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One of the challenging problems in building replication systems is how to design the appro-

priate replication protocol set that can achieve the target level of availability, performance, and

consistency while minimizing the replication cost. But various existing replication protocols could

not provide the scalability and performance desired by replicated applications when the work-

load characteristics change dynamically. We propose a locality based replication protocol that

combines the benefits of existing protocols. By taking advantage of the read/write locality, this

protocol scales well under workload with all read-to-write ratios.

1 Introduction

One of the challenging problems in building replication systems is how to design the appropriate

replication protocol set that can achieve the required level of availability, performance, and consis-

tency while minimizing the replication overhead at the specific replication scale. Replication tech-

niques are primarily employed to improve the availability [5, 8, 10, 12] and the performance [3, 6]

of distributed applications and web services deployed over wide area networks. However, in order

to maintain a consistent view across all replicas in the system, additional workload may be im-

posed on the system upon on both client reads and writes. As the result, the replication systems

usually gain better availability and performance at the cost of reducing the overall system capacity.

Research work has investigated the scalability of various replication protocols under different

1



workload [7]. The result shows that some protocols scale well when reads dominant in the overall

workload while some other protocols can handle write-concentrated workload relatively better.

For example, the write-all-read-any-available protocol, ROWAA, scales well against workload

with high read ratio. But as the write ratio increases, this protocol incur high cost because the

cost of write operations is proportion to the replication scale. On the other hand, the grid quorum

protocol scales better for high write ratio workload because the write cost is only square root of

the overall replication size.

The goal of this project is to understand the workload impact to the scalability of existing

replication protocols and to design a new protocol to scale under workload with all read-to-write

ratios. In particular, we exploit the impact of the read and write locality resulted in the access

routing in the replication system. Strong access locality is the key for our protocol to optimize its

scalability and response time. We introduce invalidations in the grid quorum protocol to reduce the

read cost when the read locality is considered. Furthermore, subsequent writes to the same write

quorum can avoid invaliding non-write-quorum servers which are already invalidated by the first

write.

The significance of our locality based replication protocol is that the protocol scales inde-

pendently of the read-to-write ratio. Because the workload characteristics is hard to predict and

changes dynamically at runtime, building a replication system that scales well under the runtime

environment involves sophisticated algorithms for analyzing, predicting, and adapting to the actual

workload. This approach increases the complexity of the development. The alternative approach

is to manually reconfigure the protocol to accommodate the workload changes at runtime. How-

ever, this approach suffers from high maintainness cost and relatively in-responsive. Our locality

based replication protocol takes advantage of access locality to keep a low replication cost for both

read and write operations. This protocol provides a straightforward solution for developing highly

scalable and efficient replication system.

The rest of the report is organized as follow. Section 2 puts this report into context by discussing

some representing protocols that are commonly used for building replication systems and some

other related work. Section 3 presents the benefits and limitations of two replication protocols that

are leveraged by our locality based protocol. Section 4 explain the design of the locality based

protocol, followed by Section 5, the protocol evaluation. And Section 6 concludes the project.
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2 Related

Some representative replication protocols include ROWAA, and quorum protocols. The major

difference among those protocols is the number of replicas contacted for every read or write oper-

ation.

The ROWAA protocol, proposed by Bernstein [2], ensures to propagate writes to all the replicas

in the system to guarantee that reads only have to read from one replica.

Comparing with ROWAA, the quorum protocols reduce the cost of performing a write in the

system. Instead of forwarding writes to all replicas, the protocol chooses to forwarding writes a

quorum of replicas and multicast reads to a read quorum. The quorum protocol guarantee that a

read quorum intersects with a write quorum to allow reads to return the fresh value. The size of

the quorum affects the scalability and performance of the specific protocols. Various work propose

different techniques for constructing quorum. In grid quorum [4], replicas are organized in a grid

of rows and columns. Writes are performed to a row while reads are performed to a column. In

the majority quorum algorithm [11] read and write quorum mush fulfill the constrains: 1. write

quorum size is at least one greater than half of the replication size; 2. the sum of write and read

quorum sizes is larger than the replication size. In a tree quorum [1] the size of write quorum is

reduced while the read quorum is one.

