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1 Introduction

The goal of the project is to design and build a
scalable distributed discovery system for documents
that (i) supports both simple queries and range
queries on document names, (ii) supports efficient
insertion and deletion of documents, (iii) distributes
both storage and access loads uniformly among all
the participants, and (iv) is efficient in terms of
the communication cost incurred for responding to
queries.

The ultimate goal of the project is to support a
full-fledged keyword search. A full-fledged key-
word search system will support the search based
on regular expressions. On the other extreme, a
very simple system will just support single key-
word based lookups. Distributed Hash Tables
(DHT) based systems typically support only simple
keyword searches. Several intermediate schemes
are possible – that support range queries on sin-
gle dimension (e.g., [1]) and that support multi-
dimensional sequence of keywords and ranges
(e.g., [5]). In this project, we focus on supporting
range queries on single dimension.

Our approach is to combine ideas from Ex-
tendible Hashing [2] and Distributed Hash Tables.

2 Related Work

Mainly two related papers: (1) Skip Graph [1] and
(2) Squid [5].

2.1 Skip Graph

Skip Graphs, proposed by Aspnes et al [1], is a dis-
tributed data structure for supporting range queries.
The structure is similar to a skip list (Figure 2.1)
and uses ideas from Distributed Hash Tables [3] to
achieve fault tolerance and load balance in terms of
access loads. In this approach, each resource that a
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Figure 1: A skip list (source: [1])
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Figure 2: A skip graph withdlogNe = 3 levels
(source: [1])

node has to share is assigned a random ID, called
membership vector, and the resources are arranged
in a non-descending sorted order according to their
names or values. A DHT is constructed on the re-
sources in the following way – for each prefix length
of the membership vector of a resource, the resource
has a right and left pointers to nearest resources that
have same prefix. Figure 2.1 illustrates these point-
ers. A range query or simple query can be satisfied
as in the search procedure in a skip list.

Skip graphs support range queries, support ef-
ficient insertion and deletion of new resources, is
load-balanced in terms of both storage and access
loads, is fault-tolerant and is efficient in terms of
number of messages. The main disadvantage of
this data structure is that it forms DHT on the re-
sources than the physical nodes present in the sys-
tem. If each node in a N node system has K docu-
ments or resources to share, then each node needs
to keep track ofO(K log(N.K)) pointers to other
nodes. Hence this system is not scalable with the
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number of resources or documents.

2.2 Squid

Squid, proposed by Schmidt et al [5], supports
multidimensional range queries. They map the
n-dimensional data to 1-dimensional space using
Hilbert Space Filling Curves. The one-dimensional
data is then mapped to nodes arranged in a linear
fashion along the NodeId ring. While this mapping
allows range queries to be performed efficiently, the
scheme loses load balancing property inherent to the
DHTs.

The authors propose two load-balancing schemes
– (a) Load balancing at join time and (b) Load bal-
ancing at run time. In former technique, a new node
chooses multiple IDs, joins the network and then
discards all but one ID that will place it in the most
loaded part of the network. This technique is both
expensive –O(nlogN) for joining atn places in aN
node network (O(nlog2N) in case of chord) – and
is not sufficient to achieve the load balancing in the
face of document insertions and deletions.

Two schemes are presented for load-balancing at
the run time (1) exchange the load with neighbors
and (2) each node hosts multiple virtual nodes. The
first scheme incurs anO(N log2N) communication
cost and hence is very expensive to be performed
periodically. The second scheme is good for load-
balancing at the expense of increase number of DHT
pointers to maintain at each nodes. With each vir-
tual node containing a single document, this scheme
is same the Skip Graph. A node hostingk virtual
nodes needs to maintain connections toO(k logN)
DHT neighbors; hence, the scheme is not scalable
with the number of documents in the system.

