
Internet and Grid Computing 2003 – Final Report

XML Filtering in Peer-to-peer Systems

12/10/2003

Honguk Woo (honguk@cs.utexas.edu)

Pilsung Kang (pilsungk@cs.utexas.edu)

Computer Sciences

University of Texas at Austin

mailto:honguk@cs.utexas.edu
mailto:pilsungk@cs.utexas.edu

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

1. Introduction

2. Publish/Subscribe Model

3. XML sharing application in P2P

3.1 JXTA

3.2 XShare Implementation

4. XML Filtering Mechanism

4.1 XFilter

4.2 XFilter Implementation

5. Experiments

6. Conclusions

7. References

1. Introduction

Internet-scale Information dissemination systems have
been investigated to provide timely notifications for
occurrences of relevant information on the Internet to a
large set of users. The publish/subscribe model has
gained much attention for this purpose, but currently it is
yet limited in that most system implementations are
based on typical keyword matching methods.

In this project, we have first investigated an automata
based approach for matching XML document with user
profiles, XFilter[3] which can extend information filter
functionalities in terms of expressiveness of user profiles
and matching effectiveness. Then we have explored a
state of art technology, JXTA[4] to create a p2p
networking environment where peers publish user
profiles to collect and filter XML documents. We have
leveraged these two technologies to build the XML
filtering system in p2p networks in which peers in the
networks are allowed to share XML documents and each
peer can express its interest to filter unwanted XML
documents out. This XML filtering system is useful in
that it avoids message flooding in a distributed
environment. A peer inserts XML documents in shared
resource pool and only subscribed peers for the
documents are notified dynamically in this environment.
Our work is different from traditional publish/subscribe
systems in that users’ interest is described in XPath[9] to
support a wide range of application requirements without
limitation on subscription expressiveness.

Currently although we apply two post-engineering
concepts of the notification such as full replications of
matched documents and partial replications of matched

contents, it would not be difficult to apply other
application specific requirements on the top of our
prototyping implementation due to our modular
implementation.

The final project report is structured as follows. Section
2 summarizes the basics of publish/subscribe models
which would give a picture of our system architecture.
Section 3 describes a JXTA based p2p application,
XShare which is developed to share XML documents in
a common p2p fashion. This section includes the details
on JXTA protocols and discovery services. Our technical
review on XPath and implementation of XFilter are
followed in section 4. We then conclude with interesting
issues we may identify as future directions after showing
experiment results of our system.

2. Publish/Subscribe Model

Recently the publish/subscribe model has been popular
in many application domains due to rapid growth on on-
line popularity and its efficiency on the integration
process. As the web environment has spawn new
business models based on on-line transactions and
communities with a certain interest, advanced services
for providing rapid notifications of certain events have
been deployed in the form of information dissemination
in many domains including stock quotes, financial news,
transportation and so on. An agent handling information
collection publishes such information, which will be
delivered to a group of users at edge networks. The
delivery process is to go through a publish/subscribe
system and the system ensures the delivery of the
notifying information to all the interested users. Recent
deployment is mainly focusing on millions users around
world, thus scalability is a key issue in the
publish/subscribe model.

It is known that the publish/subscribe model is efficient
for integrating applications in distributed environments
because interactivities among the applications in general
rely on their anonymity, delivering messages without any
knowledge on destination of the messages. An
information provider can fully leverage a
publish/subscribe system by letting the system handle the
delivery process without specification of how to send
and who to receive. In the publish/subscribe model, an
information provider and a group of users relying on the
provider are called a publisher and subscribers
respectively. The messages between the publisher and
subscribers form events, which are well structured
through the transformation process from collected

 2

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

information to notification messages. Shortly in fully
distributed environments, events are sent to whoever is
interested in the events, whenever information providers
want to share whatever they want.

The publish/subscribe model can be categorized in
subject-based or content-based model.
• Subject-based publish/subscribe model[1]
Any event is tagged with subject that describes its
content. Only users subscribing the subject of the event
are delivered. This model can be said as group-based in
which users make groups with the subjects and then
multicast communication channels for the groups are
supported. This model is inherently efficient and scalable
because the mapping process from a particular event to a
group of users who are supposed to receive the event
should be taken care of only in the subject space with a
fixed number. It supports, however, expressiveness in a
limited way from users’ perspective due to this fixed
cases on the subjects. In a financial application domain,
for example, a subject-based system may support such
event labeling as “Dell” and other symbols, but users’
interests in this domain are not fully described by using
such categorization. Users may require correlation on
symbols and even more details on contents such as
quotes of related symbols or specific insiders’ trading
information.

