

Peer-to-Peer Data Sharing Among LabVIEW Nodes

Sadia Malik

CS 395T- Grid Computing

Project Report

12/13/03

INTRODUCTION

The goal of this project is to impose a peer-to-peer (P2P) data grid on a set of LabVIEW (LV) nodes. LV nodes, in this

context, are data acquisition sensors that access live data. This data is published over the network via a publish-

subscribe protocol used by these sensors, and any client who knows the physical address of these sensors can directly get

the sensor data from the node that owns the sensor. These nodes are also capable of running embedded LabVIEW Real-

Time (LVRT) applications, which allows us to create a P2P network with these nodes by creating a global namespace for

these sensors [1] such that a client can use a logical name of the sensor and query the P2P grid to locate the sensor.

This report is organized as follows: First, I give a brief background of P2P computing model, sensor networks, and

relevant applications [1]. Second, I describe the experimental setup and hardware I used to create the P2P netwok. The

third section gives a detailed description of the P2P network design and the LV based implementation. The final section

gives expected results and conclusion.

BACKGROUND

This project is based on two broad research areas in grid computing: P2P networks and sensor networks [1]. Both of

these technologies have been around for some time [2], but the broad use of Internet technology has created several new

opportunities for these technologies. Because these technologies are still being defined, I give a brief overview of each

as it applies to this project.

P2P Computing Model

The P2P computing model allows different nodes on the network to communicate directly with each other to share data

and/or resources. For this project, P2P is defined as follows [3]:

• Nodes have awareness of other nodes

• Peers create virtual network that abstracts the complexity of interconnecting peers

• Each node can act as both a client and a server

• Peers form working communities of data and application

• Overall performance of the system increases as more nodes are added

Sensor Network

Sensor network covers the distribution of small and relatively cheap sensors that are capable of wireless communication

and significant computation [4]. Sensor network technology allows us to place sensors closer to the phenomena being

monitored so that the data can be processed and filtered closer to the data source. It also allows multiple sensors to

collect the same information and then collaborate with neighboring nodes to resolve ambiguities. Typical sensors in this

network have embedded processor, wireless communication circuitry, data storage capacity, etc.

The sensor network technology is revolutionary for many situations where information gathering and processing is

needed for inhospitable physical environments and/or less accessible environments, such as remote geographic regions

or large industrial plants [4].

Application

This project will be a prototype of a real life application that can benefit from a P2P system which allows sharing of data

in a standard data grid format. The real life application can be a subset of emergency control response system to a

natural disaster, for example, earthquake or a tornado. In a situation like that, data needs to be acquired from different,

spatially distributed sensors, and analyzed for different behaviors; for example, to predict the next course for the disaster

and damage caused by it. Currently most of these systems use central data storage and supercomputers to store and

process this data [5].

As distributed and networking technology becomes faster and more reliable, more and more applications are moving

away from central repository for live sensor data. In this project, I’ll present a solution that stores the data locally, in a

distributed data grid, by combining the storage devices on all sensors and sharing that storage so that different sensors

can put their data in a virtual global data space. This not only allows sensors to share unused storage space, but by

abstracting the physical to logical memory mapping in the data grid, it also allows clients to access that data as if is

located in a central global memory1.

EXPERIMENT

The goal of this project is to create a P2P data sharing network using LV nodes that are capable of acquiring sensor data

and publishing it on the network [6]. Currently these nodes work in a client server mode. However, because these nodes

can run LVRT applications [7], we can create a P2P system where each node in the grid is aware of every other node in

the P2P system, and can query the node to access the sensor data. By adding a P2P data grid, we get the following

benefits:

Global Namespace

The major benefit of having a P2P data grid is that is allows internal and external nodes to access data without having

any knowledge of where that data is physically located. This is done by providing a physical to logical mapping of data

to a global namespace that all peers in the grid can have equal access to. External nodes can then query any peer node in

the grid to locate the actual data point in the grid.

Sharing of Sensor Data Among Peers

Since all peers in the grid are aware of the data and resources available in the grid, they can use this information to

minimize network traffic and share resources on need basis. For example, if one node needs more disk space it can

request other nodes to share any free disk space that they are not using.

1 There are many open issues with P2P and sensor networks, like network security, wireless communication, power
consumption, etc. These issues are not addressed in this report.

