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ABSTRACT
Modern networking applications replicate data and services widely, leading
to a need forlocation-independent routing– the ability to route queries di-
rectly to objects using names independent of the objects’ physical locations.
Two important properties of a routing infrastructure arerouting localityand
rapid adaptationto arriving and departing nodes. We show how these two
properties can be efficiently achieved for certain network topologies. To
do this, we present a new distributed algorithm that can solve the nearest-
neighbor problem for these networks. We describe our solution in the con-
text of Tapestry, an overlay network infrastructure that employs techniques
proposed by Plaxton, Rajaraman, and Richa [14].

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures; E.1 [Data Struc-
tures]: Graphs and Networks; F.2.2 [Nonnumerical Algorithms
and Problems]: Routing and layout; C.2.4 [Distributed systems]:
Distributed applications

General Terms
Algorithms,Theory

Keywords
Tapestry, networking, overlay, locality, peer-to-peer, distributed ob-
ject location, DOLR, distributed hash table, DHT, nearest neighbor

1. INTRODUCTION
In today’s chaotic network, data and services are mobile and repli-
cated widely for availability, durability, and locality1. This has lead
to a renewed interest in techniques for routing queries to objects
using names that are independent of their locations. The notion of
routing is that queries are forwarded from node to node until they
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1By locality we mean the ability to exploit local resources over
remote ones whenever possible [21].
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reach their destinations. Thelocation-independent routingproblem
has spawned a host of proposals, many of them in the context of
data sharing infrastructures such as OceanStore [11], FarSite [3],
CFS [9] and PAST [17]. To permit locality optimizations, it is im-
portant that the routing process use as few network hops as possible
and that these hops should be as short as possible.

Properties that we would like from a location-independent rout-
ing infrastructure include:

1. Deterministic Location: Objects should be located if they ex-
ist anywhere in the network.

2. Routing Locality: Routes should have lowstretch2, not just
a small number of application-level hops. Sending queries to
the nearest copy across the shortest path possible is the ideal.

3. Minimality and Load Balance: The infrastructure must not
place undue stress on any of its components; this implies
minimal storage and balanced computational load.

4. Dynamic Membership: The system must adapt to arriving
and departing nodes while maintaining the above properties.

Although clearly desirable, the first property is not guaranteed by
existing peer-to-peer systems such as Gnutella [12] and FreeNet [5].

A simple object location and routing scheme would employ a
centralized directory of object locations. Servers wouldpublishthe
existence of objects by inserting entries into the directory. Clients
would sendqueriesto the directory, which forwards them to their
destinations. This solution, while simple, induces a heavy load on
the directory server. Moreover, when a nearby server happens to
contain the object, the client must still interact with the potentially
distant directory server. The average routing latency of this tech-
nique is proportional to the average diameter of the network – inde-
pendent of the actual distance to the object. Worse, it is neither fault
tolerant nor scalable, since the directory becomes a single point of
both failure and contention.

Several recent proposals, Chord [18], CAN [15] and Pastry [16],
address the load aspect of this problem by distributing the direc-
tory information over a large number of nodes. In particular, they
can find an object with polylogarithmic number of application-level
network hops while ensuring that no node contains much more than
its share of the directory entries. Moreover, they can support the
introduction and removal of new participants in the peer-to-peer
network. Unfortunately, while these approaches use a number of
overlay hops that is polylogarthmic, the actual network latencies
incurred by queries can be significantly more than those incurred
by finding the object in the centralized directory.
2Stretch is the ratio between the distance traveled by a query to an
object and the minimal distance from the query origin to the object.



Scheme Insert Space Stretch, Metric Hops Balanced?
CHORD [18] O(log2 n) O(n log n) - O(log n) yes
CAN [15] O(r) nr - rn1=r yes
Pastry [16] O(log2 n) O(n log n) - O(n log n) yes
This Paper (Tapestry) O(log2 n) O(n log n) - O(log n) yes
Awerbuch, Peleg[1] no O(nÆ2 + nÆ log2 n) O(log2 n), general O(log2 n) no
PRR [14] no O(n log n) O(1), special O(log n) yes
PRR + This Paper O(log2 n) O(n log n) O(1), special O(log n) yes
PRR v.0 + This Paper no O(n log2 n) O(log3 n), general O(log2 n) no

Table 1: In this table, n is the number of nodes, Æ = log d, where d is the network diameter. We assume the number of objects is O(n).
Both stretch and hops refer to an object search. In most cases, the time for insertion is given with high probability. In some cases,
various messages can be sent in parallel; we did not allow for this optimization in stating the bounds in this table.

An alternative solution is to broadcast an object’s location to ev-
ery node in the network. This allows clients to easily find the near-
est copy of the object, but requires a large amount of resources to
publish and maintain location information, including both network
bandwidth and storage. Furthermore, it requires full knowledge of
the participants of the network. In a dynamic network, maintaining
a list of participants is a significant problem in its own right.

We describe our results in the context of the Tapestry overlay
routing and location infrastructure [22]. Tapestry uses as a start-
ing point the distributed data structure of Plaxton, Rajaraman, and
Richa [14], which we will refer to as the PRR scheme. Their pro-
posal yields routing locality with balanced storage and computa-
tional load. However, it does not provide dynamic maintenance
of membership. The original statement of the algorithm required
a static set of participating nodes as well as significant work to pre-
process this set to generate a routing infrastructure. Additionally,
the PRR scheme was unable to adapt to changes such as node fail-
ures. This paper extends their algorithms to a dynamic network.

1.1 Related Work
Schemes that exhibit routing locality include Plaxton, Rajaraman,
and Richa (PRR) [14] and Awerbuch and Peleg [1]. Both allow the
publication and deletion of objects with only a logarithmic number
of messages and both guarantee a low stretch. Recall that stretch
is the ratio between the actual latency or distance to an object and
the shortest distance. The PRR scheme finds objects with constant
stretch for a specific class of network topologies while ensuring
that no node has too many directory entries. Awerbuch et al. route
with stretch within a polylogarithmic factor of optimal for general
network topologies. The Awerbuch scheme does not explicitly deal
with load balancing, though it could perhaps be modified to do so.
Unfortunately, both the PRR and Awerbuch schemes assume full
knowledge of the participating nodes, or, equivalently, they assume
that the network is static.

There is also an abundance of theoretical work on finding com-
pact routing tables [2, 7, 13, 20] whose techniques are closely re-
lated to those in this paper. See [8] for a survey. A recent and closely
related paper is that of Thorup and Zwick, who showed that a sam-
pling based scheme similar to that of PRR could be used to find
small stretch routing tables and/or answer approximate distance
queries in arbitrary metric spaces3.