• Content-based publish/subscribe model[1]

Identifying the tradeoff between efficiency and
expressiveness, there are alternatives more focusing on
utilization of contents in events in the matching process.
While subject-based models can make easier to use
simple matching algorithms by relying only subjects of
events, content-based models need to develop more
complex algorithms for filtering by more specific
matching conditions. In the previous application domain,
the “Dell” event can be more specific like “Dell with
price > $10”. This event definition is in general decided

by users and thus ideal one would be in a natural
language. While more expressiveness in filtering criteria
is desirable in common settings, multiple dimensions on
filtering criteria pose not only complexity issues of
designing a sophisticated matching process but its
scalability issue. Therefore most content-based models
have relied on a typical scheme that implements
matching mechanisms based on combinations of
keywords and predicates over associative values of the
keywords in that sense.

In this project, we have leveraged an efficient XML
matching scheme, XFilter. Recent trends of XML have
rapidly been increasing areas where XML data need to
be analyzed for further processing such as information
exchanges in business and business. Therefore,
environments where XML data from multiple
information providers are streamed and various users
define their interest over such XML data are frequently
referred to imply necessity of XML based
publish/subscribe system architectures. In such
environments both contents and structures are used to
match XML data against users’ interests, so a language
for describing the interests requires to express desirable
contents in specific structures. For this purpose, we use
XPath, a W3C standard language. XPath can be used
individually and also be a component of XML query
languages such as Xquery[10] to address a certain part of
XML data.

 publish
3. XML Sharing application in P2P notify

3.1 JXTA

Developed by Sun Microsystems, JXTA is an open
source programming and computing platform to ease the
development of P2P networking. JXTA protocols and
components allow JXTA peers to perform the tasks that
common p2p networks support[4]:
• Locate peers, peer groups, services and resources

(discovery).
• Send messages to peers over virtual channels or

pipes.
• Get status information on other peers
• Organize into peer groups.

JXTA is summarized in that “JXTA platform allows any
connected device on the network ranging from cell
phones and wireless PDAs to PCs and servers to
communicate and collaborate in a P2P manner.” The
name comes from JuXTApose meaning “to place two
entities side by side or in proximity.”[4] The reason for

[Figure 2.1] Publish/Subscribe Model[1]

Publisher SubscriberPub/Sub system

subscribe

 3

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

choosing this name is that the development team at Sun
recognized that p2p solutions would always exist
alongside the current client/server solutions rather than
replacing them completely.

• Goals of JXTA[8]
Current p2p applications such as Napster, Gnutella, and
ICO have similarities in terms of their functionalities:
file sharing and instant messaging. One significant
problem on current deployment of these applications is
incompatibility between them. This problem results from
no common development process and general platform
for such p2p applications, leading each community of
p2p applications to form closed one. Expecting p2p
applications deployed continuously with more complex
functionalities, one of major goals of developing JXTA
is to provide a common language for p2p application
developers, giving benefits to both development and
integration process. By leveraging JXTA
implementation, most fundamental parts of p2p
applications such as resource management and
communication can be easily component-based. Hence,
the developers are allowed to focus on specific functions
of the applications from the initial stage of their
development process.

The goals of JXTA are summarized like followings:
• Interoperability: to support a wide range of

distributed computing applications by developing a
common set of general purpose p2p protocols

• Platform independence: any language, any OS, any
hardware

• Ubiquity: to enable new applications to run on any
device that has a digital heartbeat

JXTA provides multiple implementation bindings:
• Programming language: C/C++, Java
• System platform: Linux, Windows
• Network platform: TCP/IP, Bluetooth
Very limited requirements are assumed on target devices
in that any device with digital heartbeat can be JXTA
node. This design concept of JXTA opens target
applications to future areas like pervasive computing.

• Concepts of JXTA[8][4][7]

o Peer: a peer is a JXTA node that implements
JXTA protocols. A peer can publish services
and resources available in its peer groups. It can
be any device type with networking
functionalities and JXTA protocol
implementation: PC, PDA, server, mobile
phone

o Peer group: a peer group is a set of JXTA
nodes who share a common interest. This peer
group is the place where peers can dynamically
join and leave. A peer should be associated with
at least a single peer group and it can also be
involved in multiple peer groups at the same
time. The default peer group is “Net peer
group” and if a newly joining peer can’t find
any peer group, then it may create the net peer
group for itself. A peer group is a sort of
organizational domain with peer group services
for the peers in the group, seeking common
goals. Rendezvous peers are responsible for
discovery service and caching for
advertisements, working as super-peers in
cluster-based peer networks[2]. Relay peers
route JXTA messages, and especially enable
communication via firewall and NAT, the
obstacles that incur network partitions. By this
relaying mechanism, JXTA peers can
communicate each other without partition
problems and peer groups establish virtual
regions for the peers in the groups.

