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ABSTRACT

Modern networking applications replicate data and services widely, leading
to a need fotocation-independent routing the ability to route queries di-

rectly to objects using names independent of the objects’ physical locations.

Two important properties of a routing infrastructure emeting locality and
rapid adaptationto arriving and departing nodes. We show how these two
properties can be efficiently achieved for certain network topologies. To
do this, we present a new distributed algorithm that can solve the nearest
neighbor problem for these networks. We describe our solution in the con-
text of Tapestry, an overlay network infrastructure that employs techniques
proposed by Plaxton, Rajaraman, and Richa [14].

Categories and Subject Descriptors

E.1 [Data Structures]: Distributed data structures; E.D§ta Struc-
tures]: Graphs and Networks; F.2.Npnnumerical Algorithms
and Problems]: Routing and layout; C.2.4istributed systems]:
Distributed applications

General Terms
Algorithms, Theory

Keywords

Tapestry, networking, overlay, locality, peer-to-peer, distributed ob-
ject location, DOLR, distributed hash table, DHT, nearest neighbor

1. INTRODUCTION

In today’s chaotic network, data and services are mobile and repli-
cated widely for availability, durability, and localttyThis has lead

to a renewed interest in techniques for routing queries to objects
using names that are independent of their locations. The notion o
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reach their destinations. Thacation-independent routingroblem
has spawned a host of proposals, many of them in the context of
data sharing infrastructures such as OceanStore [11], FarSite [3],
CFS [9] and PAST [17]. To permit locality optimizations, it is im-
portant that the routing process use as few network hops as possible
and that these hops should be as short as possible.

Properties that we would like from a location-independent rout-
ing infrastructure include:

1. Deterministic LocationObjects should be located if they ex-
ist anywhere in the network.

. Routing Locality Routes should have lostretcH, not just
a small number of application-level hops. Sending queries to
the nearest copy across the shortest path possible is the ideal.

. Minimality and Load BalanceThe infrastructure must not
place undue stress on any of its components; this implies
minimal storage and balanced computational load.

. Dynamic MembershipThe system must adapt to arriving
and departing nodes while maintaining the above properties.

Although clearly desirable, the first property is not guaranteed by
existing peer-to-peer systems such as Gnutella [12] and FreeNet [5].
A simple object location and routing scheme would employ a

centralized directory of object locations. Servers wquuthlishthe
existence of objects by inserting entries into the directory. Clients
would sendqueriesto the directory, which forwards them to their
destinations. This solution, while simple, induces a heavy load on
the directory server. Moreover, when a nearby server happens to
contain the object, the client must still interact with the potentially
distant directory server. The average routing latency of this tech-

fnique is proportional to the average diameter of the network — inde-

routing is that queries are forwarded from node to node until they pendent of the actual distance to the object. Worse, it is neither fault
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!By locality we mean the ability to exploit local resources over
remote ones whenever possible [21].
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tolerant nor scalable, since the directory becomes a single point of
both failure and contention.

Several recent proposals, Chord [18], CAN [15] and Pastry [16],
address the load aspect of this problem by distributing the direc-
tory information over a large number of nodes. In particular, they
can find an object with polylogarithmic number of application-level
network hops while ensuring that no node contains much more than
its share of the directory entries. Moreover, they can support the
introduction and removal of new participants in the peer-to-peer
network. Unfortunately, while these approaches use a number of
overlay hops that is polylogarthmic, the actual network latencies
incurred by queries can be significantly more than those incurred
by finding the object in the centralized directory.

2Stretch is the ratio between the distance traveled by a query to an
object and the minimal distance from the query origin to the object.



Scheme Insert Space Stretch, Metric Hops Balanced?
CHORD [18] O(log® n) O(nlogn) - O(log n) yes
CAN [15] O(r) nr - rnt/" yes
Pastry [16] O(log® n) O(nlogn) - O(nlogn) yes
This Paper (Tapestry) O(log® n) O(nlogn) - O(logn) yes
Awerbuch, Peleg[1] no O(né* +ndlog®n) | O(log®n), general | O(log®n) no
PRR [14] no O(nlogn) O(1), special O(log n) yes
PRR + This Paper | O(log® n) O(nlogn) O(1), special O(log n) yes
PRR v.0 + This Papef no O(nlog® n) O(log® n), general | O(log® n) no

Table 1: In thistable, n isthe number of nodes, & = log d, whered isthe network diameter. We assume the number of objectsisO(n).
Both stretch and hopsrefer to an object search. In most cases, the time for insertion is given with high probability. In some cases,
various messages can be sent in parallel; wedid not allow for this optimization in stating the boundsin thistable.

An alternative solution is to broadcast an object’s location to ev- greater distances within the circle. Queries are forwarded along
ery node in the network. This allows clients to easily find the near- chords until they reach their destination. CAN [15] places objects
est copy of the object, but requires a large amount of resources tointo a virtual, high-dimensional space. Queries are routed along
publish and maintain location information, including both network axes in this virtual space until they reach their destination. Pas-
bandwidth and storage. Furthermore, it requires full knowledge of try [16] is loosely based on the PRR scheme, routing queries via
the participants of the network. In a dynamic network, maintaining successive resolution of digits in a high-dimensional name space.
a list of participants is a significant problem in its own right. While its overlay construction leverages network proximity met-

We describe our results in the context of the Tapestry overlay rics, it does not provide the same stretch as the PRR scheme in ob-
routing and location infrastructure [22]. Tapestry uses as a start- ject location. All of these schemes can find objects with a polylog-
ing point the distributed data structure of Plaxton, Rajaraman, and arithmic number of application-level network hops, while ensuring
Richa [14], which we will refer to as the PRR scheme. Their pro- that no node contains more than its share of directory entries. In
posal yields routing locality with balanced storage and computa- addition, Chord and CAN have run-time heuristics to reduce object
tional load. However, it does not provide dynamic maintenance location cost, so they may perform well in practice. Further, all of
of membership. The original statement of the algorithm required these can support the introduction and removal of nodes.

a static set of participating nodes as well as significant work to pre-  Recent peer-to-peer systems can locate objects in a dynamic net-

process this set to generate a routing infrastructure. Additionally, work. Gnutella [12] utilizes a bounded broadcast mechanism to

the PRR scheme was unable to adapt to changes such as node faitearch neighbors for documents. FreeNet [5] utilizes a chaotic rout-

ures. This paper extends their algorithms to a dynamic network.  ing scheme in which objects are published to a set of nearest neigh-
bors and queries follow gradients generated by object pointers; the

1.1 Related Work behavior of FreeNet appears to converge somewhat toward the PRR

Schemes that exhibit routing locality include Plaxton, Rajaraman, Scheme when a large number of objects are préshieither of

and Richa (PRR) [14] and Awerbuch and Peleg [1]. Both allow the these techniques are guaranteed to find objects.

publication and deletion of objects with only a logarithmic number ~ Table 1 summarizes related work alongside our contributions.

of messages and both guarantee a low stretch. Recall that stretcipystems with no entry in the “Stretch, Metric” column do not con-

is the ratio between the actual latency or distance to an object andsider stretch at all; those with “special” assume the metric space

the shortest distance. The PRR scheme finds objects with constanbas a certain low-expansion property described in Section 3.