3 Our approach

Supporting range queries is harder than supporting
simple single keyword queries. Hash tables pro-
vide efficient constant lookup, insertion and deletion
costs but can not support range queries. Balanced
binary trees, B-trees, Tries, etc., support range
queries at the cost ofO(logN) insertion, lookup,
and deletion complexity. Our approach is the fu-
sion of Tries with hash tables: arrange data in a Trie

structure and map the tree onto physical nodes us-
ing DHT techniques. This enables us to support
range queries while exploiting the load-balancing
property of the DHTs but at the cost of increased
insertion, deletion, and lookup costs. We propose
caching based optimizations

3.1 Simple Algorithm

In this project, we consider range queries on one-
dimensional keywords only. Further, we assume
that keywords are drawn from a small alphabet, say
Σ. We use kleene star notation∗ to express the
ranges. We assume that a DHT is already con-
structed on the nodes in the system and can route
messages for a key with ID to the corresponding re-
sponsible node (whose NodeId is closer to ID than
other nodes in the system). We will denote a node
responsible for the hash of a stringSby [S].

Insertion and deletion of Documents Initially,
each node has zero documents. When a new doc-
ument is inserted, the entry is routed to the node
[Σ∗], say the root node. When the number of entries
at the root node exceed ablockSplitThresholdfac-
tor, then the block of entries is split into|Σ| blocks,
one block for each character of the alphabet, and
are spread to nodes[aΣ∗] for a∈ Σ. This process is
further recursively repeated at the child nodes. To
be able to merge back the entries upon deletion of
documents, the nodes need to keep track of their|Σ|
child nodes. when the total number of entries over
all children fall belowblockMergeThresholdfor a
node, then the node collects back all the entries from
its |Σ| children. Note that theblockSplitThresh-
old andblockMergeThresholdparameters satisfy the
following invariant: blockSplitThreshold≥ block-
MergeThreshold.

Lookup Any lookup request, sayabc∗, is routed
to the root node[Σ∗]. If the entries were already
split, then the request is passed down to the node
[aΣ∗] and then down to[abΣ∗] and so on.

Example A simple example depicting the inser-
tion of keywords is shown in Figure 3.1. In the ex-
ample, we assume that theblockSplitThresholdfac-
tor is 4.
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Figure 3: An example Trie construction with split
threshold of 4

Discussion The insertion, deletion and lookup
costs increase fromO(logn) in DHTs toO(k logN),
where k is the size of the document name. The pro-
cedure achieves load balance in terms of storage,
but the root node is accessed on each operation and
hence the access load is not distributed fairly. Fur-
ther splitting and merging are costly as|Σ| nodes
have to be accessed and thus atleast|Σ| number of
messages.

Problem 1: Access load is not uniformly dis-
tributed.

Fix: Use binary search. For example, start the
lookup for keywordcomputerat node[compΣ∗]
and proceed to either node[coΣ∗] or [computΣ∗]
based on the information at the node[compΣ∗].
The lookup cost decreases toO(logk logN) from
O(k logN) and the access load also gets distributed
uniformly among the nodes.

Problem 2: Splitting and merging are costly.

Fix: Instead of splitting|Σ|ways at a node, a more
coarse granular splitting can be done — 2-way, 4-
way or some b-way to reduce the costs of splitting
and merging. This increases the depth of the lookup
tree and hence the trade off is increased lookup time:
O(logb |Σ|. logk. logN). An example showing the 2-
way splitting is shown in the Figure 3.1.

4 Issues

Access Load Balance and Fault Tolerance Data
replication at neighboring nodes on the logical
NodeId ring. Replication provides fault tolerance

<empty>

Σ∗

Σ∗

ant
pot
sun

bat insert bait

bat
bait
ant sun

pot

[a−m]Σ∗ [m−z]Σ∗

Figure 4: An example Trie construction with 2-way
splitting.

and also helps in load-balancing the access loads.
The keywords and keyword ranges that are most ac-
cessed are replicated on more nodes to offset the
load from one single node. Consistency will be an
issue with replication and a simple eventual consis-
tency model will be efficient in terms of communi-
cation costs and is generally acceptable for the ap-
plication domain in consideration.

Optimizations: Caching to reduce the number of
steps in lookup, insertion and deletion. Nodes can
cache the information about how far down the tree
is already split to optimize the search performance.
Result caching can also be done to further optimize
the performance.