o UUID: UUID uniquely identifies a resource
within the local run time environment. No
global state is maintained, thus there is no
guarantee of unique identifiers across the P2P
network. Any resource type such peer, peer
group, pipe, etc has its UUID.

o Pipe: a pipe is a virtual asynchronous and
unidirectional communication channel. It
supports transparent fail over through dynamic
binding. Point to point pipes connect exactly
two pipe ends and propagation pipes connect
one output to multiple inputs. Physical network
deployment and implementation of the peers are
encapsulated with peer endpoints, collections of
network enabled address in peer nodes.

o Advertisement: JXTA advertisements represent
network resources such as service, peer, peer
group, pipe etc. Peers publish their available
resources by exchanging advertisements in
XML formats. Since any resource should be
discovered by JXTA services based on these
advertisements, it is important to reduce
communication messages created by the
services. Hence, advertisements can be locally
cached once discovered by peers and used
during their lifetime specified by the time-to-
live value. Even though it is preferred to
minimise network traffics and to improve
response times of resolving queries,
advertisement cache is not mandatory because

 4

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

JXTA does assume large range of peers from
small devices such as nodes in harsh resource
sensornets to servers with various capabilities.
For such resource limited environments,
advertisement caches may be beyond
capabilities of the peers with small persistent
storages.

• Peer Group Services[8][4][7]
JXTA implementation in Java provides peer group
services, which are published in the advertisements of
peer groups. These services consist of discovery,
membership, access, pipe, resolver and monitoring
services. It can be developed to meet specific
requirements of applications, and generic
implementation of the peer group services will apply
unless replaced with the application implementations.

 5

• JXTA Protocols[8][4][7]
The JXTA specifies two protocol sets: core and standard.
Core specification protocols include

o Endpoint routing protocol: used to dynamically
find a route to send a message to another peer.
If no direct route, then find the intermediary
peers. It supports “plug-in” drivers for different
networks

o Peer resolver protocol: used to send a generic
resolver query to one or more peers, and receive
a response (or multiple responses) to the query.
Each query is addressed to a specific handler
name, which defines the particular semantics of
the query and its response.

o These core protocols must be implemented to be
JXTA compliant, although these

implementations do not guarantee
interoperability of different peers. JXTA
specification does not make assumption on
network devices in terms of their transport
protocol, so any message type on radio packet
protocol or Internet-scale TCP can be supported
by different JXTA binding implementations.
Currently JXTA v2 from Sun includes TCP/IP,
HTTP over TCP/IP and Bluetooth in its
downloadable package. More implementation
for small devices is expected in near future.

Standard service protocols include following four
protocols:

o Rendezvous protocol: peers can subscribe or be
a subscriber to a propagation service. Within a
peer group, peers can be rendezvous peers, or
peers that are listening to rendezvous peers.

o Peer discovery protocol: peers publish their own
advertisements, and discover advertisements
from other peers

o Peer information protocol: peers may obtain
status information about other peers, such as
state, uptime, traffic load, capabilities, etc.

o Pipe binding protocol: peers bind a pipe virtual
connection to an actual peer endpoint

• JXTA Discovery[7]

[Figure 3.1] JXTA Driver Structure[4]

[Figure 3.2] Rendezvous Network[7]

Most improvement from JXTA v1 to v2 is from its
discovery service implementation. In this project, we rely
on JXTA discovery service and also refer to its scheme
when designing our own protocol for broker cluster.
JXTA discovery service is an asynchronous mechanism
for discovering advertisements for peers, peer groups,
pipes, services, etc. By utilizing this service, any peer
can send query message to a specific peer and propagate
the message to the JXTA network. In JXTA v2,
resolution for the query message is processed by using

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

JXTA advertisements, the rendezvous super peer
network, and shared indices of the network.

In the rendezvous super-peers network, queries are only
propagated among rendezvous peers and edge peers only
receive direct queries for their own advertisements. This

new concept is applied in JXTA v2 to avoid message
flooding. Any peer can be a rendezvous node if specified
with its property and shipped with rendezvous protocol
implementation. Edge peers publish indices of
advertisement across rendezvous network using
DHT(Distributed Hash Table). This index structure is
called share resource distributed index in JXTA v2.
There would be two possible approaches to find
something in p2p networks: using some shared index
over peers or relying on some network crawling
mechanism.
These approaches have tradeoff between their
maintenance cost and search cost. While the shared index
structure is efficient for searching, its maintenance cost
would increase significantly as its consistency
requirement keeps tight, especially in highly dynamic
environments. Contrary to the shared index, the crawling
mechanism has no maintenance cost but its scalability is
limited due to its inefficiency of searching. Rather than
relying one of these, JXTA discovery leverages both

from practical perspective, assuming a fluctuating and
unpredictable network environment. Each rendezvous
peer maintains an ordered list of known rendezvous peer
in the peer group by their peer IDs. No strong
consistency mechanism, however, is used to enforce the
consistency of the list across all rendezvous peers. They
periodically send and receive a list randomly chosen
from their known rendezvous peers.