stretch for a specific class of network topologies while ensuring 12 Results

that no node has too many directory entries. Awerbuch et al. route =

with stretch within a polylogarithmic factor of optimal for general  Our goals are not only to derive the best possible asymptotic results,

network t0p0|ogie5. The Awerbuch scheme does not exp”cmy deal but also to analyze the simple schemes that are the basis of the PRR

with load balancing, though it could perhaps be modified to do so. and the Tapestry algorithms. This paper includes three main results:

Unfortunately, both the PRR and Awerbuch schemes assume full

knowledge of the participating nodes, or, equivalently, they assume ~ ® We present a simplification of the PRR scheme for object

that the network is static. location. We cannot prove that this object location scheme
There is also an abundance of theoretical work on finding com- meets the same bounds on stretch as the PRR scheme; how-
pact routing tables [2, 7, 13, 20] whose techniques are closely re- ever, it appears to perform well in practice.

lated to those in this paper. See [8] for a survey. A recent and closely
related paper is that of Thorup and Zwick, who showed that a sam-
pling based scheme similar to that of PRR could be used to find
small stretch routing tables and/or answer approximate distance
queries in arbitrary metric spaces

Most of the recent work on peer-to-peer networks ignores stretch.
Chord [18] constructs a distributed lookup service using a routing
table of logarithmic size. Nodes are arranged into a large virtual
circle. Each node maintains pointers to predecessor and successor
nodes, as well as a logarithmic number of “chords” which cross

e \We extend this scheme (as well as the PRR approach) to deal
with a changing participant set. We allow nodes to arrive and
depart while maintaining the ability to locate existing objects
and publish new objects. This works for a slightly broader
class of metric spaces than assumed by PRR.

e \We observe that a static version of the PRR scheme can be
used for general metric space®(spaces that do not meet
the conditions assumed by PRR) to get results similar to
those of Awerbuch and Peleg [1].

3 A network topology gives a metric space. “This is a qualitative statement at this time.



Table 1 gives a summary of some of the previous results along with
ours. Note that the result for general metrics can be improved using

results of Thorup and Zwick [19] to use only(n log n) space.

Techniques: The crux of our method for inserting nodes into the
network lies in an algorithm for maintaining nearest neighbors in
a restricted metric space. Our approach follows that of Karger and
Ruhl [10], who give a sequential algorithm for answering nearest @
neighbor queries in a similarly restricted metric space
Karger and Ruhl describe a data structure using a random per-
mutation to help maintain a random sampling. This approach is Figure 1: Tapestry Routing Mesh. Each node is linked to other
dynamic and reminiscent of the Chord network infrastructure. Our nodes via neighbor links, shown as solid arrowswith labels. La-
data structure uses random names to get a random sampling. bels denote which digit isresolved during link traversal. Here,
We also prove that an alternate scheme by Plaxton, Rajaramannode 4227 hasan L1 link to 27AB, resolving thefirst digit, an
and Richa (called PRR v.0 in Table 1) gives a low stretch solution L2 link to 44AF, resolving the second digit, etc. Using the nota-
for general metric spaces. This follows from arguments similar to tion of Section 2.1, 42A2isa (42, A) neighbor of 4227.
those used by Bourgain [4] for metric embeddings. In particular,
we show that this scheme leads to a covering of the graph by trees
such that for any two nodasandv at distance) they are in a tree
of diameterd log n. Indeed, by modifying the PRR scheme along
the lines proposed by Thorup and Zwick [19] one can improve the
space bounds by a logarithmic factor, but we do not address this
issue here.

shows a portion of the routing mesh. For edotward neighbor
pointerfrom a node A to a node B, there willmckward neighbor
pointer (or “backpointer”) from B to A.

Neighbors for noded are grouped intmeighbor setsFor each
prefix 8 of A’s ID and each symboj € [0,b — 1], the neighbor
set/\/g‘,]- contains Tapestry nodes whose node-IDs share the prefix

The remainder of this paper is divided as follows: Section 2 de- B o j. We will refer to these a3, j) neighbors ofA or simply

scribes the details of Tapestry, highlighting differences with the

_ _ . (8, 4) nodes. For eacli and 3, the closest node i3 ; is called
PR.R scheme and |ntroducmg concepts and terminology for the " the primary neighbor, and the other neighbors are called secondary
mainder of the paper. Section 3 describes how to solve the incre-

| iahb bl Section 4 lains h his | neighbors. When context is obvious, we will drop the superscript
mental nearest neighbor problem. Section 4 explains how this is 4 | o7 — 18] + 1. Then, the collection ob sets,/\/g‘]-, form

u_sed as part of_inserting a node. Section 5 discusses deletion. .Secthe levelt routing table. There is a routing table at each level, up
tion 6 gives a simple proof that PRR v.0 scheme has polylogarith- to the maximum length of node-IDs. Membership in neighbor sets

mic stretch for general metric spaces. We conclude in Section 7. is limited by constant parametdf > 1: INé,jl < K. Further,

|N[;‘,]-| <K implies/\/g‘,]- contains all 8, j) nodes. This gives us

2. THE TAPESTRY INFRASTRUCTURE the following:

Tapestry [22] is the wide-area location and routing infrastructure "
of OceanStore [11]. Tapestry assumes that nodes and objects in PROPERTYL (CONSISTENCY). If A5 ;=¢, for any A, then
the system can be identified with unique identifiers (names), rep- tére are no §, j) nodes in the system. We refer to this as a “hole”
resented as strings of digits. Digits are drawn from an alphabet IN 4'S routing table at leve|3| + 1, digit ;.
of radix b. Identifiers are uniformly distributed in the namespace. . ) . )
We will refer to node identifiers asode-IDsand object identifiers Property 1implies that the routing mesh is fully connected. Mes-
asglobally unique identifier¢GUIDs). Among other things, this ~ S2ges can route from any node to any other node by resolving
means that every query has a unique destination GUID which ulti- the destination _nod_e-ID one digit gt a time. Let the source node
mately resolves to a node-ID. For a string of digitdet |o| repre- be Ao and destination node bB, with a node-ID equal @ =
sent the number of digits in that string. Jj1©J2...Jn. Therlx routing proceeds by chosmg a succession

Tapestry inherits its basic structure from the data location scheme©f nodes:A: € N5 (first hop), 4> € N7, (second hop),
of Plaxton, Rajaraman, and Richa (PRR) [14]. As with the PRR A3z € szojz,jg (third hop),etc.We would like to emphasize
scheme, each Tapestry node contains pointers to other nuaigh{
bor links), as well as mappings between object GUIDs and the = PROPERTY2 (LOCALITY). In both Tapestry and PRR, each
node-IDs of storage servershject pointers Queries are routed N?,j contains the closesB( j) neighbors as determined by a given
from node to node along neighbor links until an appropriate object metric space. The closest neighbor with prefix j is theprimary
pointer is discovered, at which point the query is forwarded along neighboy while the remaining ones asecondary neighbars
neighbor links to the destination node.

Property 2 yields the important locality behavior of both the

2.1 The Tapestry Routing M esh Tapestry and PRR schemes. Further, it yields a simple solution to

The Tapestryouting mestis an overlay network between partici-  thestatic nearest-neighbor probleriach noded can find its near-
pating nodes. Each Tapestry node contains links to a set of neigh-st neighbor by choosing from the ¢t., , ;N ;. Section 3
bors that share prefixes with its node-ID. Thus, neighbors of node- Will discuss how to maintain Property 2 in a dynamic network.