Most of the recent work on peer-to-peer networks ignores stretch.
Chord [18] constructs a distributed lookup service using a routing
table of logarithmic size. Nodes are arranged into a large virtual
circle. Each node maintains pointers to predecessor and successor
nodes, as well as a logarithmic number of “chords” which cross

3A network topology gives a metric space.

greater distances within the circle. Queries are forwarded along
chords until they reach their destination. CAN [15] places objects
into a virtual, high-dimensional space. Queries are routed along
axes in this virtual space until they reach their destination. Pas-
try [16] is loosely based on the PRR scheme, routing queries via
successive resolution of digits in a high-dimensional name space.
While its overlay construction leverages network proximity met-
rics, it does not provide the same stretch as the PRR scheme in ob-
ject location. All of these schemes can find objects with a polylog-
arithmic number of application-level network hops, while ensuring
that no node contains more than its share of directory entries. In
addition, Chord and CAN have run-time heuristics to reduce object
location cost, so they may perform well in practice. Further, all of
these can support the introduction and removal of nodes.

Recent peer-to-peer systems can locate objects in a dynamic net-
work. Gnutella [12] utilizes a bounded broadcast mechanism to
search neighbors for documents. FreeNet [5] utilizes a chaotic rout-
ing scheme in which objects are published to a set of nearest neigh-
bors and queries follow gradients generated by object pointers; the
behavior of FreeNet appears to converge somewhat toward the PRR
scheme when a large number of objects are present4. Neither of
these techniques are guaranteed to find objects.

Table 1 summarizes related work alongside our contributions.
Systems with no entry in the “Stretch, Metric” column do not con-
sider stretch at all; those with “special” assume the metric space
has a certain low-expansion property described in Section 3.

1.2 Results
Our goals are not only to derive the best possible asymptotic results,
but also to analyze the simple schemes that are the basis of the PRR
and the Tapestry algorithms. This paper includes three main results:

� We present a simplification of the PRR scheme for object
location. We cannot prove that this object location scheme
meets the same bounds on stretch as the PRR scheme; how-
ever, it appears to perform well in practice.

� We extend this scheme (as well as the PRR approach) to deal
with a changing participant set. We allow nodes to arrive and
depart while maintaining the ability to locate existing objects
and publish new objects. This works for a slightly broader
class of metric spaces than assumed by PRR.

� We observe that a static version of the PRR scheme can be
used for general metric spaces (i.e. spaces that do not meet
the conditions assumed by PRR) to get results similar to
those of Awerbuch and Peleg [1].

4This is a qualitative statement at this time.



Table 1 gives a summary of some of the previous results along with
ours. Note that the result for general metrics can be improved using
results of Thorup and Zwick [19] to use onlyO(n log n) space.

Techniques: The crux of our method for inserting nodes into the
network lies in an algorithm for maintaining nearest neighbors in
a restricted metric space. Our approach follows that of Karger and
Ruhl [10], who give a sequential algorithm for answering nearest
neighbor queries in a similarly restricted metric space5.

Karger and Ruhl describe a data structure using a random per-
mutation to help maintain a random sampling. This approach is
dynamic and reminiscent of the Chord network infrastructure. Our
data structure uses random names to get a random sampling.

We also prove that an alternate scheme by Plaxton, Rajaraman,
and Richa (called PRR v.0 in Table 1) gives a low stretch solution
for general metric spaces. This follows from arguments similar to
those used by Bourgain [4] for metric embeddings. In particular,
we show that this scheme leads to a covering of the graph by trees
such that for any two nodesu andv at distanceÆ they are in a tree
of diameterÆ log n. Indeed, by modifying the PRR scheme along
the lines proposed by Thorup and Zwick [19] one can improve the
space bounds by a logarithmic factor, but we do not address this
issue here.

The remainder of this paper is divided as follows: Section 2 de-
scribes the details of Tapestry, highlighting differences with the
PRR scheme and introducing concepts and terminology for the re-
mainder of the paper. Section 3 describes how to solve the incre-
mental nearest neighbor problem. Section 4 explains how this is
used as part of inserting a node. Section 5 discusses deletion. Sec-
tion 6 gives a simple proof that PRR v.0 scheme has polylogarith-
mic stretch for general metric spaces. We conclude in Section 7.

2. THE TAPESTRY INFRASTRUCTURE
Tapestry [22] is the wide-area location and routing infrastructure
of OceanStore [11]. Tapestry assumes that nodes and objects in
the system can be identified with unique identifiers (names), rep-
resented as strings of digits. Digits are drawn from an alphabet
of radix b. Identifiers are uniformly distributed in the namespace.
We will refer to node identifiers asnode-IDsand object identifiers
asglobally unique identifiers(GUIDs). Among other things, this
means that every query has a unique destination GUID which ulti-
mately resolves to a node-ID. For a string of digits�, let j�j repre-
sent the number of digits in that string.

Tapestry inherits its basic structure from the data location scheme
of Plaxton, Rajaraman, and Richa (PRR) [14]. As with the PRR
scheme, each Tapestry node contains pointers to other nodes (neigh-
bor links), as well as mappings between object GUIDs and the
node-IDs of storage servers (object pointers). Queries are routed
from node to node along neighbor links until an appropriate object
pointer is discovered, at which point the query is forwarded along
neighbor links to the destination node.

2.1 The Tapestry Routing Mesh
The Tapestryrouting meshis an overlay network between partici-
pating nodes. Each Tapestry node contains links to a set of neigh-
bors that share prefixes with its node-ID. Thus, neighbors of node-
ID � are restricted to nodes that share prefixes with�, i.e. nodes
whose node-IDs� Æ Æ satisfy� Æ Æ0 � � for someÆ, Æ0. Neighbor
links are labeled by theirlevel number, which is one greater than
the number of digits in the shared prefix, i.e.(j�j + 1). Figure 1

5Clarkson also presented a very similar approach in [6].
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Figure 1: Tapestry Routing Mesh. Each node is linked to other
nodes via neighbor links, shown as solid arrows with labels. La-
bels denote which digit is resolved during link traversal. Here,
node 4227 has an L1 link to 27AB, resolving the first digit, an
L2 link to 44AF, resolving the second digit, etc. Using the nota-
tion of Section 2.1, 42A2 is a (42;A) neighbor of 4227.

shows a portion of the routing mesh. For eachforward neighbor
pointer from a node A to a node B, there will abackward neighbor
pointer (or “backpointer”) from B to A.