3 background

Our locality based replication protocol is evolved from two existing protocols, ROWAA and grid

quorum protocol.

3.1 ROWAA

For the simplicity and driven by the characteristics of web client workload, the ROWAA protocol

is widely used in many web service implementations. In ROWAA protocol, writes are simplify

forwarded to all replicas. The the synchronous case, a write operation does not return until it hears

responses from all replicas. And in the asynchronous case, a write is eventually forwarded to all

available replicas. Because all replicas contain the data resulted in the last write, read operations
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can be performed on any available replicas to retrieve the value. One advantage of ROWAA pro-

tocol is that its implementation is relatively straightforward. Multicast can be used to propagate

writes and unicast and be used to access any random replica to retrieve the value. Another ad-

vantage of this protocol is that it scales well when handling workload dominated by reads. Since

majority of today’s web traffic is read, this protocol is preferable for building replicated web ser-

vices. The disadvantage of ROWAA protocol comes from its write-to-all-available design. Clearly,

in a large scale replicated system, when a client write operation need to be propagated to all avail-

able replicas, the overall system load increases as the number of replicas increase. The ROWAA

protocol is scalable and responsive only under the read-dominate workload.

3.2 Grid

Grid Quorum protocol trades the read cost for less write cost. As described in the previous section,

grid quorum forwards writes to a row of replicas instead of forwarding to all replicas in the system.

The cost of write operations is reduced from � to
�
�. Meanwhile, the read cost is increased from

� to
�
� because reads have to query from a column of replicas to determine the most updated

value. This protocol balances the cost between reads and writes. And because its reads and writes

cost are both �����, it provides consistent scalability for all workload. But the negative side is that

reads, which are often the dominating web client workload, becomes more costly in terms of both

overall system load and response time. In addition, organizing replicas as grid quorum for both

reads and writes contributes much complexity in building replication systems.

4 Design

The goal of this project is to investigate some limitations of existing replication protocols. Then,

we try to design a new protocol that combines the benefits and eliminates shortcomings of those

existing protocols.
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4.1 Invalidations

We use grid quorum as the base of our new protocol because it seems to provide a consistent scal-

ability across workload with all read-to-write ratios. To further reduce the read cost, we introduce

invalidations in the protocol. For every write initiated by client, the system not only forwards it to

the a write quorum but also sends invalidations to all other replicas outside of this write quorum.

Therefore, for a given replicated object in the system, any replica will contain the fresh state of this

object, or otherwise the invalidation. In this case, we know that a particular replica contains the

fresh state of an object if this replica returns a value. Otherwise, when a replica returns a invalid

state, we can be sure that we need to query other replicas for the value. Despite of the fact that

in the worst case a read still query a read quorum,
�
� replicas, some reads can obtain the desired

value by querying less than
�
� replicas. Therefore, the average read cost is reduced to less than

�
�.

4.2 Locality

The cost of read and invalidation can be further reduced by using locality based routing in the

replication system. When a client access the service of a replicated system, the client will be

routed to one of the replicas based on specific routing algorithms. Such routing algorithms include

load-balancing algorithm, locality based algorithm. For our target replication system, we assume

that the locality based algorithm is used for client requests routing. In other words, our system

tends to route both read and write requests of the same client to the same replica as long as this

replica is available. There are two benefits for using such routing policy.

1. Invalidation elimination. When a particular client tries to modify an object, the write is

originally sent to replica RA, then propagated to other replicas in a write quorum, RB, RC

(assuming a 3x3 grid). Meanwhile, other replicas, RD ... RI, receive invalidations to this

object. If this client tries to modify the same object again, the locality based routing policy

will send the second write to the same replica RA. At this time, the protocol only propagates

the second write to the same write quorum, RB, RC without re-invalidating other replicas,

RD ... RI. Therefore, the cost for the second write is only
�
� instead of � like the first write.