ID « are restricted to nodes that share prefixes withe. nodes . . .

whose node-ID§ o § satisfy3 o &' = o for somed, §’. Neighbor 2.2 Routlng to ObJ ectswith Low Stretch

links are labeled by theievel numberwhich is one greater than ~ Tapestry maps each object GUIR;, to a set ofroot nodes
the number of digits in the shared prefix, i3] + 1). Figure 1~ Ry = MAPROOTY). We call R, the root setfor ¢, and each
a € Ry is aroot nodefor 4. It is assumed that MPRooTS(¢))

SClarkson also presented a very similar approach in [6]. can be evaluated anywhere in the network.




" (4378)

Figure 2: Publication in Tapestry. To publish object 4378,
server 39AA sends publication request towards root, leaving a
pointer at each hop. Server 4228 publishesitsreplicasimilarly.
Sinceno 4378 nodeexists, object 4378 isrooted at node4377.

Figure3: Routingin Tapestry: Threedifferent location requests.
For instance, to locate GUID 4378, query source 197E routes
towar ds the root, checking for a pointer at each step. At node
4361, it encountersa pointer to server 39AA.

To function properly, M\PROOTS(%)) must return nodes that ex-
ist. The size of a root sefR,| > 1, is small and constant for all

which containsp. Thus, a query routed toward any€ R, will
(in the worst case) encounter a pointer foafter reachingr. [

objects. In the simplest version of Tapesif,;| = 1. In this case,
we can speak athe root nodefor a given nodey). For this to be
sensible, we must have the following property:

OBSERVATION 1. (Fault Tolerance) IfR | > 1 and the names
in Ry are independent of one another, then we can retry object

queries and tolerate faults in the Tapestry routing mesh.
PROPERTY3 (UNIQUE ROOT SET). The rootsetR , for ob-

jecty) must be unique. In particula APROOTS(1)) must generate
the sameR ,;, regardless of where it is evaluated in the network.

In a general metric space, it is difficult to make claims about the
performance of such a system. PRR restrict their attention to met-
ric spaces with a certain even-growth property: they assume that

Storage servengublishthe fact that they are storing a replicaby  for a given pointA4, the ratio of the number of points withizr
routing a publish message toward eack ;. Publish messages  of A and the number of points within distaneef A is bounded
are routed along primary neighbor links. At each hop, publish mes- ahove and below by constants. (Unless all points are withinf
sages depostibject pointerdo the object. Unlike the PRR scheme, 4 ) Given this constraint, [14] shows the average distance traveled
Tapestry maintainsil object pointers for objects with duplicate i |ocating an object iproportional to the distance from that ob-
names (i.e. copies). Figure 2 illustrates publication of two replicas ject, i.e. queries exhibitD(1) stretch. Unfortunately, the constants
with the same GUID. To provide fault-tolerance, Tapestry assumes in their proof make for an impractical system. Tapestry is easier to

that pointers arsoft-statei.e. pointers expire and objects must be  jmplement and seems to provide low stretch in practice [22].
republished (that is, published again) at regular intervals. Repub-

lishing may be requested if something changes about the network. 2.3~ Surrogate Routing

Queriesfor object route towardone of the root nodesy € The procedures fopublishingand querying documents outlined
Ry along primary neighbor links until they encounter an object jn Section 2.2 do not require the actual membershiRpfto be
pointer fory, then route to the located replica. If multiple pointers  known. All that is required is to be able to compute the next hop
are encountered, the query proceeds to the closest replica to thgoward the root from a given position in the network. As long as this
current node (i.e. the node where the object pointer was found). Atincrementalversion of MAPROOTS() is consistent in its behavior,
the beginning of the query, we select a root randomly fr@m we achieve the same routing and locality behavior as in Section 2.2.
Figure 3 shows three different location paths. In the worst case, aapssume thatdlcRMAPROOTS(4,3) produces an ordered list of the
location operation involves routing all the way to root. However, if next hop toward the roots af from nodeg.
the desired object is close to the client, then the query path willbe |y the PRR scheme, MPRooTS(%) produces a single root node
very likely to intersect the publishing path before reaching the root. , which matches in the largest possible number of prefix bits with

In the PRR scheme, queries route by examining all secondary ;. Ties are broken by consulting a global order of nodes. The PRR
neighbors before proceeding along the primary link toward the root. gcheme specifies a correspondingc RMAPROOTS() function as
The number of secondary neighbors is set according to their metricfg|lows: the neighbor sets\/, are supplemented with additional
space, but bounded by a constant. The following theorem shows aryoot Jinks that fill holes in the routing table. To route a message
important property shared by PRR and Tapestry. toward the root node, PRR routes directlyjas if it were a node
in the Tapestry mesh. Assuming that the supplemental root links are
consistent with one another, every publish or query for document
¢ will head toward the same root node.

We call this processurrogate routingsince it involves routing
towardy as if it were a node, then adapting when the process fails.

THEOREM 1. PRR and Tapestry can perform location-indepen-
dent routing, given Property 3.

PROOF The publishing process ensures that all membef®,of
contain mappings (object pointers) betwegnand every server



method ACQUIRENEIGHBORTABLE (NewNodeNamBlewNodelPPSurrogateNam@Surrogatel
a + GREATESTCOMMONPREFIX(NewNodeNamé&SurrogateName
maxLevek— LENGTH(c)
list + ACKNOWLEDGEDMULTICAST [on PSurrogatelP(cc, SENDID (NewNodelPNewNodeNanjg
BuiLD TABLEFROMLIST(list, maxLevél
for i =maxlevel 1to O
list «+ GETNEXTLIST(list, 7)
BuiLD TABLEFROMLIST(list, %)
end ACQUIRENEIGHBORTABLE

~NOoO O WNPE

method GETNEXTLIST (neighborlist, leve)
1 nextList <0
2 for n € neighborlist
3 temp + GETFORWARDANDBACKPOINTERHn, leve))
4 nextList «+ KEEPCLOSESTK(temp U nextList)
5 return nextList
end GETNEXTLIST

Figure 4: Building a Neighbor Table. A few words on notation: FUNCTION [on destination] represents a call to run
FUNCTION on destination, variablesin italics are single-valued, and variablesin bold are vectors.

Roots reached in this way are considesedrogate rootof . to Properties 1 and 2. This amounts to solving the nearest neigh-
In a dynamic network, maintenance of these additional point- bor problem for many different prefixes. We could simply use the
ers can be problematic, since they follow from a “global order”. method of Karger and Ruhl [10] many times, once for each prefix.
Tapestry utilizes a slightly different scheme that relies on informa- The method we present below has lower network distance, though
tion local to each node and already present in the routing table.as many network hops as a straightforward use of Karger and Ruhl.
Rather than filling holes in the neighbor tables, we route around Our method incurs no additional space over the PRR solution.
them. When there is no match for the next digit, we route to the  Asin [14], we adopt the following network constraint. L&t ()
next filled entry in the same level of the table, wrapping around if denote the ball of radiusaroundA,; i.e., all points within distance
needed. For example, if the next digit to be fixed was 3, and there r of A, and|B4 (r)| denote the number of such points. We assume:
was no entry, try 4, then 5, and so on. When routing can go no fur-
ther (the only node left at and above the current level is the current Ba(2r)] < e[Ba(r)], @
node), that node is the root. This scheme is simpler than PRR underfor some constant. PRR also assume thida (2r)| > ¢’ [Ba(r)|,
inserts and deletes, and may have better load balancing propertiesbut we will not need that. Notice that our expansion property is
almost exactly that used by Karger and Ruhl [10]. We also assume
THEOREM 2. Suppose Property 1 holds. Then the Tapestry ver- the triangle inequality, that i$(X,Y) < d(X, Z) + d(Z,Y) for
sion of surrogate routing will produce a unique root. any set of nodeX, Y, andZ. Finally, we will give bounds in terms
of network latency or network hops ignoring local computation.
None of the local computation is expensive, so this reasonable.
Figure 4 shows how to build neighbor tables. Suppose that the
longest common prefix of the new node and any other node in the
network isa. Then we start with a list of all nodes with prefix