Dynamic Network Topology and Fault Tolerance

A P2P data grid allows dynamic insertion and removal of sensors in the data grid. This way even if one sensor or node

goes offline, the overall data grid can continue to function. By adding some redundancy in the system, we can also make

the grid fault tolerant, such that if one sensor dies another sensor can take over its responsibilities.

Hardware

For this project, I used National Instruments’ FieldPoint RT controllers ([c]FP-20xx serial product line) and LabVIEW

Real-Time 7.0 software. A FieldPoint system is a modular I/O system that consists of a controller and one or more of

I/O modules. The I/O modules are designed to acquire a variety of physical data, like temperature, pressure, etc.

Numbers of physical channels in a FieldPoint system depend on the number and type of I/O modules used. The [c]FP-

20xx controllers are also capable of running LVRT applications for embedded control and data-logging. These

controllers also support a publish-subscribe protocol to publish the I/O data over the network, which allows clients to

directly talk to the controller and read or write any of the I/O channels.

Although the resources and number of channels available on a FieldPoint system are slightly higher than what a typical

sensor network is likely to have [4], they are ideal to simulate a P2P data grid as they have the following capabilities:

• Each node can be placed in geographically different, potentially hazardous, location

• Each node is capable of running a LabVIEW Real-Time application

• Each node has one or more sensors connected to it

• Each sensor can acquire live physical data

• Each node can share its sensor data over the network using a publish/subscribe protocol [5]

P2P DESIGN

Figure 1 shows the basic design for the P2P data grid. A peer in this grid is a FieldPoint controller with some I/O

channels connected to it [6]. The nodes are capable of communicating among each other as peers and can share

information among each other, such that no one node has all the information available in the grid, but when all these

nodes come together as peers in the grid, they can present the I/O data as if it is coming from a central repository.

Figure 1 P2P data grid with FieldPoint LVRT nodes

The nodes share their data with each other by creating a mapping from physical address to a logical name. This logical

name is unique for each channel and serves as the global name for that I/O channel in the data grid. The logical

namespace is created using a default naming convention, which each node conforms to. By allowing a default naming

convention, we can minimize the initialization needed by the user to setup the system. However, the system can allow

the user to change the logical name to a user-defined name, once the grid is initialized. Table 1 shows an example

mapping where each controller has a temperature channel connected to it. In this example, each node has specific region

assigned to it (e.g. Zone1) and uniquely names all its channels based on this region and channel offset.

Physical Address Logical Name

fieldpoint://10.10.10.10/FP/1TC/001 Zone1/Temperature1

fieldpoint://10.10.10.11/FP/1TC/00 Zone2/Temperature1

fieldpoint://10.10.10.11/FP/1TC/01 Zone2/Temperature2

 Table 1 Mapping from sensor’s physical address to default logical name2

2 The physical address in my setup was actually an internal logical mapping to the actual physical address that only the
owner node has information about. I used the internal logical mapping because it is easier to program with the
FieldPoint API [6]. However, using the actual physical address (as given in Table 1) is not too different from using this
internal logical mapping.

P2P Clients

Any peer within the grid is capable of acting as a client of the shared data space. Because the node is already a peer in

the system, it shares common knowledge logical namespace and can use that to find the sensor it is interested in locating.

Details on how the logical namespace becomes common knowledge is discussed in a later section.

In addition to a peer node, any external computer on the network that can access the grid can become a client. However,

because an external client does not have access to the common knowledge that peers within the grid share, it must know

the IP address of at least one peer node in the system that can act as a communication proxy for the external client3. The

client does not become a peer in the system to access data, but uses point-to-point communication with the proxy peer to

access shared data using global logical names.

Figure 2 P2P Grid and internal/external clients

P2P Data Grid Implementation

As mentioned earlier, I used the LVRT 7.0 software to implement the data grid [7]. Most of the work is related to

implementing a distributed hash table (DHT) [8] using LV’s array data type and communication VIs [7]. I used the

Content Addressable Network (CAN) indexing mechanism [9] to place different peers on the grid and share global

namespace.