All subsequent writes initiated by this client to the same object will be routed to RA as long
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as this replicas is available and their cost will all be
�
�.

2. ROWAA-alike read. After modifying an object, a client may want to query the state of this

object by sending a read request to the system. Similarly, this read request will be routed to

RA first. This time, since RA contains the value resulted by last write, RA can immediately

return this value to the client without having to query from other replicas in a read quorum

to determine the fresh value. As long as the read requests of the same object from this client

are routed to RA, the read cost is �.

Occasionally, RA will be partitioned from the rest of replicas due to network failures so that

this particular client’s read/write requests are routed to other replicas, such as RD or RH, which are

not in the same write quorum as RA. In this case, the cost of the first write routed to RD or RH is �

because this write is propagated to another write quorum and the rest will receive invalidations. In

another case when the first request arriving at RD or RH is a read request, this replica has to query

a read quorum containing either RB or RC to retrieve the desired value. This read request incurs a

cost of
�
�.

According to the previous analysis on Internet service availability, an average web client cannot

contact an average web server for about 15 minutes a day [?, 9, 13]. It suggests that the probability

for a client can be routed to the same replicas is roughly 99%. Therefore, the locality based

replication protocol can provide reads at the cost similar to ROWAA and writes at the cost of
�
�

under normal conditions. However, the cost of both reads and writes can increase substantially as

the network partition occurs more often under some circumstances. We will evaluate the affect of

locality to the protocol scalability and responsiveness in the next section.

5 Evaluation

In this section, we seek to justify the tradeoffs among scalability, responsiveness, the read/write

locality, the replication size, and the read-to-write ratio. First, we will describe the model that is

constructed based on the locality based protocol. Then, we analyze the simulation results produced

from this model and compare them to those of ROWAA and grid quorum protocols.
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5.1 Modeling

Our model consists of three major components, the client workload generator, the replication clus-

ter, and the replicated server.

5.1.1 Client workload generator

This component is responsible for generating the client workload that simulates the characteristics

of the runtime client behavior. Client requests are generated from this component and become

the input of the replication cluster eventually. The client workload generator specifics several

requests’ attributes during the generation phase. The workload characteristics includes the client

ID, the request arrive rate, request types, e.g. read or write, and request origination, e.g. traveling

or at-home. Those attributes are essential for requesting routing and processing by the replication

system.

5.1.2 Replication cluster

The cluster receives requests from the generator and routes the them to the appropriate replicas

based on the client IDs and requests’ origination information. While processing the client re-

quests, the replicas initiates additional requests to other replicas to propagate changes or query for

fresh values. The replication cluster routes those replica-initiated requests based on the receivers’

information embedded within requests. Before a request reaches a replica, the replication clus-

ter randomly delays the request as if this request is traveling through a wide area network before

reaching a replica. The cluster also returns the value to the client as soon as the value is obtained

from the replica that this client is contacting.

Replicas exist in the model in the form of an array. Requests (originated from both clients and

replicas) are routed to replicas by providing to the cluster an index representing the position of

their target replica in the replica array. There is one delay unit associated with each replica so that

the model can simulate the real world scenario where the propagation delays differ from between

two replicas pairs or two client-replica pairs.
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5.1.3 Replicated Server

When a replica receives a client read request, it returns the value to the client if the local value is

not invalidated. Otherwise, this replica initiates server read requests and sends them to a quorum of

replicas. Each replica in this read quorum response to the original replica with either the value or a

invalid state. As soon as the original replica receives a response contain the actual value, it returns

the value back to the client. When a replica receives a client write request, it propagates this write

to a quorum of replicas. Before this replica sends out invalidations to other replicas outside the

write quorum, it checks whether its local value is valid. The invalidations are only sent out when

this replica does not have a valid previous value.