When R5, one of rendezvous peers in the figure 3.3, is
the location for an index data (adv1) for the some
network resource in P2 peer by the hashing result in
DHT, the index is stored not only on R5 but also on its
neighboring peers, say R4 and R6. These neighbors are
chosen by a certain predefined number in the ordered list
for rendezvous peers. Without changes on the
rendezvous network, any query for the advertisement,
adv1, is directly resolved by DHT.

[Figure 3.3] DHT Replication on Neighbors[7]
If R5, the original location for the adv1, is down, then R3
in the figure 3.4 updates its ordered list of rendezvous
peers. R3 still can resolve a query for the adv1 due to the
neighboring replications. However the replication does
not guarantee anything if it is partial, so more changes
than the replication ranges require an alternative
mechanism, limited range walker. If more changes
occurred in the figure 3.5, the limited range walker
would proceed both up and down way to find the adv1 in
the peer group.

3.2 XShare Implementation

The JXTA based document sharing application with
XML matching filters, XShare, has following
functionalities:
• Join in Group: to join in a default NetPeerGroup.

For rapid prototyping in this project, we allow only
default peer group where peers are listed in our p2p
network.

[Figure 3.5] Limited Range Walker[7] [Figure 3.4] Searching of Inconsistent DHT[7]

 6

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

• Share Document: to create metadata for a XML
document which can be searched with its document
title. This “share” process is that any XML
document specified as users can be published as a
form of the JXTA advertisement to let the document
be shared in the default NetPeerGroup.

• Create Filter: to create XPath specification to filter
XML documents out. In this project, a filter is edited
in our test GUI window.

• Remove Filter (ongoing): to remove XPath
specification in the p2p network.

• Activate Filter (ongoing): to allow the application to
detect any documents shared in the NetPeerGroup
and to be notified. Any matched XML document is
automatically stored in the local directory for future
usage, yet this replicate process is not an issue in
this project.

• Deactivate Filter: to deactivate filters. When a filter
is created, it is default to set to be activated.

• View Notifications: to browse a list of titles of
shared documents and matching results against
activated filters.

Our XShare prototype differs from general
publish/subscribe systems in that a fixed set of what can
be matched is not defined and its matching mechanism is
more than a combination of keywords or predicates. The
advantage of the prototype implementation results from
its flexible XML matching mechanism using XFilter
while this mechanism may be a burden to the underlying
p2p network.

MyJXTA[4] is a sample application provided by the
JXTA working group. It shows how to build a JXTA
based p2p application in JAVA platform independent
environments. Our work on XShare is based on such
sample programs as MyJXTA and JxtaCast[4] from
JXTA home, which provide us a starting point for GUI
design and implementation of fundamental p2p
functions. Our intent to design XShare is to provide a
p2p application framework for testing the XML
matching mechanism, XFilter in dynamic environments.
We do not assume any specific application for target
environments except large volumes of newly created
XML documents, so in the project we focus mainly on
implementing XFilter in p2p networks and designing a
scalable XML matching architecture by leveraging
JXTA technologies, especially in such dynamic
environments. XShare in the figure 3.7 has four major
components: JXTA based XShare peer, Profile manager,
XFilter, and Notification service. In distributed
deployments, every participant is a full-fledge XShare
peer with all of XShare components, so a peer has
subscriptions in XPath locally to process XML matching
over dynamically generated XML documents. The local
profile manager of the peer is responsible for handling
subscriptions and filtering based on the subscriptions. In
XShare, all subscriptions are encapsulated in Filter
objects each of which is associated with a XPath string.
Java JList and ArrayList are used to implement Filter
List structures, Filters and instead of using a database
engine for permanent storage, a text type file using
FileWriter/Reader objects is maintained for the storage
purpose.

[Figure 3.6] Screenshots of XShare
A peer can share XML documents by opening the documents and pushing them. The left window shows a XML data

chosen. A peer can register subscriptions in XPath in the center window. The last window shows matching results
between XML documents and XPath subscriptions

 7

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

XShare interacts with XFilter by implementing three
major functions in the XFilter.Driver interface:
• public ArrayList allMatch(ArrayList queryList,

String xml_filename)
It attempts to match a file from XML stream against
all of filters in ArrayList, which are handled by the
local profile manager. Rather than evaluating an
individual XPath over the file, XFilter constructs its
query index structure of all possible XPath queries
and returns a matching set of the XPath queries
(unique IDs of the queries) to the local profile
manager.