Supporting General Expressions The algorithm
described above supports the range queries with
wildcard character only at the end. Range queries
with kleene star appearing anywhere else can also
be supported albeit at the increased communication
cost. For example, a range query forΣ ∗ uter will
need to be sent to all of the leaves of the Trie struc-
ture and hence possibly all nodes in the system. A
query like comΣ ∗ ter can be efficiently answered
compared to query forΣ ∗ uter. The length of the
prefix before the appearance of a kleene star in the
query greatly effects the performance of the system.

Choosing Thresholds A large value of block-
SplitThresholdwill imply that all entries are stored
in one or few places causing the storage load imbal-
ance in the system but provides an efficient range
query support. A small value gives a good stor-
age load-balancing but at the cost of increased Trie
depth and hence an increased lookup, insertion and
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Figure 5: Frequency distribution of first one and first
two letters in the chosen keyword set.

deletion costs.
We propose a dynamic scheme for picking ap-

propriate threshold value that minimizes the tree
depth while ensuring the storage load balance. Ini-
tially, the blockSplitThresholdis set to a moderate
value, say 1MB. When a node is assigned more
than a few number of leaf nodes of the Trie, then
it increasesblockSplitThresholdand decreases the
blockMergeThresholdvalue.

5 Evaluation

Workload We use the WordNet’s word list avail-
able for free download fromdict.org . There are
about 150000 words in the database.

In Figure 5(a), we plot the frequency of words
against the starting ASCII character in our word set.
As expected, most words in our workload start with
either capital or small alphabets in the English lan-
guage. Words with small alphabet starting are dom-
inant than the ones starting with the capitals. In
Figure 5(b), we plot the frequency of words tak-
ing first two characters of the word into consider-
ation. These two graphs clearly show that the dis-
tribution of words has a very high variance fac-
tor. An approach similar to Squid, where order-
preserving hashing is used to map the keywords to
the set of ordered nodes, will suffer from storage
load-imbalance. To further substantiate this point,
we converted all words into lower case letters and
plot the distribution only based on the 26 alphabets
of the English language. Figures 5(a) and 5(b) de-
pict the frequency distribution of words for the start-
ing one and two characters.

Encoding of alphabet matters – while a straight-
forward ASCII encoding does not evenly distribute
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Figure 6: Frequency distribution of first one and first
two letters in the chosen keyword set after convert-
ing to lower case.

the keywords, using something like a hamming code
based on the occurrence rate of the characters might
load-balance the keywords across bit space evenly.
Further investigation necessary to quantify this. For
now simple straightforward encoding in the same
order as the ASCII ordering. Figure 5 illustrate the
encoding scheme we have used in our simulations.
We encode each character with 5 bits making sure
that the alphabets are evenly spaced in the 32 ele-
ment size space.
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Figure 7: Encoding tree for representing 26 lower
case alphabets with 5 bits

We construct a Trie structure on the keyword
set. Two parameters that affect the construction
areblockSplitThreshold, which we will refer to as
Split Threshold (ST), and the granularity at which
the splitting is performed, which we will callSplit
Granularity (SG). The split granularity is measured
in the number of bits. A split granularity of 5 de-
notes that the split is done based on the 26 alpha-
bets.

In Figures 5, we plot the number of buckets and
the average depth of the words in the Trie struc-
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Figure 8: Number of buckets and the average depth of the Trie structure after inserting all keywords with
split threshold (ST) for different values of split granularity (SG) parameter.
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Figure 9: Number of buckets and the average depth of the Trie structure after inserting all keywords with
split granularity (SG) for different values of split threshold (ST) parameter.

ture against the split threshold for various values
of split granularity. As expected, the number of
buckets reduces as the split threshold is increased
and the average depth of the tree is also decreased.
The number of buckets and the average depth of
the words is plotted against split granularity in Fig-
ure 5. Increasing the granularity increases the num-
ber buckets while the average depth of the Trie de-
creases. At higher granularity, a bucket is split to
more number of children than at a lower granular-
ity. Hence the number of buckets increases and the
necessity for further splits decreases leading to a
shorter Trie. These simulations clearly show that
a higher split threshold and larger split granularity
factors decrease the average depth.