PrROOF Proof by contradiction. Suppose that messages for an
object with ID X end routing at two different noded, and B. Let
3 be the longest common prefix df and B, and let; be the length
of 3. Then, letA’ and B’ be the nodes that do thie+ 1st routing
step; that is, the two nodes that send the message to different digits . g :

X ) > e X X {We explain how to get this list in the next section.) Then we get
Notice the_1t after this step, t_he first- 1 dlglts/?,f the prefl)f remain similar lists for progressively smaller prefixes, until we have the
constant in all further routing steps. Boti; . and /5, must closestk nodes matching the empty prefix.
have the same pattern of empty and non-empty entries. Thatis, if 14 g from the leveki + 1) list to the levels list, we ask all the
N3 ; is empty, then\'F ; must also be empty, or Property 1is nodes on the leve(s + 1) list for all the leveli nodes they know
untrue. So both’ and B' must send the message on a node with about (we ask for both forward and backwards pointers). We then
the the same + 1th digit, so this is a contradiction.[] trim this list, keeping only the closektnodes.

o ) . We then use these lists to fill in the neighbor table. In particular,
Surrogate routing in Tapestry may introduce additional hops over g fjj| in level i of the neighbor table, we look in the levélist.
PRR; however, the number of additional hops is independent of  For j ¢ [0, — 1], we keep the closesk (as, j) nodes ( is
and in expectation is less than 2 [22]. Notice the following: defined in Section 2.1). 1§ > ¢, then Theorem 3 says there is
somek = O(log n) such that with high probability, we know there
is one (or indeed, any constant) number of such nodes on the list
for everyj. (Note that PRR assume that> c®).

OBSERVATION 2. (Multiple Roots) Surrogate routing general-
izes to multiple roots. First, a pseudo-random function is employed
to map the initial document GUI into a set of identifierg)o,

¥1,.. .. Then, to route to root, we surrogate route te);. THEOREM 3. If cis the expansion constant of the network and
b > c* (whereb is the digit size), then the algorithm of figure 4 will
3. BUILDING NEIGHBOR TABLES produce the correct neighbor table with high probability.

Building the neighbor table is the most complex and interesting PROOF We must show that given the closest levels + 1)
part of the insertion process, so we discuss it first. We want to build nodes, we can find thieclosest level-nodes. Leb; be the radius of
the neighbor sets!\/g‘,]- for a new noded. These sets must adhere the smallest ball around the new node contairiigvel+ matches.



level-(i + 1) node

Figure5: Figurefor Theorem 3. If 34; islessthan §;41, then A
must point to a node within d; 4.

Figure 6: Figurefor Theorem 4.Thelarger ball around A con-
tains O(log n) nodes, while the smaller ball contains none.

We would like to show that any node A inside the ball must point
toalevel-i + 1 node within §;+1 of the new node. If that isthe case,
then we will query A’'sparent, and so find A itself.

If & = Q(log n), with high probability thereisat least one level-
1 node that isalso alevel-(i + 1) node, so the distance between A
and its nearest level-(i + 1) node is no more than 26;, since both
A and the level-(i + 1) node are within the ball of radius 4;. By
the triangle inequality, the distance between the new node and A’s
parent isno more than 26; + 6; = 34;. (See Figure 5.) This means
that as long as 30; < d;+1, A must point to a node inside d;+1.
Since we query al level-(i + 1) in d;+1, this means we will query
A’sparent, and so find A.

Now, we must show that 3§; < d;+1 with high probability. This
isthe expected behavior; given aball with & level-i nodes, doubling
the radius twice gets no more than ¢k nodes, and so, no more than
c?k/b level-(i + 1) nodes. Since ¢?/b < 1, this means that the
quadrupled ball haslessthan k level-(: + 1) nodes, or equivalently,
the ball containing & level-(i 4+ 1) nodes is at least three (redly,
four) times the size of the ball with & level-i nodes. The following
turns thisinformal expectation argument into a proof.

Choose A such that (1 — A)b/c® > 1. This is possible since
we know that b/c* > 1. Now, let I be (1 — \) ™ kb’. Thisis the
required number of nodes such that one expects (1 — A)™ 'k of the
nodes to be level-i nodes. Now let [,c.1 be the total volume of the
ball containing k& level-i nodes. We consider two cases.

Casel: lrear > 1. We argue that with high probability, this does
not happen. Let X, be a random variable representing the
number of level-i nodes in m nodes. Then we wish to bound
PriX;,_, < k].But Pr[X;_, < k] < Pr[X; < k], since
| < lyear. Bt Pr[X; < k] = Pr[X; < (1 — M\)E[X/]]. Us-
ing a Chernoff bound, this is less than exp(—M\?E[X;]/2) <
exp(—A%k/2) andif k = alog n with a sufficiently large, this
can be made as small as desired.

Case 2: liear < I. Consider the ball of radius 34; around the new
node. This ball must contain k level-(¢ + 1) nodes (d;+1 is
smaller that 34;), so the ball of radius 46; must also contain
at least k level-(¢ + 1) nodes.

However, we know the volume (that is, the number of nodes)
of this ball is less than c¢?l;.a by Equation 1. Let Y, be
the number of 7 + 1 nodes in m trials. We wish to bound
Pr[Y,s, > k].Butthis Pr[Y,z, > k] < Pr[Y,z, > k],
and thisisthe same as Pr[Y,.z;, > (1 — A)b/c* E[Y.2,]], since
E[Y.2] = Z/bE[Y]] = 2/b(1 — A)~ k. We know that
(1=X)b/c* > 1 sowecanwrite (1—-\)c?/b = 14+ ), and then
Pr{Y,z > (14+A)¢ /bE[Y.2]] < exp(—N>+E[Y,2,]/3), and

by choosing k large enough, I can be made large enough so that
this can be made as small as we like.

So, by choosing & large enough, we can guarantee that neither case
happens with high probability. [

The new node also induces changes on other nodes’ neighbor
tables. Theorem 4 shows that thereisak’ = O(log n) such that
any node that needs to update its level-i link is one of the closest
k' nodes for level-i with high probability. If we choose & > ¥
we know that with high probability, such a node will be contacted
during the insertion, and so it will add the new node to its neighbor
table. We assume that we only need one neighbor, but it should be
clear how to extend this proof to handle any constant number.

THEOREM 4. If node B is the primary(«, j) neighbor of A
(so B is the closest node td with prefixa o j), then with high
probability, A is among thés = O(log n) closestn-nodes taB.

PrRoOOF. We will show that the probability that A is not among
the k closest a-nodes to B can be made arbitrarily small. Let d =
d(A, B) or the distance between A and B. Consider the ball around
A of radius d. (Shown in Figure 6). Since B is the neighbor table
of A, thereisno («, j) node in this ball. Further, notice that the
ball around B containing k «-nodes does not contain A (or elsethe
proof isdone), so itsradius must be lessthan d. Finally, consider the
ball around A of radius 2d. It completely contains the ball around
B. Thus, the ball around A of radius d contains no («, j) nodes,
but the ball around A of radius 2d contains k nodes of prefix a.