Brief Overview of CAN

In the CAN indexing scheme [9], the grid is an n-dimensional logical space and each node is randomly assigned a part of

that grid space. When a new node enters, it randomly selects a point P on the grid and requests the existing nodes to let

it join the grid. The nodes that already exist in the system collaborate with each other to split the grid in such a fashion

that allows the new node to own part of the grid space and gives it knowledge of immediate neighbors. If the P2P

system is used to share information among nodes, like file sharing, then each new file is added to the grid via a (DHT)

[8] whose hash function determines the point Y where the information will be stored. A node inserting the information

3 Alternatively, the first node in the P2P system can register itself with a DNS server using a well-known hostname that
external clients can use to access the shared data.

uses this hash function to locate the same point Y and sends its information to the owner of the region where Y lies. The

nodes communicate with each other by routing their messages through their neighboring nodes until the message reaches

its destination. Ratnasamy, et al., give an excellent presentation of CAN in [10].

CAN in P2P LV Grid

I used CAN to create the P2P data grid, with the limitation that the grid is only 2d and could only have 255 maximum

nodes. The limitation of 255 nodes was due to the fact that the nodes I used were all on the same subnet.

 I used an array of NodeElement (Figure 3a) to store my node information. Each NodeElement contains the IP address

of a node and the rectangular region in space that it owns [X0Y0, X1Y0, X0Y1, X1Y1]. The array of NodeElement’s is

shared among all nodes. However, because there is an upper bound on the number of nodes in the grid (i.e. 255), the

NodeTable is replicated among the nodes, instead of being distributed. By replicating this table, each node is capable of

directly talking to the other peer node, and no routing is necessary. This scheme is different from the CAN scheme,

where each node only knows its neighboring nodes, but is similar to Chord’s finger table scheme [11]. Ratnasamy, et al.

actually discuss a similar finger table scheme to optimize CAN routing in [12].

 Figure 3a NodeElement data structure Figure3b SensoreName data structure

In addition to storing the node information, the grid also has shared a DataTable. This table is simply an array of

SensorName data structure (shown in Figure 3b). A SensorName element contains the physical to logical mapping for

a given sensor in the grid (see Table 1).

Unlike the NodeTable that has only 255 elements, the number of elements in the DataTable can be very large

(255*144=36720) where 255 is the number of maximum nodes in the grid and 144 is the maximum I/O channels each

node can potentially have. Because of its large size, the DataTable is a true DHT: i.e. information contained in this

table is distributed among nodes, such that no one node in the grid has a complete table in its memory, but the system as

a whole has the complete table that can easily be accessed by each peer node.

The NodeTable and the DataTable comprise the common knowledge that each peer in the grid system has access to.

Details of how this common knowledge is created and shared are given in a later section.

Communication Among Nodes

The peer nodes communicate with each other via message passing. UDP is used as the underlying network protocol.

Most communication among nodes is point to point. However, some messages use UDP broadcast and are sent to all

peer nodes.

Table 2 gives a list of message types defined and implemented for this P2P system. Several other messages can be added

to the grid system, such as Read, Write, or Heartbeat, which will mostly need point-to-point communication.

Message Type Uses
Broadcast?

Purpose

Joining Yes

This message type is used when a new node tries to enter the grid system.
Because a new node does not have any information about the existing system,
it uses UDP broadcast to send its request to all existing nodes.
Any node that receives this message responds to the sender node using point-
to-point connection and InitializeNodeTable message type.

Find No This message is sent by the “client” to find a sensor in the grid. The client
simply has to send the global sensor name in the message packet.
Point to point communication is used because the NodeTable is replicated.
Each peer can determine the point P where the sensor is located using the
common hashing function and then lookup the corresponding node in the
NodeTable to determine the owner of that grid space.

Found No This message is sent in response to the Find message. Because the sender of
this message knows the node that sent the Find message, only point-to-point
communication is needed.

InitializeDataTable Yes Once a new node joins the grid, it sends the InitializeDataTable message
that contains a list of all the sensors owned by the new node. This message is
sent as a broadcast message. Each node that receives this message iterates
over the list and adds it to its bucket of hash table piece if the sensor name
maps to its grid space.

InitializeNodeTable No This message is sent in response to the Joining message. As the sender
knows the IP address of the node that sent the Joining message, point-to-
point communication is used.
The sender of this message the splits the grid by adding the new node and
updates its NodeTable. It then sends a copy of its NodeTable the new node.
Since the Joining message is a broadcast message, more than one one is
likely to send out the InitializeNodeTable message to the new node. The
new node only accepts the first response it receives and copies the global
NodeTable to local memory. All other responses are ignored.