We observe that the number of buckets is very
large even at the small split granularity values. For
example, at split granularity of 1 and a threshold of
250, we expect around 150000/250 = 600 buckets
while the observed valued is about 1500 buckets.
The large number of buckets is due to the fact that
many buckets with few entries are created during the
Trie construction. For example, with 26-way split-
ting or split granularity of 5 as shown in Figure 3.1,
we split the bucket at root into 26 buckets with 4
non-zero size buckets (We do not count the zero-

sized buckets in our bucket count). While a smaller
split granularity reduces the buckets with fewer en-
tries, we still observe that there are still a lot of buck-
ets with small number of entries.

We propose a B-tree flavored Trie based approach
that tries to reduce the number of buckets. Upon the
need to split a bucket as its size goes beyond split
threshold, instead of splitting it into k-ways as spec-
ified by the split granularity, delegate down only for
few ranges. This idea is explained with the illustra-
tion in the Figure 5. Instead of splitting 26-way as
shown in Figure 3.1, this controlled delegation re-
duces the number of buckets. Notice that this split-
ting has a flavor of B-tree where the intermediate
nodes in the tree maintain some entries. We pro-
pose to investigate the effectiveness of this approach
as part of the future work.

We measure the storage load-balancing property
of a scheme by measuring the normalized standard
deviation of the storage loads across all nodes. Fig-
ure 5 compares the load-balancing properties of
basic Squid approach with Trie based scheme for
(ST=250, SG=5) values in case of Trie based ap-
proach. In basic Squid, the keywords are mapped
to a linear space from 0 to 1 in an order-preserving
manner and the nodes are also uniformly mapped to
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Figure 10: An example Trie construction with B-
Tree flavor.
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Figure 11: Normalized standard deviation of the
storage load on the nodes with basic Squid (without
load balancing schemes) and Trie-based approach

the same space. A keyword is assigned to a closest
node with larger ID. In these set of simulations, we
do not consider the run-time load-balancing tech-
niques proposed by the authors of the Squid system.
Clearly the Trie based approach is better in spread-
ing the storage load than basic Squid approach.

We plot normalized standard deviation for Trie-
based approach with split threshold for various val-
ues of split granularity in Figure 5. With increas-
ing split threshold, the imbalance in the storage
load across nodes increases. Smaller thresholds in-
crease the load balance because the fine granularity
at which the keywords can be spread across the ma-
chines. At split threshold of just 1, the approach
is same as the standard DHT where each keyword
is hashed separately. We also plot the normalized
standard deviation with split granularity for various
values of split threshold in Figure 5. Higher values
of the split granularity spread the load more evenly
than for the lower values of the split granularity.
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Figure 12: Normalized standard deviation of the
storage load on the nodes for Trie-based approach
with Split Threshold (ST) for various values of Split
Granularity(SG).
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6 Conclusions and Future Work

In this project, we propose a distributed Trie-like
data structure for storing the keyword and docu-
ments so that (a) range queries can be supported,
(b) efficient insertions, deletions and lookups are
supported, (c) storage load is uniformly distributed
across the participating node, and (d) access load is
also uniformly distributed.

The preliminary simulation results show that the
Trie-based structure is more effective at distribut-
ing the load across than the nodes. One interesting
point we observe is the creation of large number of
buckets with fewer entries at higher split granular-
ities. We propose a modification to the Trie-based
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data structure with the flavor of B-trees that reduces
the creation of smaller sized buckets.

Some words are more common than others and
hence more documents matched with those words
than others. As future work, we plan to query
google with each word to estimate the number of
documents matching a particular keyword and use
those numbers as part of our workload.

We plan to implement our algorithm on top of
Pastry [4], a free DHT system and evaluate the ef-
ficacy of the algorithm with respect to the follow-
ing metrics: (1) storage load balance, (2) access
load balance, and (3) insertion, deletion, and lookup
times and message costs (with and without caching
enabled). We will also study the behavior of the
algorithm under fail-stop fault model for varying
number of faults.
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