Let I be the number of nodes in the smaller ball around A. We
have two cases, first for large [, and second for small [.

Casel: | > (a/p)logn, where p is the probability a node is
(e, j)-node. The probability that thereisno («, j) nodeisless
than (1 — p)! < exp(—alogn). This can be made as small as
necessary by choosing a large enough.

Case2: | < (a/p)logn. Now, consider the probability the larger
ball has k& or more a-nodes. Let S be a random variable repre-
senting the number of o nodesin the larger ball. Since that ball
hasvolume l, E[S] = lbp (b isthe logarithm base).

Since S is the sum of boolean random variables, we can
writethat Pr[S > (14 X)E[S]] < exp(—A”E[5]/6). Conse-
quently, if weset A = k/E[S] — 1, then we get that Pr[S >
k] < exp(—(k/E[S] — 1)?E[S]/6). Now, let k = ilog n for
i > 2a. Noticethat (k/E[S]—1) > ilog n/E[S]. Substituting
and simplifying, we get that Pr[S > k] < exp(—i/6logn).
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Figure7: Node Insertion Routine. Theinsertion process begins by contacting a gateway node, which isa member of the
Tapestry network. It then transfers object pointersand optimizesthe neighbor table.

method ACKNOWLEDGEDMULTICAST(a,, FUNCTION)

1 if NOTONLYNODEWITHPREFIX(c)
fori=0tob—1

if neighborexists

else
apply FUNCTION
8 wait S
9 SENDACKNOWLEDGEMENT()
end ACKNOWLEDGEDMULTICAST
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neighbor< GETMATCHINGNEIGHBOR(«x 0 7)

S < ACKNOWLEDGEDMULTICAST [on GETIP(neighbo)] (« o ¢, FUNCTION)

Figure 8: Acknowledged Multicast

To bound the probability of either case, choose a so that the proba-
bility of case 1 is made small, and then choose i to make the prob-
ability of case2 small. [

Since each node has an expected constant number of pointers per
level, the expected time of this algorithmis O(k) = O(log n) per
level or O(log? n) overall. (We are concerned with network traffic
and distance and hence ignore the cost of sorting those k distances.)

The number of backpointers is less than O(log n) per level per
node with high probability, so we get atotal time of O(log® n) with
high probability. But this analysis can be tightened. Using the tech-
niques of Theorems 3 and Theorem 4, one can argue that with high
probability, al the visited level-i nodes are within a ball of radius
46;41. Further, again with high probability, there are only O(log n)
level-i nodes within 4§;41. This means we visit only O(log n)
nodes per level, or O(log® n) nodes overall. (We believe that the
analysis can be further tightened to show that with high probabil-
ity, only O(log n) nodes are touched, total.)

Further, notice that §; < ééi“. Suppose the number of nodes
touched at each level is bounded by ¢q. We know (by the above) that
g = O(logn). Thetota network latency is bounded by:

Z5iq=q25i

Sincethed; are geometrically decreasing, they sumto O(d), where
d isthe network diameter, so the total latency for building neighbor
tablesis O(qd) = O(dlogn).

4. NODE INSERTION

Next, we describe the overall insertion algorithm, using the nearest
neighbor algorithm as asubroutine. We would like the results of the
insertion to be the same as if we had been able to build the network
from static data. This means maintaining the following invariant:

PROPERTY 4. If node A is on the path between a publisher of

objectO and the root of objecD, then A has a pointer ta).

In this section, we will show that if Property 1, Property 2, and
Property 4 hold, then we can insert a node such that all three hold

after the insertion, and the new node is part of the network. It may,
however, happen that during a node insertion one or both of the
properties is temporarily untrue. In the case of Property 1, this can
be particularly serious since some objects may become temporar-
ily unavailable. Section 4.3 will show how the agorithm can be
extended to eliminate this problem.

Figure 7 shows the basic insertion algorithm. First, the new node
contacts its surrogate; that is, the node with the ID closest to its
own. Then it gets a copy of the surrogate’s neighbor table. These
first two steps could be combined, if desired. Next the node contacts
the subset of nodes that must be notified to maintain Property 1.
These are the nodes that have ahole in their neighbor table that the
new node should fill. We use the function ACKNOWLEDGEDMUL -
TICAST (detailed in Section 4.1) to do this. Asafinal step, we build
the neighbor tables, as described in Section 3. To reduce the num-
ber of multicasts, we can use the multicast in step 3 of theinsertion
algorithm to get thefirst list of the nearest neighbor algorithm. Fi-
nally, notice that once the multicast is finished, the node is fully
functional, though its neighbor table may be far from optimal.

We would also like to maintain Property 4. This means that all
nodes on the path from an object’s server to the object’s root have a
pointer to that object. Once again, there are two failure cases, one of
correctness, where not fixing the problem means that the network
may fail to locate an object, and one of performance, where not
fixing the problem may increase object location latency.

The function LINKANDXFERROOT from Figure 7 takes care of
correctness by transferring object pointers that should be rooted at
the new node and deleting pointers that should no longer be on the
current node. If we do not move the object pointers, then objects
may become unreachable. Performance optimization involves re-
distributing pointers and will be discussed in Section 4.2.

4.1 Acknowledged Multicast

To contact al nodes with a given prefix we introduce an algorithm
called Acknowledged Multicasshown in Figure 8. This algorithm
isinitiated by the arrival of amulticast message at some node.

A multicast message consists of a prefix o and afunction to ap-



method OPTIMIZEOBJECTPTRS (sendechangedNodebjPtr,level)

oldsender— GETOLDSENDER(0b]jPtr)

if oldsender# changedNode

O WN P

end OPTIMIZEOBJECTPTRS

if oldsender# null and oldsender# sender
OPTIMIZEOBJECTPTRS[0n NEXTHOP(0bjPtr,level)](self ,changedNodebjPtr,level + 1)

DELETEPOINTERSBACKWARD [0n oldsendel(objPtr, changedNodéevel - 1)

method DELETEPOINTERSBACKWARD (changedNodebjPtr,level)

oldsender < GetOldSender(objPtr)
DELETE(0bjPtr)
if oldsender# changedNode

A wWN PR

end DELETEPOINTERSBACKWARD

DELETEPOINTERSBACKWARD [0on oldsende}(objPtr, changedNodgevel - 1)

Figure 9: OptimizeObjectPtrsand its helper function

method OBJECTNOTFOUND (objectID)
if (Inserting

O WNE

endif
end OBJECTNOTFOUND

level<+ LENGTH(GREATESTCOMMONPREFI X(NewNodeNam&SurrogateNanjg
RouTE(objectIDPSurrogateNamdevel)

elsaif not ROUTINGCONSISTENTWITHNEIGHBORS(objectID)
RETRY ROUTING(0bjectIDNeighbors)

Figure 10: Misrouting and route correction to maintain object availability

ply. To be avalid multicast message, the prefix o must be a prefix
of the receiving node. When a node receives a multicast message
for prefix «, it sends the message to one node with each possi-
ble extension of «; that is, for each j, it sends the message to one
(a, 7) node if such a node exists. One of these extensions will be
the node itself, so a node may receive multicast messages from it-
self at potentially many different levels. We know by Property 1
that if an (a, ) node exists, then every a-node knows at least one
such node. Each of these nodes then continues the multicast. When
anode cannot forward the message further, it applies the function.
Because we need to know when the algorithm is finished, we
require each recipient to send an acknowledgment to its parent af-
ter receiving acknowledgments from its children. If a node has no
children, it sends the acknowledgment immediately. When the ini-
tiating node gets an acknowledgment from each of its children, we
know that all nodes with the given prefix have been contacted.