Neighbors for nodeA are grouped intoneighbor sets. For each
prefix � of A’s ID and each symbolj 2 [0; b � 1], the neighbor
setNA

�;j contains Tapestry nodes whose node-IDs share the prefix
� Æ j. We will refer to these as(�; j) neighbors ofA or simply
(�; j) nodes. For eachj and�, the closest node inNA�;j is called
the primary neighbor, and the other neighbors are called secondary
neighbors. When context is obvious, we will drop the superscript
A. Let l = j�j + 1. Then, the collection ofb sets,NA

�;j , form
the level-l routing table. There is a routing table at each level, up
to the maximum length of node-IDs. Membership in neighbor sets
is limited by constant parameterK � 1: jNA

�;j j � K. Further,
jNA

�;j j < K impliesNA
�;j contains all (�; j) nodes. This gives us

the following:

PROPERTY1 (CONSISTENCY). If NA
�;j=�, for anyA, then

there are no (�; j) nodes in the system. We refer to this as a “hole”
in A’s routing table at levelj�j+ 1, digit j.

Property 1 implies that the routing mesh is fully connected. Mes-
sages can route from any node to any other node by resolving
the destination node-ID one digit at a time. Let the source node
beA0 and destination node beB, with a node-ID equal to� �
j1 Æ j2 : : : jn. Then routing proceeds by choosing a succession
of nodes:A1 2 N

A0

�;j1
(first hop),A2 2 N

A1

j1;j2
(second hop),

A3 2 N
A2

j1Æj2;j3
(third hop),etc.We would like to emphasize

PROPERTY2 (LOCALITY ). In both Tapestry and PRR, each
NA
�;j contains the closest (�; j) neighbors as determined by a given

metric space. The closest neighbor with prefix� Æ j is theprimary
neighbor, while the remaining ones aresecondary neighbors.

Property 2 yields the important locality behavior of both the
Tapestry and PRR schemes. Further, it yields a simple solution to
thestatic nearest-neighbor problem: Each nodeA can find its near-
est neighbor by choosing from the set

S
j2[0;b�1]N

A
�;j . Section 3

will discuss how to maintain Property 2 in a dynamic network.

2.2 Routing to Objects with Low Stretch
Tapestry maps each object GUID, , to a set of root nodes:
R = MAPROOTS( ). We callR the root set for  , and each
� 2 R is a root nodefor  . It is assumed that MAPROOTS( )
can be evaluated anywhere in the network.
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Figure 2: Publication in Tapestry. To publish object 4378,
server 39AA sends publication request towards root, leaving a
pointer at each hop. Server 4228 publishes its replica similarly.
Since no 4378 node exists, object 4378 is rooted at node 4377.
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Figure 3: Routing in Tapestry: Three different location requests.
For instance, to locate GUID 4378, query source 197E routes
towards the root, checking for a pointer at each step. At node
4361, it encounters a pointer to server 39AA.

To function properly, MAPROOTS( ) must return nodes that ex-
ist. The size of a root set,jR j � 1, is small and constant for all
objects. In the simplest version of Tapestry,jR j = 1. In this case,
we can speak ofthe root nodefor a given node, . For this to be
sensible, we must have the following property:

PROPERTY3 (UNIQUE ROOT SET). The root set,R , for ob-
ject must be unique. In particular,MAPROOTS( ) must generate
the sameR , regardless of where it is evaluated in the network.

Storage serverspublishthe fact that they are storing a replica by
routing a publish message toward each� 2 R . Publish messages
are routed along primary neighbor links. At each hop, publish mes-
sages depositobject pointersto the object. Unlike the PRR scheme,
Tapestry maintainsall object pointers for objects with duplicate
names (i.e. copies). Figure 2 illustrates publication of two replicas
with the same GUID. To provide fault-tolerance, Tapestry assumes
that pointers aresoft-state, i.e. pointers expire and objects must be
republished (that is, published again) at regular intervals. Repub-
lishing may be requested if something changes about the network.

Queriesfor object route towardone of the root nodes� 2
R along primary neighbor links until they encounter an object
pointer for , then route to the located replica. If multiple pointers
are encountered, the query proceeds to the closest replica to the
current node (i.e. the node where the object pointer was found). At
the beginning of the query, we select a root randomly fromR .
Figure 3 shows three different location paths. In the worst case, a
location operation involves routing all the way to root. However, if
the desired object is close to the client, then the query path will be
very likely to intersect the publishing path before reaching the root.

In the PRR scheme, queries route by examining all secondary
neighbors before proceeding along the primary link toward the root.
The number of secondary neighbors is set according to their metric
space, but bounded by a constant. The following theorem shows an
important property shared by PRR and Tapestry.

THEOREM 1. PRR and Tapestry can perform location-indepen-
dent routing, given Property 3.

PROOF. The publishing process ensures that all members ofR 
contain mappings (object pointers) between and every server

which contains . Thus, a query routed toward any� 2 R will
(in the worst case) encounter a pointer for after reaching�.

OBSERVATION 1. (Fault Tolerance) IfjR j > 1 and the names
in R are independent of one another, then we can retry object
queries and tolerate faults in the Tapestry routing mesh.

In a general metric space, it is difficult to make claims about the
performance of such a system. PRR restrict their attention to met-
ric spaces with a certain even-growth property: they assume that
for a given pointA, the ratio of the number of points within2r
of A and the number of points within distancer of A is bounded
above and below by constants. (Unless all points are within2r of
A.) Given this constraint, [14] shows the average distance traveled
in locating an object isproportional to the distance from that ob-
ject, i.e. queries exhibitO(1) stretch. Unfortunately, the constants
in their proof make for an impractical system. Tapestry is easier to
implement and seems to provide low stretch in practice [22].

2.3 Surrogate Routing
The procedures forpublishingand queryingdocuments outlined
in Section 2.2 do not require the actual membership ofR to be
known. All that is required is to be able to compute the next hop
toward the root from a given position in the network. As long as this
incrementalversion of MAPROOTS() is consistent in its behavior,
we achieve the same routing and locality behavior as in Section 2.2.
Assume that INCRMAPROOTS( ,�) produces an ordered list of the
next hop toward the roots of from node�.

In the PRR scheme, MAPROOTS( ) produces a single root node
� which matches in the largest possible number of prefix bits with
 . Ties are broken by consulting a global order of nodes. The PRR
scheme specifies a corresponding INCRMAPROOTS() function as
follows: the neighbor sets,N , are supplemented with additional
root links that fill holes in the routing table. To route a message
toward the root node, PRR routes directly to as if it were a node
in the Tapestry mesh. Assuming that the supplemental root links are
consistent with one another, every publish or query for document
 will head toward the same root node.