5.2 Simulations

In this subsection, we seek to understand the scalability and responsiveness of the locality based

protocol in contrast with the ROWAA and grid quorum protocols. Notice that changes to any of the

multiple parameters can alter the scalability and responsiveness of the protocol. Our experiments

target the read-to-write ratio, replication size, and read/write locality.

5.2.1 Replication size

Graph 1 illustrates the effect on scalability as the replication size changes. This experiment is con-

ducted with the workload consisting 50% writes. In this graph, the x-axis represents the replication

size in terms of the number of replicas used in the system, and the y-axis represents the normalized

overall system workload with respect to workload generated for each replication size. The top

most curve represents the normalized overall system workload of ROWAA protocol, which shows

competitive scalability at the small replication scale. As the replication scale increase, the high

cost of ROWAA becomes obvious as its representing curve increase sharply. The locality based

protocol shows the competitive scalability with grid quorum protocol when the locality is 90/grid

quorum.
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Figure 1: Replication cost vs. replication size.
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Figure 2: Replication cost vs. write ratio
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Figure 3: Read response time vs. read/write locality

5.2.2 Read/write ratio

Graph 2 indicates the impact of workload to the overall system scalability. To magnify the result,

we choose the replication size to be 100. In this graph, the x-axis represents the write rate in the

given workload, and the y-axis represents the overall system load in terms of the combined number

of operations performed at all replicas. Notice that the relatively flat curve in the middle represents

the grid protocol. The scalability of the grid protocol is insensitive to write rate because its both

read and write operations has the same cost of
�
�. In the case of ROWAA protocol, its limited

scalability to handle writes becomes obvious as the write rate increases in the given workload. Our

locality based protocol at the 90/when write rate increases. The increase in the overall replication

cost is due to the occasional invalidation process when some writes from the same client are routed

to a replica outside the original write quorum. The probability for an invalidation process to be

initiated in the system can be reduced by requiring a stronger locality in the request routing process.

5.2.3 Response time

One important issue to address for the locality based protocol is the response time reads. Since

reads dominates the web traffic, most of web applications/services are required to quickly respond

to their client inquiries. Graph 3 shows how locality affects the response time of reads. We fix
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both the read-to-write ratio to 50/replication size to 100, which result in that the read costs of both

ROWAA and grid protocol are of constants. The x-axis represents the read/write locality and the y-

axis represent the read response time. The graph confirms that the reads take longer time to process

when the write/read locality is low. As long as a client read could not obtain the value locally from

the replica it is routed to, additional around trips are necessary for this replica to query from a

read quorum to obtain the fresh value. Since most existing server selection algorithms consider

the locality based routing policy to increase cache hits on server replicas, the replication system

utilizing such routing policy automatically provides a strong read/write locality. Therefore, the

locality based protocol provides the read response time that is competitive as that of ROWAA,

illustrated by the middle curve in the 90/

6 Conclusion

In this work, we exploit the workload and replication scale impact to scalability and response

time of replication systems. Although the popular ROWAA protocol has good scalability and read

response time under read-dominated workload, it suffers from the high write cost as the write ratio

increases in the workload. The grid quorum protocol has constant write cost across all read-to-

write ratio. But its read cost is much higher than that in ROWAA so that the grid quorum approach

is undesirable for the majority of web applications, which handles workload with a high fraction

of reads.

The locality based protocol is able to achieve the low write cost as in the grid approach and the

low read cost as in the ROWAA approach under the assumption that requests from the same client

are routed to the same replica most of times. Such a strong read/write locality assumption can is

realized in the clustering systems that route requests of the same client to the same server replica

to increase cache hits. As the conclusion, the scalability benefit of the locality based replication

protocol can be realized in the existing replication systems with minimal modification to the current

request routing policy.
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