Table 2 Messages defined for the P2P LV Grid

Node Discovery and State Transition

When a new node comes up it initializes a local data table of SensorName elements using the sensors that are connected

to the node and sets its state to Joining. It then broadcasts a Joining message with its IP address to the local subnet.

Depending on the system state, there are three possibilities:

First Peer If this is the first node in the system, then it will not receive any response to the Joining message. The

node tries three times and if it times out on all three attempts, it assumes that it is the first node in the system. With that

assumption, the node changes its state to Ready and takes ownership of the whole grid space. At this point there is only

one entry in the NodeTable and no entry in the DataTable. If the node receives a Find request from an external client,

it will look it up in the local data table only4.

Second Peer If there is only one node in the system and a new node arrives (i.e. broadcasts a Joining message), the

first node splits the grid into half, updates the NodeTable and sends a copy of the NodeTable to the new node. The new

node updates its NodeTable, changes its state to Ready, and broadcast its local data table. The receiving node iterates

over the data table list and adds sensors that map5 to its grid space to its part of the DataTable.

Third and Subsequent Peers If there are two or more peers in the system and a new node arrives, all the existing

peers split the grid and update their NodeTable and send a InitializeDataTable message with the NodeTable structure

to the new node. The new node only accepts the very first response6 and copies the NodeTable to its local copy of

NodeTable and changes its state to Ready. Because all nodes use the same spit algorithm7, the changes to NodeTable

are the same at each peer node. The new node then broadcasts its local data table, which each peer in the system

processes and adds it to its part of the DataTable if the entry maps to its grid space. Each node also has to update

existing entries in the DataTable because the division of grid space has changed8.

Finding a Sensor in the Grid

Once the grid is initialized (i.e. has one or more peers in the Ready state), any peer within the grid can send a Find

message to retrieve a sensor. Since each peer has knowledge of all other peers (common NodeTable), it can directly go

to the peer node that has the sensor in its part of the DataTable. Currently, the responding node only sends the physical

address of the sensor to the requestor. However, it can be extended such that the responding node actually retrieves data

from the physical sensor (by communicating directly to the owner) and then return the I/O data to the node that sent the

Find message.

Fault Tolerance

I did not get a chance to implement fault tolerance, but the system can be extended to add fault tolerance by adding

redundant sensors. Each element in the DataTable can be extended to contain not only the primary sensor, but also a list

of redundant secondary sensors. Secondary sensors share the same logical name as the primary sensor, but have a

different physical address. A sensor gets the primary or secondary sensor status based on its arrival order: i.e. if a sensor

with name A is being added and another sensor with the same name already exists, then the new sensor goes to the

secondary sensor list. If a peer node fails to retrieve the primary sensor from its owner, it puts one of the secondary

4 This part is not yet implemented. In addition, the very first node currently does not add its local I/O data to the
distributed DataTable, but that can be easily added as the first node knows it is the first node and can broadcast an
InitializeDataTable message as soon as the second peer goes to the Ready state.
5 This mapping is done using a common hash algorithm (H), which given a non-empty string S, returns point P(x, y) such
that x=Hx(S) and y=Hy(S).
6 Current implementation does not have any shared lock to protect the global information, so it assumes only one node
tries to enter the system at any given time and only when it goes to the Ready state, another node makes an attempt to
join the grid.
7 Currently the split grid only splits the grid across the X axis, but it is easy to change that to split across either X or Y
based on some condition.
8 This part is not yet implemented.

sensors as the primary sensor and removes the original primary sensor from the list. If the original sensor becomes alive

again, it needs to add itself to the grid as if it was a new node.

RESULTS and CONCLUSION

Figure 4 shows the user interface for this application. Each peer that runs this application has to initialize the

MyIPAddress and Region controls. Once the node is in the Ready state, user can enter the globally shared sensor name

and click on the Find button. If the sensor is found in the grid, its physical address is displayed in the Physical Address

indicator. Appendix A has a list of all the LabVIEW VIs created for this implementation and their corresponding

function.