THEOREM 5. When a multicast recipient with prefix sends
acknowledgment, all the nodes with prefixave been reached.

PROOF. Thisisa proof by induction on the length of «. In the
base case, suppose node A receives a multicast message for prefix
« and A isthe only node with prefix A. The claimistrivialy true.

Now, assume the claim holds for a prefix o of length i. We will
proveit holdsfor aprefix « of length i — 1. Suppose node A receives
amulticast for a prefix of length a. Then A forwards the multicast
to one node with each possible one-digit extension of « (i.e., « o j
forall j € [0,b— 1]). Once A receives all those acknowledgments,
all nodes with prefix a: have been reached. Since A waits for these
acknowledgments before sending itsown, all nodes of prefix o have
been reached when A sends its acknowledgment. [

These messages form atree. If you collapse the messages sent by
anodeto itself, theresult isin fact a spanning tree. This means that
if there are k nodes reached in the multicast, there are k — 1 edges
in thetree. Alternatively, each node will only receive one multicast
message, so there can be no more than O(k) such messages sent.

Each of those links could be the diameter of the network, so the
total cost of a multicast to k nodes is O(dk). Note that there is a
variant of this algorithm that does not require maintaining state at
the al the participating nodes, but thisis beyond our scope.

4.2 Redistributing Object Pointers

Recall that object publish their location by placing pointersto them-
selves along the path from the server to the root. From timeto time,
we re-establish these pointersin an operation called republish. This
section describes a special version of republish that maintains Prop-
erty 4. This function is used to rearrange the object pointers any
time the routing mesh changes the expected path to the root node
for some object (e.gwhen anode’s primary neighbor isreplaced by
acloser node). This adjustment is not necessary for correctness, but
does improve performance of object location.

If the node uses an ordinary republish (simply sending the mes-
sage towards the root), it could leave object pointers dangling un-
til the next timeout. For example, if the disappearance of node A
changes the path from an object to its root node so that the path
skips node B, then node B will still be left with a pointer to the
object. Further, this type of republish may do extra work updating
pointers that have not changed.

Instead, the node whose forward routes changed sends the object
pointer up the new path. The new path and the old path will con-
verge at some hode, where a delete message is sent back down the
old path, removing outdated pointers. This requires maintaining a
last-hop pointer for each object pointer. See Figure 9.

Notice, however, that Property 4 is not critical to the function-
ing of the system. If a node should use OPTIMIZEOBJECTPTRS
but does not, then performance may suffer, but objects will still be
available. Further, timeouts and regular republishes will eventually
ensure that the object pointers are on the correct nodes.

4.3 Keeping Objects Available

While a node is inserting itself, object requests that would go to
the new node after insertion may either go to the new node or to



a pre-insertion destination. Figure 10 shows how to keep objects
available during this process: if either node receives a request for
an object it does not have, it forwards the request to the other node.

If an inserting node receives a request for an object it does not
have, it sends the request back out, routing as if it did not know
about itself. That is, if the new node fills a hole at level %, it sends
out a message at level 7 + 1 to one of the surrogate nodes. The
surrogate then routes the message as it would have if the new node
had not yet entered the network.

we can rerun the neighbor table building algorithm after a random
amount of time.

Thethird caseisamuch greater cause for concern, sinceif A has
a hole where B should be, Property 1 would no longer hold. This
could mean that some objects become unavailable. This problem
could be solved by reinserting the node, but before the reinsertion
occurs, objects may be unavailable. Thisis a serious problem.

We start with a definition:

DEFINITION 1. Assume that we start with a consistent Tapestry
network. Acore node is a node that is completely integrated in this
network, i.e. it has no holes in its neighbor table that can be filled by
other nodes in the network, and it cannot fill holes in the neighbor

If a pre-insertion root receives a request for an object pointer
that has aready been moved to the new node, it should forward
the request to the new node. But we want to do thisin such a way

that the surrogate does not need to keep state to show which nodes
are inserting. So we require all nodes to “check the routing” of an
object request or publish before rgjecting it: the nodes test whether
the object made a surrogate step that it did not need to make. If it
finds out it did make a surrogate step instead of going to the new
node, the old root node redirects the message to the new node.

To make this work properly, we reguire that the old root not
delete pointers until the new root has acknowledged receiving them.
If thisis done, then one of the two nodes is guaranteed to have the
pointer. No matter which node receives the request, before or after
thetransfer of pointers, the node servicing the request either hasthe
information to satisfy the query or else it forwards the query to the
other node, which can satisfy it using local information.

Asafinal point, it is possible for arequest for a non-existent ob-
ject to loop until the insertion is complete. We can get around this
by including information in the message header about where there-
quest has been. This allows the system to detect and prevent loops,
and since the number of hops is small, thisis not an unreasonable
overhead.

4.4 Network Traffic

Without objects, the total network traffic required for node inser-
tion is O(dlog b) with high probability, where d is the diameter
of the network. The total number of hops is O(log? n) with high
probability. Finding the surrogate is no more costly than searching
for an object pointer, and [14] argues that finding an object pointer
requires O(d) messages. Multicast takestime O(kd) where k isthe
number of nodes reached. But & will be small and constant relative
to n. Finally, building the neighbor tables takes O(log® n) mes-
sages. If there are m objects that should be on the new node, then
the cost of republishing all those object is a most O(md). This
gives atotal traffic of O(mdlogn) for object pointer relocation.

45 Simultaneous|Insertion

In awide-area network, insertions may not happen one at atime. If
two nodes are inserted at once, each may get an older view of the
network, so neither node will see the other. Suppose A and B are
inserted simultaneoudly. There are three possibilities:

e A’sand B’sinsertionsdo not intersect. Thisisthe most likely
case; A need only know about O(log? n) nodes with high
probability so the chance that B is one of them is small.

e For some (a, j), B should be one of the («, j) neighbors of
A, but A has some more distant («, ) neighbor instead.

e For some (a, j), B isthe only possible neighbor.

In the first case nothing needs to be done. In the second case, if
B fails to get added to A’s neighbor table, then the network still
satisfies all object requests, but the stretch may increase. Local op-
timization mitigates this problem. If an exact answer is desired,

tables of nodes in the network.

Together, the core nodes all satisfy Property 1. By this definition,
a node could be a core node without meeting locality Property 2.
The goal of this section is prove that when a node finishes its mul-
ticast, it becomes a core node, and that all the nodes that were core
nodes before its multicast finished remain core nodes.

Two operations are simultaneousf there is a point in time when
both operations are ongoing. This straight-forward definitionisim-
portant from a systems standpoint. It is a bit imprecise, however,
since two multicasts could be simultaneous and yet be indistin-
guishable from sequential multicasts without the use of a global
clock. We would like to distinguish between cases where all core
nodes see evidence consistent with a sequential ordering and cases
where there can be no such agreement. To this end, we say that two
multicasts conflictif there are two nodes that receive the multicasts
in different orders.

