
the non-blocking model all remote accesses are split-phase. The blocking model
uses both types of accesses: the code is analyzed at compile time to identify
remote and local accesses. Remote accesses are implemented by split-phase
operations while local accesses are regular memory access.
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{ In the non-blocking model (MIDC-2 form) all structure store accesses are
turned into split-phase accesses. A split-phase access terminates a thread:
the request is sent by a thread but the result is returned to another thread.
In this model a thread has never to block on a remote memory access. This
model does not make any assumption regarding data structure distribution.

{ In the blocking model (MIDC-3) the IF2 graph is statically analyzed to
di�erentiate between local and remote structure store accesses: a local access
does not terminate a thread while a remote one does. If the result of a
structure store access is used within the same code-block where the access
request is generated, the access is considered local. In this case, the thread
will block until the request is satis�ed. This model relies on a static data
distribution to enhance the locality of access. Note that a data structure is
often generated in one code block and used in several others in which case
only one of the consumer code-blocks would have a local access.
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Fig. 4. MIDC-2 and MIDC-3 code examples.

Example The example in Figure 4 demonstrates the di�erence between MIDC-
2 and MIDC-3. In MIDC-2, Thread 255 performs a structure memory read
operation. The read is performed as a split-phase access where the result is



sent to Thread 256. Thread 255 does not block, it continues execution until
termination. When the results of the split-phase read is available it is forwarded
to Thread 256 which starts execution when all its input data is available. There
are no restriction on the processor on which Thread 255 and Thread 256 are
executed.

In the MIDC-3 code, Thread 255 and 256 belong to the same code-block.
The read structure memory operation is a local single phase operation. Hence,
the two threads become a single thread. The thread blocks when the read
operation is encountered and waits for the read request to be satis�ed.

Discussion of the Models. The main di�erences between the blocking and non-
blocking models lie in their synchronization and thread switching strategies. The
blocking model requires a complex architectural support to e�ciently switch be-
tween ready threads. The frame space is deallocated only when all the thread
instances associated with its code block have terminated execution which is de-
termined by extensive static program analysis. The model also relies on static
analysis to distribute the shared data structures and therefore reduce the over-
head of split-phase accesses by making some data structure accesses local. The
non-blocking model relies on a simple scheduling mechanism: data-driven data
availability. Once a thread completes execution, its framelet is deallocated and
the space is reclaimed.

The main di�erence between the Frame model and the Framelet models of
synchronization is the token duplication. The Framelet model does require that
variables which are shared by several threads within a code block be replicated
to all these threads while in the Frame model these variables are allocated only
once in the frame. The advantage of the Framelet model is that it is possible
to design special storage schemes [31] that can take advantage of the locality of
the inter-thread and intra-thread locality and achieve a cache miss rate close to
1%.

6.3 Summary of Performance Results

This section summarizes the results of an experimental evaluation of the two
execution models and their associated storage models. A preliminary version of
these results was reported in [4], detailed results are reported in [5].

The evaluation of the program execution characteristics of these two models
shows that the blocking model has a signi�cant reduction in threads, instruc-
tions, and synchronization operations executed with respect to the non blocking
model. It also has a larger average thread size (by 26% on average) and, there-
fore, a lower number of synchronization operations per instruction executed (17%
lower on average).

However, the total number of accesses to the Frame storage, in the non-
blocking model, is comparable to the number of accesses to the Framelet storage
in the blocking model. Although the Frame storage model eliminates the repli-
cation of data values, the synchronization mechanism requires that two or more
synchronization slots (counters) be accessed for each shared data. The number of



synchronization accesses to the frames nearly o�sets all the redundant accesses.
In fact the size of the trace of accesses to the frames is less than 3% smaller
than the framelet trace size. Hence, synchronization overhead is the same for
the frame and framelet models of synchronization.

The evaluation also looked at the performance of a cache memory for the
Frame and Framelet models. Both models exhibit a large degree of spatial
locality in their accesses: In both cases the optimal cache block size was 256
bytes. However, the Framelet model has a much higher degree of temporal
locality resulting in an average miss rate of 1.82% as opposed to 5.29% for the
Frame model (both caches being 16KB, 4-way set associative with 256 byte
blocks).

The execution time of the blocking model is highly dependent on the success
rate of the static data distribution. The execution times for success rates of
100% or 90% are comparable and outperform those of the non blocking model.
For a success rate of 50%, however, the execution time may be higher than that
of the non blocking model. The performance, however, depends largely on the
network latency. When the network latency is low and the processor utilization
high, the non blocking model performs as well as the blocking model with a
100% or 90% success rate.

7 Conclusions and Future Research

The functional model of computation is one attempt at providing an implicitly
parallel programming paradigm6. Because of the lack of state and its function-
ality, it allows the compiler to extract all available parallelism, �ne and coarse
grain, regular and irregular, and generate a partial evaluation order of the pro-
gram. In its pure form (e.g., pure Lisp, Sisal, Haskell), this model is unable to
express algorithms that rely explicitly on state. However, extensions to these
languages have been proposed to allow a limited amount of stateful computa-
tions when needed. Instead, we are investigating the feasibility of the declar-
ative programming style, both in terms of its expressibility and its run-time
performance, over a wide range of numerical and non-numerical problems and
algorithms, and executing on both conventional and novel parallel architectures.
We are also evaluating the ability of these languages to aid compiler analysis to
disambiguate and parallelize data structure accesses.

On the implementation side, we have demonstrated howmultithreaded imple-
mentations combine the strengths of both the von Neumann (in its exploitation
of program and data locality) and of the data-driven model (in its ability to
hide latency and support e�cient synchronization). New architectures such as
TERA [2] and *T [26] are being built with hardware support for multithreading.
In addition, software multithreading models such as TAM [13] and MIDC [8]),
are being investigated.

We are currently further investigating the performance of both software-
supported and hardware-supported multithreaded models on a wide range of

6 Other attempts include the vector, data parallel and object-oriented paradigms.



parallel machines. We have designed and evaluated low-level machine indepen-
dent optimization and code generation for multithreaded execution. The target
hardware platforms will be stock machines, such as single superscalar proces-
sors, shared memory, and multithreaded machines. We will also target more
experimental data
ow machines, (e.g., Monsoon [18, 37]).
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