We call this processsurrogate routing, since it involves routing
toward as if it were a node, then adapting when the process fails.



method ACQUIRENEIGHBORTABLE (NewNodeName,NewNodeIP, PSurrogateName,PSurrogateIP)
1 � GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName)
2 maxLevel LENGTH(�)
3 list ACKNOWLEDGEDMULTICAST [on PSurrogateIP](�, SENDID(NewNodeIP, NewNodeName))
4 BUILD TABLEFROMLIST(list,maxLevel)
5 for i = maxlevel- 1 to 0
6 list GETNEXTLIST(list, i)
7 BUILD TABLEFROMLIST(list, i)

end ACQUIRENEIGHBORTABLE

method GETNEXTLIST (neighborlist, level)
1 nextList ;
2 for n 2 neighborlist
3 temp GETFORWARDANDBACKPOINTERS(n, level))
4 nextList KEEPCLOSESTK(temp[ nextList)
5 return nextList

end GETNEXTLIST

Figure 4: Building a Neighbor Table. A few words on notation: FUNCTION [on destination] represents a call to run
FUNCTION on destination, variables in italics are single-valued, and variables in bold are vectors.

Roots reached in this way are consideredsurrogate rootsof  .
In a dynamic network, maintenance of these additional point-

ers can be problematic, since they follow from a “global order”.
Tapestry utilizes a slightly different scheme that relies on informa-
tion local to each node and already present in the routing table.
Rather than filling holes in the neighbor tables, we route around
them. When there is no match for the next digit, we route to the
next filled entry in the same level of the table, wrapping around if
needed. For example, if the next digit to be fixed was 3, and there
was no entry, try 4, then 5, and so on. When routing can go no fur-
ther (the only node left at and above the current level is the current
node), that node is the root. This scheme is simpler than PRR under
inserts and deletes, and may have better load balancing properties.

THEOREM 2. Suppose Property 1 holds. Then the Tapestry ver-
sion of surrogate routing will produce a unique root.

PROOF. Proof by contradiction. Suppose that messages for an
object with IDX end routing at two different nodes,A andB. Let
� be the longest common prefix ofA andB, and leti be the length
of �. Then, letA0 andB0 be the nodes that do thei + 1st routing
step; that is, the two nodes that send the message to different digits.
Notice that after this step, the firsti+ 1 digits of the prefix remain
constant in all further routing steps. BothNA0

�;� andNB0

�;� must
have the same pattern of empty and non-empty entries. That is, if
NA0

�;j is empty, thenNB0

�;j must also be empty, or Property 1 is
untrue. So bothA0 andB0 must send the message on a node with
the the samei+ 1th digit, so this is a contradiction.

Surrogate routing in Tapestry may introduce additional hops over
PRR; however, the number of additional hops is independent ofn
and in expectation is less than 2 [22]. Notice the following:

OBSERVATION 2. (Multiple Roots) Surrogate routing general-
izes to multiple roots. First, a pseudo-random function is employed
to map the initial document GUID into a set of identifiers 0,
 1,: : : n. Then, to route to rooti, we surrogate route to i.

3. BUILDING NEIGHBOR TABLES
Building the neighbor table is the most complex and interesting
part of the insertion process, so we discuss it first. We want to build
the neighbor sets,NA

�;j for a new nodeA. These sets must adhere

to Properties 1 and 2. This amounts to solving the nearest neigh-
bor problem for many different prefixes. We could simply use the
method of Karger and Ruhl [10] many times, once for each prefix.
The method we present below has lower network distance, though
as many network hops as a straightforward use of Karger and Ruhl.
Our method incurs no additional space over the PRR solution.

As in [14], we adopt the following network constraint. LetBA(r)
denote the ball of radiusr aroundA; i.e., all points within distance
r ofA, andjBA(r)j denote the number of such points. We assume:

jBA(2r)j � c jBA(r)j ; (1)

for some constantc. PRR also assume thatjBA(2r)j � c0 jBA(r)j,
but we will not need that. Notice that our expansion property is
almost exactly that used by Karger and Ruhl [10]. We also assume
the triangle inequality, that isd(X;Y ) � d(X;Z) + d(Z; Y ) for
any set of nodesX; Y , andZ. Finally, we will give bounds in terms
of network latency or network hops ignoring local computation.
None of the local computation is expensive, so this reasonable.

Figure 4 shows how to build neighbor tables. Suppose that the
longest common prefix of the new node and any other node in the
network is�. Then we start with a list of all nodes with prefix�.
(We explain how to get this list in the next section.) Then we get
similar lists for progressively smaller prefixes, until we have the
closestk nodes matching the empty prefix.

To go from the level-(i+ 1) list to the level-i list, we ask all the
nodes on the level-(i + 1) list for all the level-i nodes they know
about (we ask for both forward and backwards pointers). We then
trim this list, keeping only the closestk nodes.

We then use these lists to fill in the neighbor table. In particular,
to fill in level i of the neighbor table, we look in the level-i list.
For j 2 [0; b � 1], we keep the closestK (�i; j) nodes (K is
defined in Section 2.1). Ifb > c2, then Theorem 3 says there is
somek = O(log n) such that with high probability, we know there
is one (or indeed, any constant) number of such nodes on the list
for everyj. (Note that PRR assume thatb � c8).

THEOREM 3. If c is the expansion constant of the network and
b > c2 (whereb is the digit size), then the algorithm of figure 4 will
produce the correct neighbor table with high probability.

PROOF. We must show that given thek closest level-(i + 1)
nodes, we can find thek closest level-i nodes. LetÆi be the radius of
the smallest ball around the new node containingk level-imatches.
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Figure 5: Figure for Theorem 3. If 3Æi is less than Æi+1, then A
must point to a node within di+1.

A

d

B

2d

Figure 6: Figure for Theorem 4.The larger ball around A con-
tains O(log n) nodes, while the smaller ball contains none.

We would like to show that any node A inside the ball must point
to a level-i+1 node within Æi+1 of the new node. If that is the case,
then we will query A’s parent, and so find A itself.

If k = 
(log n), with high probability there is at least one level-
i node that is also a level-(i+ 1) node, so the distance between A
and its nearest level-(i + 1) node is no more than 2Æi, since both
A and the level-(i + 1) node are within the ball of radius Æi. By
the triangle inequality, the distance between the new node and A’s
parent is no more than 2Æi + Æi = 3Æi. (See Figure 5.) This means
that as long as 3Æi < Æi+1, A must point to a node inside Æi+1.
Since we query all level-(i + 1) in Æi+1, this means we will query
A’s parent, and so find A.

Now, we must show that 3Æi < Æi+1 with high probability. This
is the expected behavior; given a ball with k level-i nodes, doubling
the radius twice gets no more than c2k nodes, and so, no more than
c2k=b level-(i + 1) nodes. Since c2=b < 1, this means that the
quadrupled ball has less than k level-(i+1) nodes, or equivalently,
the ball containing k level-(i + 1) nodes is at least three (really,
four) times the size of the ball with k level-i nodes. The following
turns this informal expectation argument into a proof.