THEOREM 6. Supposed inserts. When it is done with its mul-
ticast, A’s table has no holes that can be filled by core nodes. Fur-
ther, there are no core nodes with holes thatan fill. These state-

ments are true even when other insertions proceed simultaneously.

We start by proving a series of lemmas. Our first Lemmais sim-
ple, but important. Lemma 1 states that simultaneously inserting
nodes cannot interfere with one another’s access to core nodes.

LEMMA 1. Nodes inS, the set of core nodes, can be reached

by a given multicast even in the presence of ongoing or completed

insertions of other nodes.

PROOF. Proof by contradiction. Theorem 5 says that al core
nodes can reach one another. Suppose there is a multicast that
misses node X € S. Let B be the node that should have sent the
multicast towards X but did not. Further, suppose that the prefix B
received with the multicast was «. If B did not send the multicast
towards X (that is, send it to (o, j) where a o j isaprefix of X's
ID), it must have been because it did not have a (a, j) node in its
table. But thisis not possible:

Case1: B has not yet finished its multicast. Since B is supposed
to send the multicast to X, we know that B and X must share
prefix «. Further, since we know that X was in the network
before B began its multicast, B’s multicast set would have been
the nodes with prefix a.. But thismeans that B would only have
filled (v, ) entries, soit could not possibly have been contacted
with a prefix smaller than « o 5. Contradiction.

Case 2: B has finished its multicast and is a core node by Theo-

rem 6, and since X isan («, j) node, B must have such anode
in itstable. Contradiction.

Although Theorem 6 uses Lemma 1, Case 2 is not circular: Node
B was inserted beforethe point in time that we use it here. [



method ACKNOWLEDGEDMULTICAST(a,FUNCTION, holebeindfilledwatchlist, NewNodel
1 watchlist + CHECKFORNODESANDSEND(watchlist,NewNodelp

2 if NOTONLYNODEWITHPREFIX ()
fori=0tob—1
neighbor< GETMATCHINGNEIGHBOR(« o 7)
if neighborexists

else
apply FUNCTION
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10 wait S
11 SENDACKNOWLEDGEMENT()
end ACKNOWLEDGEDMULTICAST

S < ACKNOWLEDGEDMULTICAST [on GETIP(neighbo)]( « ¢ i, FUNCTION,holebeindfilledwatchlist,NewNodelP

S « MuLTicasTToFILLEDHOLE(holebeingfilledFuNcTION,watchlissNewNodelp

Figure 11: Acknowledged multicast with thewatch list

Now we must deal with the case where two insertions conflict.
We first introduce the notion of alocked pointer. An («, j) pointer
to node A stored at node X is lockedwhen there are nodes whose
multicasts through («, j) have arrived at X but have not been ac-
knowledged.

When a multicast for a new node filling an («, j) slot arrives
at some node X, X puts the new node in the table as a locked
pointer and sends the multicast to one unlocked pointer and al
locked pointers. When X receives acknowledgments from al re-
cipients, X unlocks the pointer. Finally, X must keep at least one
unlocked pointer and al locked pointers. If this is done, then X
will reach all («, j) nodes it knows about without having to store
them all. Intuitively, the unlocked pointer can reach all other un-
locked pointers so unlocked pointers are al equivalent, while the
locked pointers are not well-enough connected to be reachable via
multicast.

LEMMA 2. A multicast through an unlocke@, j) pointer at
node X reaches all other nodes that have or had unlockedy)
pointers at nodeX.

The proof is similar to other multicast arguments. Ideally, each
multicast will seethe other as completed. To enforce this condition,
if any node gets a multicast from A, and notices that the hole for A
isalready filled, it contactsall nodesit has seen that fill that hole. As
above, it contacts one unlocked pointer and all the locked pointers.

Next, we deal with the case when A and B fill the same hole.

LEMMA 3. Supposed and B fill the same hole. Then with the

modification described above, if's multicast conflicts withB'’s,
A will get B's multicast message befoi's multicast is finished.

PROOF. Let X be a node that gets A’s multicast before B's.
Then when X gets B’smulticast, it forwards it on to A, since they
fill the same hole. Finaly, since X does not a send an acknowl-
edgment until A returns an acknowledgment of B’s multicast, A
has been informed by the the time B’s multicast finishes. We then
apply this same argument with the roles of A and B reversed. [

This does not solve every problem. Consider when the a o 4 hole
and the a0 j hole are both being filled by two different nodes (with
1 # j). Then the a o i node may not get the «: o 5 multicast and vice
versa, even though their multicast sets are the same.

So, we further modify the multicast. The starting node sends
down a “watch list” of prefixes for which it knows no matching
node. This can be represented as a bit vector. When the inserting
node sends this to the surrogate, it is a zero for every entry in the

neighbor table. Each receiving node checks the watch list to see if
it can fill in any blank on the list. If it can, it sends the relevant
node to the originator of the multicast, marks the entry as found,
and continues the multicast. From this description, it may sound as
if we are sending a lot of information; in fact, we will be sending
very little, since most of the lower levels of the table will be filled
by the surrogate in the first step, and most of the upper levels of the
table will be zero. In the normal case, we send only afew levels of
the neighbor table, and each level is sixteen bits. This new version
is shown in Figure 11. Using this new multicast, we get Lemma 4.

LEMMA 4. Let A be ana node, and letB be an(a, j) node.
Then if the corex nodes get multicast messages from hdtand

B, the(«, j) slot onA will not be a hole. (The core nodes are those

that have finished their multicasts when the latterlcdind B start
its multicast.)

PROOF. There aretwo cases.

Case1: One a node, X, gets B's multicast first and then A’s. In
thiscase, when A’smulticast arriveson X, X checks A’swatch
list, and if thewatch list hasan («, j) hole B canfill, X hasthat
holefilled and so will be able to notify A that it too can fill that
hole. If there is no hole in the watch list, then A has already
found such a node.

Case 2: All core a nodes gets A’s multicast first. This means that
A gets the multicast about B.

This completes the proof. [
Finally, we put everything together and prove Theorem 6.

PROOF. Consider anode B, and let a be thelongest shared pre-
fix between A and B.

Casel: If A and B fill different holes on the same level (i.e, A
fillsan (a, i) hole and B fills («, j) holefor ¢ # j7) , then they
multicast to the same prefix «. By Lemma 1, we know these
nodes are reached, and we can apply Lemma 4, once with A
in the theorem being A of the lemma, and once with A of this
theorem as B in the lemma.

Case2: If A and B fill different holes on different levels, then
we know that there are core o nodes in the network, and by
Lemma 1 we know these nodes are reached. Given that, we
again apply Lemma4.



method DELETESELF ()
for pointer in { backpointers}
level= GETLEVEL (pointer)
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end DELETESELF

LEAVINGNETWORK[on GETIP(pointen](selflD, level, GETNEAREST(pointer, leve))

for pointer in {neighborsU backpointers}
ReEmoVELINK[on GETIP(pointen](selflD)

Figure 12: Voluntary Delete

Case 3. If A and B fill the same hole on the same level, then there
could be no core node with prefix a so the preceding arguments
fail. Inthiscase, werely on Lemma3, which saysthat if thetwo
multicasts are not seridized, each will find out about the other
before their multicasts complete.

This completes the proof. [

This algorithm can result in multiple multicasts to a new node.
However, this is uncommon and it is rare that the new node will
be anything other than aleaf in the tree (i.e. the new node will not
forward the multicast). Further, the new node can easily suppress
duplicate multicast messages.