• public void save_file(ArrayList queryList, String
q_filename)

• public ArrayList open_file(String q_filename)
These two file interfaces are executed by a peer’s
local profile manager when the peer starts and
terminates respectively.

4. XML Filtering Mechanism

In this section, we describe the basic data structures and
algorithms used to implement an XML document
matching technique, XFilter[3], of which the main
algorithm was developed in UC Berkeley. We begin by
presenting an overview of the XFilter mechanism
consisting of the following components.
• Filter engine that performs matching operations

between profile and XML documents
• Event-based parser for XML documents
• XPath parser for user profiles
• Post-matching process interfaces

The subscription language used in XShare p2p system is
XPath, a language for addressing parts of an XML
document that was designed to be used by both XSL
Transformations (XSLT) and XPointer. With this user
profile information, the XML document matching
operations of XFilter are performed on every XML
document that arrives at each XShare peer. Detailed
information about XPath language can be found at
http://www.w3.org/TR/XPath

XShare GUI

DataShare TabProfile Tab

PeerGroup Tab Notification Tab

Profile Manager Matching System

Permanent
Storage

Query ParserFilter List X
Filter

Level/Attr Checker
Interface to JXTA services XML Parser

4.1 XFilter Membership Discovery
Service

 Notification service
When an XML document arrives at the system, it is run
through the event-based XML parser, which creates
events that are responded to by handlers in the filtering
process. Once the matching profiles have been identified
for an XML document, the current implementation of our
XFilter returns a MATCH (yes) and the document is kept
by the XShare peer.

Pipe Service

 [Figure 3.7] Full-fledged XShare

• Filter engine[3]
In order to achieve high performance in a large-scale
environment such as the Internet, user profile grouping
and indexing are implemented with an inverted index
inside XFilter engine, called the Query Index, which is
based on hash table. This Query Index is constructed by
the decomposing process where each XPath query in the
user profile is converted to a set of path nodes by the
XPath parser. This process is equivalent to building the
Query Index over states of a finite state machine(FSM).
And then a XPath profile is a MATCH with a XML
document once the FSM of the XPath query reaches its
final state. Each of the decomposed path nodes serves as
the key inside the Query Index hash table as well as the
states of the FSM for the query. Path nodes are not
generated for wildcard(“*”) nodes. When the XPath
parser decomposes each XPath query in the user profile,
it generates and stores the following information inside
each path node[3].

o QueryId: a unique identifier for the query to
which this path node belongs.

o Position: a sequence number, representing the
location of this path node in the order of the
path nodes for the query.

o RelativePos: an integer value, representing the
distance in document levels between this path
node and the previous path node. It is set to 0
for the first node if the node does not contain a
“Descendant” (’//’) operator. It is set to -1 if a
path node is separated from the previous one by
a descendant operator. Otherwise, it is set to 1

 8

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

plus the number of wildcard nodes between
itself and its predecessor node.

o Level: an integer value, representing the level in
the XML document at which this path node
should be checked. If the RelativePos value of
the path node is -1, then its level value is also
set to -1. If the node is the first node of the
query and has an absolute distance from the
root, then the level value is set to 1 plus its
distance from the root. Otherwise, the level
value is set to 0. Note that this level value of a
path node changes and is updated during the
matching process.

o NextPathNodeSet: the pointer(s) to the next path
node(s) of the query to be checked. In our
current XFilter implementation, where we do
not allow nested path expressions, each path
node contains at most one pointer to the next
path node.

The figure 4.1(a) shows each of the decomposed path
nodes of three example XPath queries and the
corresponding information contained inside each path
node. The Query Index is constructed using these path
nodes, as shown in the figure 4.1(b). The Query Index
hash table contains each element name of path nodes as
the key, and two lists (Candidate List and Wait List) of
path nodes as the value of the table. Each node in the
Candidate List is the node of the query that is currently

evaluated and represents the current state of the FSM.
All the other path nodes that are evaluated in the future
are placed in the Wait Lists of their respective element
names. During the matching process, these nodes in the
Wait Lists are copied and moved to their respective
Candidate Lists, representing the state transition in the
FSM of a query.