Choose � such that (1 � �)b=c2 > 1. This is possible since
we know that b=c2 > 1. Now, let l be (1 � �)�1kbi. This is the
required number of nodes such that one expects (1� �)�1k of the
nodes to be level-i nodes. Now let lreal be the total volume of the
ball containing k level-i nodes. We consider two cases.

Case 1: lreal � l. We argue that with high probability, this does
not happen. Let Xm be a random variable representing the
number of level-i nodes in m nodes. Then we wish to bound
Pr[Xlreal � k]. But Pr[Xlreal � k] � Pr[Xl � k], since
l � lreal. But Pr[Xl � k] = Pr[Xl � (1 � �)E[Xl]]. Us-
ing a Chernoff bound, this is less than exp(��2E[Xl]=2) �
exp(��2k=2) and if k = a log n with a sufficiently large, this
can be made as small as desired.

Case 2: lreal � l. Consider the ball of radius 3Æi around the new
node. This ball must contain k level-(i + 1) nodes (Æi+1 is
smaller that 3Æi), so the ball of radius 4Æi must also contain
at least k level-(i+ 1) nodes.

However, we know the volume (that is, the number of nodes)
of this ball is less than c2lreal by Equation 1. Let Ym be
the number of i + 1 nodes in m trials. We wish to bound
Pr[Yc2lreal � k]. But this Pr[Yc2lreal � k] � Pr[Yc2l � k],
and this is the same as Pr[Yc2l � (1 � �)b=c2E[Yc2l]], since
E[Yc2l] = c2=bE[Yl] = c2=b(1 � �)�1k. We know that
(1��)b=c2 > 1 so we can write (1��)c2=b = 1+�0, and then
Pr[Yc2l � (1+�)c2=bE[Yc2l]] � exp(��02�E[Yc2l]=3), and

by choosing k large enough, l can be made large enough so that
this can be made as small as we like.

So, by choosing k large enough, we can guarantee that neither case
happens with high probability.

The new node also induces changes on other nodes’ neighbor
tables. Theorem 4 shows that there is a k0 = O(log n) such that
any node that needs to update its level-i link is one of the closest
k0 nodes for level-i with high probability. If we choose k � k0

we know that with high probability, such a node will be contacted
during the insertion, and so it will add the new node to its neighbor
table. We assume that we only need one neighbor, but it should be
clear how to extend this proof to handle any constant number.

THEOREM 4. If nodeB is the primary(�; j) neighbor ofA
(soB is the closest node toA with prefix� Æ j), then with high
probability,A is among thek = O(log n) closest�-nodes toB.

PROOF. We will show that the probability that A is not among
the k closest �-nodes to B can be made arbitrarily small. Let d =
d(A;B) or the distance betweenA andB. Consider the ball around
A of radius d. (Shown in Figure 6). Since B is the neighbor table
of A, there is no (�; j) node in this ball. Further, notice that the
ball around B containing k �-nodes does not containA (or else the
proof is done), so its radius must be less than d. Finally, consider the
ball around A of radius 2d. It completely contains the ball around
B. Thus, the ball around A of radius d contains no (�; j) nodes,
but the ball around A of radius 2d contains k nodes of prefix �.

Let l be the number of nodes in the smaller ball around A. We
have two cases, first for large l, and second for small l.

Case 1: l � (a=p) log n, where p is the probability a node is
(�; j)-node. The probability that there is no (�; j) node is less
than (1 � p)l � exp(�a log n). This can be made as small as
necessary by choosing a large enough.

Case 2: l � (a=p) log n. Now, consider the probability the larger
ball has k or more �-nodes. Let S be a random variable repre-
senting the number of � nodes in the larger ball. Since that ball
has volume l, E[S] = lbp (b is the logarithm base).

Since S is the sum of boolean random variables, we can
write that Pr[S � (1 + �)E[S]] � exp(��2E[S]=6). Conse-
quently, if we set � = k=E[S] � 1, then we get that Pr[S �
k] � exp(�(k=E[S] � 1)2E[S]=6). Now, let k = i log n for
i > 2a. Notice that (k=E[S]�1) � i log n=E[S]. Substituting
and simplifying, we get that Pr[S � k] � exp(�i=6 log n).



method INSERT (gatewayIP, NewNodeIP, NewNodeName)
1 (PSurrogateIP, PSurrogateName) ACQUIREPRIMARYSURROGATE (gatewayIP, NewNodeName)
2 � GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName)
3 GETPRELIMNEIGHBORTABLE [on PSurrogateIP]()
4 ACKNOWLEDGEDMULTICAST [on PSurrogateIP](�, LINKANDXFERROOT[NewNodeIP, NewNodeName])
5 ACQUIRENEIGHBORTABLE (NewNodeName,NewNodeIP,PSurrogateIP, PSurrogateIP)

end INSERT

Figure 7: Node Insertion Routine. The insertion process begins by contacting a gateway node, which is a member of the
Tapestry network. It then transfers object pointers and optimizes the neighbor table.

method ACKNOWLEDGEDMULTICAST(�,FUNCTION)
1 if NOTONLYNODEWITHPREFIX(�)
2 for i = 0 to b� 1
3 neighbor GETMATCHINGNEIGHBOR(�Æ i)
4 if neighborexists
5 S  ACKNOWLEDGEDMULTICAST [on GETIP(neighbor)] (� Æ i, FUNCTION )
6 else
7 apply FUNCTION

8 wait S
9 SENDACKNOWLEDGEMENT()

end ACKNOWLEDGEDMULTICAST

Figure 8: Acknowledged Multicast

To bound the probability of either case, choose a so that the proba-
bility of case 1 is made small, and then choose i to make the prob-
ability of case 2 small.

Since each node has an expected constant number of pointers per
level, the expected time of this algorithm is O(k) = O(log n) per
level or O(log2 n) overall. (We are concerned with network traffic
and distance and hence ignore the cost of sorting those k distances.)

The number of backpointers is less than O(log n) per level per
node with high probability, so we get a total time ofO(log3 n) with
high probability. But this analysis can be tightened. Using the tech-
niques of Theorems 3 and Theorem 4, one can argue that with high
probability, all the visited level-i nodes are within a ball of radius
4Æi+1. Further, again with high probability, there are onlyO(log n)
level-i nodes within 4Æi+1. This means we visit only O(log n)
nodes per level, or O(log2 n) nodes overall. (We believe that the
analysis can be further tightened to show that with high probabil-
ity, only O(log n) nodes are touched, total.)

Further, notice that Æi � 1
3
Æi+1. Suppose the number of nodes

touched at each level is bounded by q. We know (by the above) that
q = O(log n). The total network latency is bounded by:

X

i

Æiq = q
X

i

Æi

Since the Æi are geometrically decreasing, they sum toO(d), where
d is the network diameter, so the total latency for building neighbor
tables is O(qd) = O(d log n).