5. DELETE

In this section, we discuss what happens when nodes leave the net-
work. We consider two cases: voluntaryand involuntarydelete. A
voluntary delete occurs when a node informs the network that it
is about to exit. Thisis an optimistic situation that permits fixing
of neighbor links and object pointers. An involuntarydelete occurs
when a node ceases to function without warning.

5.1 Voluntary Delete

When node A volunteersto leave the network, it removesitself ina
way that permits seamless object location. It starts by following its
backpointers to notify corresponding nodes that it intends to leave
the network. On each such node (say V), linksto A are marked as
“deleting” and replaced with other node links. Then, object pointers
on N arerepublished asif node A did not exist. While pointers to
A aremarked as“ deleting”, queries continue to be routed to A, but
publish operations are routed around A. See Figure 12.

Asking a node to delete its links to A could leave this node
with an incorrect hole in its routing table (breaking Property 1).
The more secondary pointers it has, the less likely this is to be
true. However, to help avoid this problem, we send it suggested
replacements. Given this information, the node can maintain an ap-
proximately correct neighbor table. It may wish to run the nearest-
neighbor algorithm periodically to tune the neighbor table.

Once node A has contacted all of its backpointers, objects that
were rooted at A are now reachable through new surrogates. As
a final step, it simply goes through al backpointers and forward
pointers and tells those nodes that it is leaving. This removes all
linksto A (including those marked as “deleting”).

5.2 Involuntary Delete

We propose that unexpected deletes be handled lazily. That is, when
anode notices some other node isdown, it does everything it can to
fix its own state, but does not attempt to dictate state changes to any
other node. However, in the process of fixing its state, it may hint
to other nodes that their state may be out of date. Deletion can be
detected by soft-state beacons [22] or when anode sends amessage
to a defunct node and does not get a response.

When node B detects a faulty node, it should first remove the
node from its neighbor table, then find a suitable replacement. B
can find a replacement using a simple local search algorithm; that
is, asking its remaining neighbors for their nearest matching nodes.
This is not guaranteed to give the closest replacement node. Al-
ternatively, the nearest neighbor algorithm can be repeated. If this
produces a hole in the table, B will have to do additional work,
described below, to ensure Property 1 is maintained. In any case, it
should also use OPTIMIZEOBJECTPOINTERSON all object pointers
that would have gone through the deleted node.

To ensure Property 1, if deleting the node leaves a hole in the
routing table, B contacts the deleted node’s surrogate. The surro-
gate either replies with areplacement node, or performs a multicast
to al nodes sharing the same prefix as B and the dead node. If none
of those nodes knows of a node to fill the hole, then B can safely
assume the hole cannot be filled, and the surrogate informs al the
nodes touched in the multicast. Likewise, if the surrogate does find
a node to fill the hole, it informs these nodes of the replacement.
During the multicast, al nodes republish any objects that would
route through the departed node. Note that choosing the surrogate
is arbitrary; any node could run this multicast, and we choose the
surrogate node to ensure agreement on the multicast source.

Unfortunately, this does not maintain object availability. Objects
rooted at the deleted node may become unavailable until a repub-
lish arrives at the node’s surrogate. In fact, a network partition may
result in an inconsistent deletion; we do not address this here.

6. OBJECT LOCATION IN GENERAL
METRIC SPACES.

For any metric space S, we show a way to route to an object
such that the stretch is polylogarithmic with O(|TD| log® n) aver-
age space, where |ID| is the size of an object ID, or O(log n). We
remark that thisis the strawman scheme proposed by Plaxton, Ra-
jaraman, and Richa [14] without load balancing, and is similar to
the scheme of Thorup and Zwick [19].

Let S;,; be a sample of the metric space such that each node
is chosen with probability 2°/n, and let i € [1,logn] and j €
[0, clog n]. Pick asingle node at random to be in Sy 0. Each node
inthe network storesthe closest nodein S;,; for each pair 4, j. Also,
each node in S; ; stores alist of all objects located at nodes which
point to it.

Suppose node X wantsto find object Y. Starting with i = log n,
X asks (for al j in parallel) its representative in the set S ; if it
knows of Y. If one of them does, it returns the pointer to Y. If this
fails, it tries S;—1,; for all j. Recall that there is one node in Sy,o,
so thiswill always find the object, if it exists.

THEOREM 7. Let:” be the largest such that there is some
S;,; that points to bothX andY". We will show thatl(S;. ;, X) <
log n*d(X,Y") with high probability. Moreover, the avage space
used by the data structure @(log” n).



PROOF. Let Bx (r) betheball around X of radiusr, thet is, all
thenodeswithin distancer of X. Now, consider a sequence of radii
such that r, = kd for k € [1,logn]. If |Bx(re) N By (rx)| >
2 |Bx(r) U By (ry)| we call rj, good. We now show that if there
exists agood rj, the theorem holds.

Let » = r, be a good radius. Then consider i such
that 26" ~° < |Bx(r)UBy(r)] < 28"+l When
|Bx (r) N By (r)| is 3 of |Bx (r) U By (r)], for agiven a j, with
constant probability there will exactly one member of S; ; in the
intersection and no other member in the union. Weview each j asa
trial, and since we have clog n trias, with high probability at least
one will succeed. And if thereiss € S; ; that pointsto both X and
Y, when X queries s, X will get apointertoY’, soi* = i.

We will now argue that you cannot have logn bad r; as
follows: Suppose that r. is bad. Then |Bx(dk)N By (dk)|
is less than $ of |Bx(dk)UBy(dk)|. Notice that
Bx (kd) N By (kd) contains |Bx ((k —1)d) U By ((k — 1)d)]|,
and since |Bx(kd) U By (kd)| > 2|Bx(kd)N By (kd)| >
2|Bx((k—1)d)UBy((k—1)d)|, we can say that
|Bx (kd) U By (kd)| > 2|Bx((k—1)d) UBy((k —1)d)|. But
this can happen at most log n times, since | Bx (1) N By (r1)| > 2
(sinceit contains X and Y") and the network has only n nodes.

Finaly, if at any point |Bx (r) U By (rx)| contains the whole
network, then let ¢* = 0, and since there is only one element of
each So o, it will clearly be pointed to by X and have a pointer
toY. O

To get the stretch bound, notice that if d(S;«;,X) < logn *
d(X,Y), the total distance traveled on level i is log® nd(X,Y),
and the latency (waiting time) is log nd(X,Y"). Since there may
be log n levels, this means the total latency is proportional to
d(X,Y)log”n and total distance traveled proportional to ¢ *
d(X,Y)log®n.

To provide load balancing, we let i range over al possible ID
prefixes, and only search i's that are prefixes of Y’s ID. This re-
sultsin avery large table size. We do not know how to efficiently
maintain this data structure.

7. CONCLUSION

We illustrate how to adapt to arriving and departing nodes in
Tapestry, alocation-independent overlay routing infrastructure with
routing locality. This adaptation involves an efficient, distributed
solution to the nearest-neighbor problem as well as a distributed
algorithm for maintaining the prefix-based routing mesh. Both are
presented for the first time in this paper. One of the salient prop-
erties of our system is that objects remain available, even as the
network changes. Further, the cost of integrating new nodes is sim-
ilar to that of systemsthat do not provide routing locality. The result
isan infrastructure that provides deterministic location, routing lo-
cality, and load balance — even in a changing network.
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