• SAX parser for XML documents
The SAX[12] parser in the Filter Engine parses an
arriving XML document and generates parsing events
when it sees a start tag, an end tag and data internal of an
element node. And these events drive the matching
process of user profiles against the document. The
handlers of these events should be implemented such that
the appropriate checking for the element, which
generated the parsing event, against the current state of
user XPath queries is done and the correct state transition
is performed.

o Start Element Handler: when the SAX parser
sees the start of an element tag, it generates the
corresponding event. The Start Element Handler
is called along with the following information:
name, level, and attributes of the element tag.
Then the handler finds the name of element in
the Query Index hash table and performs two
checks, level check and attribute filter check, on
each path node in the Candidate List. The level
check is to ensure that the level of appearing
element in the document matches the expected
level in the user query. If the path node contains
a non-negative level value, in order for the
check to succeed, it must be same as the level of
the appearing element in the document.
Otherwise, when the level value of the path
node is -1, it implies that there is a descendant
operator before this node and the level for the
node is unrestricted. Then the check passes
regardless of the element level. The attribute
filter check is performed on any simple
predicates that reference the attributes of the
element. If both of these checks succeed, then
the node passes. Now, if this is the final path
node of the query, the query to which this path
node belongs to reaches the final state and the
document is a MATCH to the query. Otherwise,
the state transition of the query happens by
copying the next path node of the query from its
Wait List to its corresponding Candidate List.
During this transition, the level value of the
copied node should be updated if its
RelativePos value is not -1. The new level value

Q1 = / sports / nba // news

b) Query Index

[Figure 4.1] Path Node Decomposition
 and Content of the Query Index[3]

sports Q1-1
Candidate List

nba

stocks

quotes

PCCW

Q1-2

Q2-2Q1-3

Q3-1

Q3-2

Q3-3

Wait List

Q1
QueryId

Q1 Q1
Position 1 2 3
RelativePos 0 1 -1

1 0 -1 Level

Q2 = // nba / * / news
Q2 Q2
1 2
-1 2
-1 0

Q3 = / stocks / quotes // PCCW

Q3 Q3 Q3
2 3 1
1 1 0
0 0 -1

a) Three Example Queries and
Corresponding Path Nodes

 9

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

is set to the current document level plus its
RelativePos value. If its RelativePos value is -1,
we do not have to change it since it means the
level value is also -1 and the level for the node
is not restricted.

o End Element Handler: when the SAX parser
sees the end of an element tag, it generates the
corresponding event and this handler is called.
In this handler, the corresponding path node is
removed from the Candidate List, restoring the
state of the list as it was when the corresponding
start element tag was encountered.

o Element Characters Handler: when the SAX
parser sees the data associated with an element,
it generates the corresponding event and this
handler is called along with the data passed to
the handler. In our XFilter implementation, we
use this data for a new XPath operator ret().

 10

The figure 4.2 summarizes how the XFilter system works
with an example. For the given user profile that consists
of three XPath queries, the XPath parser decomposes
them into individual path nodes, each of which contains
information such as QueryId, Position, etc. Then the
corresponding Query Index is constructed and initialized
such that the path nodes, whose Position values are 1, are
placed in the Candidate List and others are placed in the
Wait List inside their corresponding elements nodes.
Now, when a new XML document arrives, it is parsed by
the SAX parser that generates events whenever the
parser sees element nodes. And these events change the
structure of the Query Index. For example, when the
parser sees the <sports> node in the figure 4.2, it
generates the ‘start_element’ event. According to this
event, the Filter Engine searches the Query Index for the
key ‘sports’ and performs level check and attribute filter
check on the path nodes in the Candidate List, which is
only ‘Q1-1’ in the figure. Since the level of the element
node in the XML document, where the SAX event
occurred, is same as the level value of the ‘Q1-1’ path
node, the path node passes the check and the Filter
Engine copies the next path node (Q1-2) and moves the
copy from Wait List to the end of Candidate List of ‘nba’
index. While it copies and moves the path node, it also
updates the level value of the copied node using the
RelativePos value of the copied node and the current
level or depth of the XML document. In the example, the
copied node of ‘Q1-2’ will have a new level value of 2,
which is the result of 1 (RelativePos value) + 1 (current
level of XML document).
The SAX parser continues and then sees <nba> node in
the document, finally generating the corresponding event.
This process is repeated until the end of the document.

4.2 XFilter Implementation

We have implemented XFilter with J2SE v1.4.2.

• XPath parser
We have used Java Compiler Compiler, JavaCC[5] tool
for implementing the XPath parser. Mostly the publicly
available XPath grammar for JavaCC, which checks only
if the given input is a valid XPath syntax or not is
modified to add appropriate actions into this basic
grammar to decompose a XPath query into a set of path
nodes. From this modified grammar, we can get XPath
parser Java source file for our purpose by running
JavaCC on the grammar. Nested path expressions are not
yet implemented in our prototype.