4. NODE INSERTION
Next, we describe the overall insertion algorithm, using the nearest
neighbor algorithm as a subroutine. We would like the results of the
insertion to be the same as if we had been able to build the network
from static data. This means maintaining the following invariant:

PROPERTY 4. If nodeA is on the path between a publisher of
objectO and the root of objectO, thenA has a pointer toO.

In this section, we will show that if Property 1, Property 2, and
Property 4 hold, then we can insert a node such that all three hold

after the insertion, and the new node is part of the network. It may,
however, happen that during a node insertion one or both of the
properties is temporarily untrue. In the case of Property 1, this can
be particularly serious since some objects may become temporar-
ily unavailable. Section 4.3 will show how the algorithm can be
extended to eliminate this problem.

Figure 7 shows the basic insertion algorithm. First, the new node
contacts its surrogate; that is, the node with the ID closest to its
own. Then it gets a copy of the surrogate’s neighbor table. These
first two steps could be combined, if desired. Next the node contacts
the subset of nodes that must be notified to maintain Property 1.
These are the nodes that have a hole in their neighbor table that the
new node should fill. We use the function ACKNOWLEDGEDMUL-
TICAST (detailed in Section 4.1) to do this. As a final step, we build
the neighbor tables, as described in Section 3. To reduce the num-
ber of multicasts, we can use the multicast in step 3 of the insertion
algorithm to get the first list of the nearest neighbor algorithm. Fi-
nally, notice that once the multicast is finished, the node is fully
functional, though its neighbor table may be far from optimal.

We would also like to maintain Property 4. This means that all
nodes on the path from an object’s server to the object’s root have a
pointer to that object. Once again, there are two failure cases, one of
correctness, where not fixing the problem means that the network
may fail to locate an object, and one of performance, where not
fixing the problem may increase object location latency.

The function LINKANDXFERROOT from Figure 7 takes care of
correctness by transferring object pointers that should be rooted at
the new node and deleting pointers that should no longer be on the
current node. If we do not move the object pointers, then objects
may become unreachable. Performance optimization involves re-
distributing pointers and will be discussed in Section 4.2.

4.1 Acknowledged Multicast
To contact all nodes with a given prefix we introduce an algorithm
called Acknowledged Multicast, shown in Figure 8. This algorithm
is initiated by the arrival of a multicast message at some node.

A multicast message consists of a prefix � and a function to ap-



method OPTIMIZEOBJECTPTRS (sender,changedNode,objPtr,level)
1 oldsender GETOLDSENDER(objPtr)
2 if oldsender6= null and oldsender6= sender
3 OPTIMIZEOBJECTPTRS [on NEXTHOP(objPtr,level)](self ,changedNode,objPtr,level+ 1)
4 if oldsender6= changedNode
5 DELETEPOINTERSBACKWARD [on oldsender](objPtr, changedNode,level - 1)

end OPTIMIZEOBJECTPTRS

method DELETEPOINTERSBACKWARD (changedNode,objPtr,level)
1 oldsender GetOldSender(objPtr)
2 DELETE(objPtr)
3 if oldsender6= changedNode
4 DELETEPOINTERSBACKWARD [on oldsender](objPtr, changedNode,level - 1)

end DELETEPOINTERSBACKWARD

Figure 9: OptimizeObjectPtrs and its helper function

method OBJECTNOTFOUND (objectID)
1 if (Inserting)
2 level LENGTH(GREATESTCOMMONPREFIX(NewNodeName, PSurrogateName))
3 ROUTE(objectID,PSurrogateName, level)
4 elseif not ROUTINGCONSISTENTWITHNEIGHBORS(objectID)
5 RETRYROUTING(objectID,Neighbors)
6 endif

end OBJECTNOTFOUND

Figure 10: Misrouting and route correction to maintain object availability

ply. To be a valid multicast message, the prefix � must be a prefix
of the receiving node. When a node receives a multicast message
for prefix �, it sends the message to one node with each possi-
ble extension of �; that is, for each j, it sends the message to one
(�; j) node if such a node exists. One of these extensions will be
the node itself, so a node may receive multicast messages from it-
self at potentially many different levels. We know by Property 1
that if an (�; j) node exists, then every �-node knows at least one
such node. Each of these nodes then continues the multicast. When
a node cannot forward the message further, it applies the function.

Because we need to know when the algorithm is finished, we
require each recipient to send an acknowledgment to its parent af-
ter receiving acknowledgments from its children. If a node has no
children, it sends the acknowledgment immediately. When the ini-
tiating node gets an acknowledgment from each of its children, we
know that all nodes with the given prefix have been contacted.

THEOREM 5. When a multicast recipient with prefix� sends
acknowledgment, all the nodes with prefix� have been reached.

PROOF. This is a proof by induction on the length of �. In the
base case, suppose node A receives a multicast message for prefix
� and A is the only node with prefix A. The claim is trivially true.

Now, assume the claim holds for a prefix � of length i. We will
prove it holds for a prefix� of length i�1. Suppose nodeA receives
a multicast for a prefix of length �. Then A forwards the multicast
to one node with each possible one-digit extension of � (i.e., � Æ j
for all j 2 [0; b� 1]). Once A receives all those acknowledgments,
all nodes with prefix � have been reached. Since A waits for these
acknowledgments before sending its own, all nodes of prefix � have
been reached when A sends its acknowledgment.

These messages form a tree. If you collapse the messages sent by
a node to itself, the result is in fact a spanning tree. This means that
if there are k nodes reached in the multicast, there are k � 1 edges
in the tree. Alternatively, each node will only receive one multicast
message, so there can be no more than O(k) such messages sent.

Each of those links could be the diameter of the network, so the
total cost of a multicast to k nodes is O(dk). Note that there is a
variant of this algorithm that does not require maintaining state at
the all the participating nodes, but this is beyond our scope.

4.2 Redistributing Object Pointers
Recall that object publish their location by placing pointers to them-
selves along the path from the server to the root. From time to time,
we re-establish these pointers in an operation called republish. This
section describes a special version of republish that maintains Prop-
erty 4. This function is used to rearrange the object pointers any
time the routing mesh changes the expected path to the root node
for some object (e.g.when a node’s primary neighbor is replaced by
a closer node). This adjustment is not necessary for correctness, but
does improve performance of object location.

If the node uses an ordinary republish (simply sending the mes-
sage towards the root), it could leave object pointers dangling un-
til the next timeout. For example, if the disappearance of node A
changes the path from an object to its root node so that the path
skips node B, then node B will still be left with a pointer to the
object. Further, this type of republish may do extra work updating
pointers that have not changed.

Instead, the node whose forward routes changed sends the object
pointer up the new path. The new path and the old path will con-
verge at some node, where a delete message is sent back down the
old path, removing outdated pointers. This requires maintaining a
last-hop pointer for each object pointer. See Figure 9.