Figure 4 User interface for P2P LV data grid

Unfortunately I could not get the peer nodes to synchronize properly when they were being added to the system, so I do

not have any experimental results. However, as mentioned in the implementation section, the shared global namespace

is stored in CAN based DHT, so I would expect this system to be very scalable as long the number of peer nodes is

limited to 255. The CAN scheme I implemented replicates the NodeTable and is very similar to the finger table scheme

of Chord. This indexing scheme is not scalable for very large systems (that are not limited to local subnet). In that

situation a combination of CAN and Chord can be used to optimize node message routing [9]. The lookup time to find a

sensor based on its global name should be O(1) as the peer node can determine the node that stores the sensor mapping

by just looking it up in its NodeTable. Most of the communication among nodes is point-to-point so there should not be

a lot of network traffic. Broadcasting is only used when a new node enters, which, in a real system, should not happen

very frequently.

In general, I found the CAN indexing scheme to be very useful and flexible. Users are free to implement any split and

hashing algorithm to make sure their system has good load balancing.

RELATED WORK

A number of references have been mentioned in this report that discuss sensor networks and P2P networks using

different indexing schemes. However, I did not find any work that is specifically related to P2P data grid that shares live

data using the CAN indexing scheme or P2P grid based on a DHT implemented in LabVIEW.

APPENDIX A

p2pNode.vi Main application. This VI has three threads: Thread 1 is used for initializing the local I/O data and

broadcasting the Joining message; Thread 2 is a UDP listener threads that responds to different

messages supported in the P2P grid (see Table 2); and, Thread 3 is a client thread that responds to user

requests (see Figure 4).

FindP.vi This VI maps a point P to the node that covers that region.

FindSensor.vi This VI finds the node that stores the mapping of sensor’s global name to an actual physical address.

SplitGrid.vi This VI splits the existing grid region that contains point P into two sections. By default, the grid is

split across the X-axis.

Create/ParseMsgPacket These VIs create or parse message packets that are used by the peer nodes to communicate

with each other.

convertStringto[X] These VIs convert a given string to some LabVIEW data structure X.

convert[X]toString These VIs convert some LabVIEW data structure X to a string that is used to send that data

structure to other peers.

Other VIs All other VIs used are either utility VIs, FieldPoint API VI, or LabVIEW’s UDP communication VIs.

REFERENCES

[1] J. Heidemann, et al., “Building Efficient Wireless Sensor Networks with Low-Level Naming”, USC/Information
Sciences Institute.

[2] D. Barkai, “Technologies for Sharing and Collaborating on the Net”, in Proceedings - First International Conference
on Peer-to-Peer Computing, August 2001.

[3] D. Brookshier, D. Govoni, and N. Krishnan, “JXTA: JavaTM P2P Programming”, SAMS, 2002.

[4] C. Intanagonwiwat, et al., “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor
Networks”, USC/Information Sciences Institute.

[5] http://zdnet.com.com/2100-1103_2-5084955.html

[6] FP-20xx User Manual

[7] LabVIEW – Real-Time Module User Manual

[8] http://www.linuxjournal.com/article.php?sid=6797

[9] S. Ratnasamy, et al., “A Scalable Content-Addressable Network”, University of California, Berkeley.

[10] www.icir.org/sylvia/sigcmm01.ppt

[11] http://www.pdos.lcs.mit.edu/~rtm/slides/sosp01.ppt

[12] S. Ratnasamy, et al., “Routing Algorithms for DHTs: Some Open Questions”, University of California,Berkeley,
http://www.cs.rice.edu/Conferences/IPTPS02/174.pdf.

2

http://zdnet.com.com/2100-1103_2-5084955.html
http://www.linuxjournal.com/article.php?sid=6797
http://www.icir.org/sylvia/sigcmm01.ppt
http://www.pdos.lcs.mit.edu/~rtm/slides/sosp01.ppt
http://www.cs.rice.edu/Conferences/IPTPS02/174.pdf

	Peer-to-Peer Data Sharing Among LabVIEW Nodes
	Sadia Malik
	CS 395T- Grid Computing
	Project Report
	12/13/03
	INTRODUCTION
	Global Namespace
	Sharing of Sensor Data Among Peers
	Dynamic Network Topology and Fault Tolerance

	Hardware
	P2P Data Grid Implementation