New incoming XML document

<?xml version=“1.0”>
<sports>
<nba>
<news>
Michael Jordan
</nba>
</news>
</sports>

Query Index

• SAX parser
We have used SAX v2 interface shipped in Sun Java
package, and Apache Xerces[11] SAX parser
implementation as the SAX parser. The followings are
SAX 2 handler interfaces.

o public void startElement (String uri, String
localName,String qName,Attributes attributes)
This notifies the start of an element. The SAX
parser will invoke this method at the beginning
of every element in the XML document; there
will be a corresponding endElement event for
every startElement event (even when the
element is empty). All of the element's contents
will be reported in order, before the
corresponding endElement event. It uses uri as
the namespace of the XML document,

[Figure 4.2] XFilter Operations

Three queries in user profile

Q1: / sports / nba // news
 [Q1-1] [Q1-2] [Q1-3]
Q2: // nba / * / news
 [Q2-1] [Q2-2]
Q3: / stocks / quotes / PCCW
 [Q3-1] [Q3-2] [Q3-3]

start_element event

copied &
moved

constructs
Query Index

Candidate List
sports Q1-1

nba

stocks

quotes

PCCW

Q1-2

Q2-2Q1-3

Q3-1

Q3-2

Q3-3

Q1-2

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

localName as the local name (without prefix),
qName as the qualified name (with prefix), and
attributes as the specified or defaulted
attributes.

o public void characters(char[] ch, int start,
int length)
The parser will call this method to report each
chunk of character data. The parser may return
all contiguous character data in a single chunk,
or it may split the returning data into several
chunks; however, all of the characters in any
single event must come from the same external
entity so that the locator provides useful
information. It uses XML documents character
data from ch array, using start as the start
position in the array and length as the number of
characters to read from the array.

• Filter engine : ret() operator
Currently, our implementation does only level check in
Start Element Handler and attribute filter check is not yet
implemented. Instead, in order to get information such as
attributes and characters of a specific part of XML
document when it matches user profile, XFilter is
extended with our new operator ret() in XPath
expression. With this operator, users of XShare peers can
extract the only information they need within an XML
document, as well as they can do filtering and matching
the documents. The figure 4.3 shows an example of
XPath query using ret() operator, and the output of the
XFilter when a XML document matches the query. It
returns all the information of the element node <title> in
the document as well as the match result.

5. Experiments

In this section we show the test results of our prototype
implementation. Our intent to conduct various test cases
is two folds: evaluation of the group communication and
the discovery service in JXTA v2 for J2SE, and
evaluation of our XFilter implementation in terms of its
scalability compared to a Java XPath engine, Jaxen.

We use four computers in the RTS lab of the University
of Texas at Austin for most tests. All of them are Dell
PCs and connected in a single LAN environment. Their
specifications are followings: CPU 2.53Ghz Memory
512M, CPU 540Mhz Memory 256M, CPU 700Mhz
Memory 256M, CPU 1.8Ghz Memory 1G. XShare
prototype and test programs are all written in Java J2SE
v1.4.2.

• Broadcast in a peer group
To evaluate the performance of broadcasting in a peer
group, three XML documents with different sizes
(small=150byte, middle=5k, large=50k) and varying peer
groups are configured. We measure the collapsing time
between the time just before sending a document from a
sender to the group and the time when the sender
receives all acknowledge messages from each peer of the
group. The figure 5.1 shows that as the number of peers
increased from two (node2) to four (node4), the time for
broadcasting data, unit of which is millisecond, relatively
increased when the group has four peers. As expected, in
the node4 case, the data size also impacts the
performance. Due to resource and time constraints, we
are not able to test with more than four peers in the
broadcasting test. We see, however, the JXTA
propagation pipe implementation which is used in our
broadcasting routine will even more affect the
performance when dealing with heavy workloads like a
large set of peers and transmissions of voluminous data.

Query = “/poem/title[ret()]/subtitle”

XML document

<poem>
<title language="English">
 Roses are Red
<subtitle> Love & Roses
</subtitle>
</title>
<l>Violets are blue</l>
<l>Sugar is sweet</l>
<l>And I love you.</l>
</poem>

MATCH = YES

Attributes:
language=English
String:
Roses are Red

[Figure 4.3] ret() operator

0

2000

4000

6000

8000

10000

Node2 Node3 Node4

Small
Middle

Large

[Figure 5.1] Broadcast time through
 Propagation pipes
11

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

• JXTA discovery service
This experiment is to examine how much the discovery
service in JXTA is affected as the number of peers in a
single peer group increases. The figure 5.2 shows the
performance results of four test cases with various group
settings. In all test cases, each peer sets to be TCP-
enabled and multicast-enabled in its JXTA configuration.
The first case EX1in which two XShare nodes are run in
a single machine with different port setting, and the
second case EX2 in which two XShare executing
machines are connected, indicate the slight impact of
applying multicast in the same subnet. Comparing the
result of the EX2 case to ones of the EX3 and EX4 cases
which have three and four peers respectively in a peer
group, as expected, we observe the JXTA discovery
service based on multicast in a single subnet is affected
by peer group settings because of its underlying
implementation. In fact the overhead from the multicast
can be significantly alleviated by caching advertisements
because a peer initiates a request for the discovery
service to locate JXTA resources only when the
information for the resource is not found in its local
cache.