Notice, however, that Property 4 is not critical to the function-
ing of the system. If a node should use OPTIMIZEOBJECTPTRS

but does not, then performance may suffer, but objects will still be
available. Further, timeouts and regular republishes will eventually
ensure that the object pointers are on the correct nodes.

4.3 Keeping Objects Available
While a node is inserting itself, object requests that would go to
the new node after insertion may either go to the new node or to



a pre-insertion destination. Figure 10 shows how to keep objects
available during this process: if either node receives a request for
an object it does not have, it forwards the request to the other node.

If an inserting node receives a request for an object it does not
have, it sends the request back out, routing as if it did not know
about itself. That is, if the new node fills a hole at level i, it sends
out a message at level i + 1 to one of the surrogate nodes. The
surrogate then routes the message as it would have if the new node
had not yet entered the network.

If a pre-insertion root receives a request for an object pointer
that has already been moved to the new node, it should forward
the request to the new node. But we want to do this in such a way
that the surrogate does not need to keep state to show which nodes
are inserting. So we require all nodes to “check the routing” of an
object request or publish before rejecting it: the nodes test whether
the object made a surrogate step that it did not need to make. If it
finds out it did make a surrogate step instead of going to the new
node, the old root node redirects the message to the new node.

To make this work properly, we require that the old root not
delete pointers until the new root has acknowledged receiving them.
If this is done, then one of the two nodes is guaranteed to have the
pointer. No matter which node receives the request, before or after
the transfer of pointers, the node servicing the request either has the
information to satisfy the query or else it forwards the query to the
other node, which can satisfy it using local information.

As a final point, it is possible for a request for a non-existent ob-
ject to loop until the insertion is complete. We can get around this
by including information in the message header about where the re-
quest has been. This allows the system to detect and prevent loops,
and since the number of hops is small, this is not an unreasonable
overhead.

4.4 Network Traffic
Without objects, the total network traffic required for node inser-
tion is O(d log b) with high probability, where d is the diameter
of the network. The total number of hops is O(log2 n) with high
probability. Finding the surrogate is no more costly than searching
for an object pointer, and [14] argues that finding an object pointer
requiresO(d) messages. Multicast takes timeO(kd) where k is the
number of nodes reached. But k will be small and constant relative
to n. Finally, building the neighbor tables takes O(log2 n) mes-
sages. If there are m objects that should be on the new node, then
the cost of republishing all those object is at most O(md). This
gives a total traffic of O(md log n) for object pointer relocation.

4.5 Simultaneous Insertion
In a wide-area network, insertions may not happen one at a time. If
two nodes are inserted at once, each may get an older view of the
network, so neither node will see the other. Suppose A and B are
inserted simultaneously. There are three possibilities:

� A’s andB’s insertions do not intersect. This is the most likely
case; A need only know about O(log2 n) nodes with high
probability so the chance that B is one of them is small.

� For some (�; j), B should be one of the (�; j) neighbors of
A, but A has some more distant (�; j) neighbor instead.

� For some (�; j), B is the only possible neighbor.

In the first case nothing needs to be done. In the second case, if
B fails to get added to A’s neighbor table, then the network still
satisfies all object requests, but the stretch may increase. Local op-
timization mitigates this problem. If an exact answer is desired,

we can rerun the neighbor table building algorithm after a random
amount of time.

The third case is a much greater cause for concern, since ifA has
a hole where B should be, Property 1 would no longer hold. This
could mean that some objects become unavailable. This problem
could be solved by reinserting the node, but before the reinsertion
occurs, objects may be unavailable. This is a serious problem.

We start with a definition:

DEFINITION 1. Assume that we start with a consistent Tapestry
network. Acore node is a node that is completely integrated in this
network, i.e. it has no holes in its neighbor table that can be filled by
other nodes in the network, and it cannot fill holes in the neighbor
tables of nodes in the network.

Together, the core nodes all satisfy Property 1. By this definition,
a node could be a core node without meeting locality Property 2.
The goal of this section is prove that when a node finishes its mul-
ticast, it becomes a core node, and that all the nodes that were core
nodes before its multicast finished remain core nodes.

Two operations are simultaneousif there is a point in time when
both operations are ongoing. This straight-forward definition is im-
portant from a systems standpoint. It is a bit imprecise, however,
since two multicasts could be simultaneous and yet be indistin-
guishable from sequential multicasts without the use of a global
clock. We would like to distinguish between cases where all core
nodes see evidence consistent with a sequential ordering and cases
where there can be no such agreement. To this end, we say that two
multicasts conflict if there are two nodes that receive the multicasts
in different orders.

THEOREM 6. SupposeA inserts. When it is done with its mul-
ticast,A’s table has no holes that can be filled by core nodes. Fur-
ther, there are no core nodes with holes thatA can fill. These state-
ments are true even when other insertions proceed simultaneously.

We start by proving a series of lemmas. Our first Lemma is sim-
ple, but important. Lemma 1 states that simultaneously inserting
nodes cannot interfere with one another’s access to core nodes.

LEMMA 1. Nodes inS, the set of core nodes, can be reached
by a given multicast even in the presence of ongoing or completed
insertions of other nodes.

PROOF. Proof by contradiction. Theorem 5 says that all core
nodes can reach one another. Suppose there is a multicast that
misses node X 2 S. Let B be the node that should have sent the
multicast towards X but did not. Further, suppose that the prefix B
received with the multicast was �. If B did not send the multicast
towards X (that is, send it to (�; j) where � Æ j is a prefix of X ’s
ID), it must have been because it did not have a (�; j) node in its
table. But this is not possible:

Case 1: B has not yet finished its multicast. Since B is supposed
to send the multicast to X , we know that B and X must share
prefix �. Further, since we know that X was in the network
beforeB began its multicast,B’s multicast set would have been
the nodes with prefix �. But this means thatB would only have
filled (�; j) entries, so it could not possibly have been contacted
with a prefix smaller than � Æ j. Contradiction.

Case 2: B has finished its multicast and is a core node by Theo-
rem 6, and since X is an (�; j) node, B must have such a node
in its table. Contradiction.