0

1000

2000

3000

4000

EX1 EX2 EX3 EX4

Response T ime Ack from 2nd Ack from 1st

• Matching mechanism
In real world scenarios, our XShare may be deployed as
a middleware providing filtering services for large
volumes of XML data in p2p networks. Therefore, to
explore scalability of the matching mechanism in XShare,
we compare our XFilter implementation to the current
release of Jaxen, which has been used in various well-
known projects. For this comparison, we send a 20K
XML document to two different implementations of
matching mechanism, XFilter-based and Jaxen-based
ones with varying workloads. We use a Linux machine,
lipton.cs.utexas.edu, in our department domain. This
machine is equipped with two Xeon 1.8Ghz CPUs and
512M memory.

In the figure 5.3, the X-axis represents the number of
XPath queries in the local profile manager and the Y-axis
represents time in milliseconds. According to the test
result comparing XFilter and Jaxen, we notice that
XFilter scales up better than Jaxen. It is because XFilter
applies multiple XPath queries simultaneously for a
XML document in the matching process while Jaxen
evaluates a pair of query and document individually.
This result implies that in dynamic environments where
commonly p2p applications are applied, utilizing
parallelism in the matching process will be able to pave
the way for reliable content-based publish/subscribe
systems. It also implies the need for differentiating
traditional database systems which have been focusing a
large volume of data and efficient index architectures,
and newly created p2p systems which have more
dynamics on not only peers but data in the systems.

0
1000
2000
3000
4000
5000
6000
7000

100 200 300 400 500 600 700 800 900 1000

Profile size

Xfilter Jaxen

[Figure 5.3] XFilter vs Jaxen

6. Conclusions
 [Figure 5.2] Remote Discovery Time
We have implemented a p2p application which shares
XML documents and matches a peer’s interest against
the shared documents. JXTA provides a network
programming platform for p2p systems, by specifying
and implementing a set of protocols which are
independent of transport protocols, platforms, and
development languages. In the project, we have used
JXTA as a fast development toolkit for prototyping the
XML matching application by building matching
functionalities on the top of the interface implementation
to JXTA v2 Java bindings. XFilter mechanism via which
a sequence of XML documents over the query index
structure is processed, has been implemented and tested
for such matching functionalities in a p2p fashion.

 12

Internet and Grid Computing 2003 – Final Report
XML Filtering in Peer-to-peer Systems

Currently we identify two possible future works: a
hybrid approach of XML-based publish/subscribe
systems and a parallel model of XML matching
mechanism. There is a tradeoff between subject-based
publish/subscribe systems (efficient but less
expressiveness) and content-based ones (expressiveness
but hardly scalable)[1]. Since broker-based
architectures[2] are promising for internet-scale
notification services, a group of brokers and subscribers
may share knowledge about what can be published by
advertising XML schema of possible notifications. It
would be also interesting to think of such environment
where most XML documents published are very large
and thus take too long to be analyzed. We envision a
parallel version of XFilter to alleviate a large distribution
of processing times for each pair of a huge document and
XPath subscriptions.

7. References

[1] Design and Evaluation of a Wide-Area Event

Notification Service, A. Carzaniga and A.L.
Wolf, ACM Transactions on Computer Systems,
19(3):332-383, Aug 2001

[2] Designing a Super-Peer Network, B. Yang and H.
Garcia-Molina. In Proc. 19th Int'l Conf. Data
Engineering, Mar. 2003

[3] Efficient Filtering of XML Documents for
Selective Dissemination of Information, Mehmet
Altinel, and Michael J. Franklin, In Proceedings
of VLDB 2000, Feb. 2000

[4] JXTA project home. http://www.jxta.org
[5] JavaCC: https://javacc.dev.java.net
[6] Jaxen: http://jaxen.org
[7] Project JXTA 2.0 Super-Peer Virtual Network: A

Loosely-Consistent DHT Rendezvous walker
[8] Project JXTA v2.0. Java Programmer’s guide
[9] XPath: http://www.w3.org/TR
[10] Xqeury: http://www.w3.org/TR/xquery
[11] Xerces: http://xml.apache.org/xerces-j
[12] SAX: http://www.saxproject.org

 13