Although Theorem 6 uses Lemma 1, Case 2 is not circular: Node
B was inserted beforethe point in time that we use it here.



method ACKNOWLEDGEDMULTICAST(�,FUNCTION, holebeingfilled, watchlist,NewNodeIP)
1 watchlist CHECKFORNODESANDSEND(watchlist,NewNodeIP)
2 if NOTONLYNODEWITHPREFIX(�)
3 for i = 0 to b� 1
4 neighbor GETMATCHINGNEIGHBOR(�Æ i)
5 if neighborexists
6 S  ACKNOWLEDGEDMULTICAST [on GETIP(neighbor)]( � Æ i, FUNCTION,holebeingfilled, watchlist,NewNodeIP)
7 else
8 apply FUNCTION

9 S  MULTICASTTOFILLEDHOLE(holebeingfilled, FUNCTION,watchlist,NewNodeIP)

10 wait S
11 SENDACKNOWLEDGEMENT()

end ACKNOWLEDGEDMULTICAST

Figure 11: Acknowledged multicast with the watch list

Now we must deal with the case where two insertions conflict.
We first introduce the notion of a locked pointer. An (�; j) pointer
to node A stored at node X is lockedwhen there are nodes whose
multicasts through (�; j) have arrived at X but have not been ac-
knowledged.

When a multicast for a new node filling an (�; j) slot arrives
at some node X , X puts the new node in the table as a locked
pointer and sends the multicast to one unlocked pointer and all
locked pointers. When X receives acknowledgments from all re-
cipients, X unlocks the pointer. Finally, X must keep at least one
unlocked pointer and all locked pointers. If this is done, then X
will reach all (�; j) nodes it knows about without having to store
them all. Intuitively, the unlocked pointer can reach all other un-
locked pointers so unlocked pointers are all equivalent, while the
locked pointers are not well-enough connected to be reachable via
multicast.

LEMMA 2. A multicast through an unlocked(�; j) pointer at
nodeX reaches all other nodes that have or had unlocked(�; j)
pointers at nodeX.

The proof is similar to other multicast arguments. Ideally, each
multicast will see the other as completed. To enforce this condition,
if any node gets a multicast from A, and notices that the hole for A
is already filled, it contacts all nodes it has seen that fill that hole. As
above, it contacts one unlocked pointer and all the locked pointers.

Next, we deal with the case when A and B fill the same hole.

LEMMA 3. SupposeA andB fill the same hole. Then with the
modification described above, ifA’s multicast conflicts withB’s,
A will getB’s multicast message beforeB’s multicast is finished.

PROOF. Let X be a node that gets A’s multicast before B’s.
Then when X gets B’s multicast, it forwards it on to A, since they
fill the same hole. Finally, since X does not a send an acknowl-
edgment until A returns an acknowledgment of B’s multicast, A
has been informed by the the time B’s multicast finishes. We then
apply this same argument with the roles of A and B reversed.

This does not solve every problem. Consider when the � Æ i hole
and the �Æ j hole are both being filled by two different nodes (with
i 6= j). Then the �Æ i node may not get the �Æ j multicast and vice
versa, even though their multicast sets are the same.

So, we further modify the multicast. The starting node sends
down a “watch list” of prefixes for which it knows no matching
node. This can be represented as a bit vector. When the inserting
node sends this to the surrogate, it is a zero for every entry in the

neighbor table. Each receiving node checks the watch list to see if
it can fill in any blank on the list. If it can, it sends the relevant
node to the originator of the multicast, marks the entry as found,
and continues the multicast. From this description, it may sound as
if we are sending a lot of information; in fact, we will be sending
very little, since most of the lower levels of the table will be filled
by the surrogate in the first step, and most of the upper levels of the
table will be zero. In the normal case, we send only a few levels of
the neighbor table, and each level is sixteen bits. This new version
is shown in Figure 11. Using this new multicast, we get Lemma 4.

LEMMA 4. LetA be an� node, and letB be an(�; j) node.
Then if the core� nodes get multicast messages from bothA and
B, the(�; j) slot onAwill not be a hole. (The core nodes are those
that have finished their multicasts when the latter ofA andB start
its multicast.)

PROOF. There are two cases.

Case 1: One � node, X , gets B’s multicast first and then A’s. In
this case, whenA’s multicast arrives onX ,X checksA’s watch
list, and if the watch list has an (�; j) holeB can fill,X has that
hole filled and so will be able to notify A that it too can fill that
hole. If there is no hole in the watch list, then A has already
found such a node.

Case 2: All core � nodes gets A’s multicast first. This means that
A gets the multicast about B.

This completes the proof.

Finally, we put everything together and prove Theorem 6.

PROOF. Consider a node B, and let � be the longest shared pre-
fix between A and B.

Case 1: If A and B fill different holes on the same level (i.e., A
fills an (�; i) hole and B fills (�; j) hole for i 6= j) , then they
multicast to the same prefix �. By Lemma 1, we know these
nodes are reached, and we can apply Lemma 4, once with A
in the theorem being A of the lemma, and once with A of this
theorem as B in the lemma.

Case 2: If A and B fill different holes on different levels, then
we know that there are core � nodes in the network, and by
Lemma 1 we know these nodes are reached. Given that, we
again apply Lemma 4.



method DELETESELF ()
1 for pointer in f backpointers g
2 level= GETLEVEL(pointer)
3 LEAVINGNETWORK[on GETIP(pointer)](selfID, level, GETNEAREST(pointer, level))

4 for pointer in fneighbors [ backpointers g
5 REMOVELINK[on GETIP(pointer)](selfID)

end DELETESELF

Figure 12: Voluntary Delete

Case 3: IfA and B fill the same hole on the same level, then there
could be no core node with prefix � so the preceding arguments
fail. In this case, we rely on Lemma 3, which says that if the two
multicasts are not serialized, each will find out about the other
before their multicasts complete.

This completes the proof.

This algorithm can result in multiple multicasts to a new node.
However, this is uncommon and it is rare that the new node will
be anything other than a leaf in the tree (i.e. the new node will not
forward the multicast). Further, the new node can easily suppress
duplicate multicast messages.

5. DELETE
In this section, we discuss what happens when nodes leave the net-
work. We consider two cases: voluntaryand involuntarydelete. A
voluntary delete occurs when a node informs the network that it
is about to exit. This is an optimistic situation that permits fixing
of neighbor links and object pointers. An involuntarydelete occurs
when a node ceases to function without warning.

5.1 Voluntary Delete
When node A volunteers to leave the network, it removes itself in a
way that permits seamless object location. It starts by following its
backpointers to notify corresponding nodes that it intends to leave
the network. On each such node (say N ), links to A are marked as
“deleting” and replaced with other node links. Then, object pointers
on N are republished as if node A did not exist. While pointers to
A are marked as “deleting” , queries continue to be routed to A, but
publish operations are routed around A. See Figure 12.

Asking a node to delete its links to A could leave this node
with an incorrect hole in its routing table (breaking Property 1).
The more secondary pointers it has, the less likely this is to be
true. However, to help avoid this problem, we send it suggested
replacements. Given this information, the node can maintain an ap-
proximately correct neighbor table. It may wish to run the nearest-
neighbor algorithm periodically to tune the neighbor table.

Once node A has contacted all of its backpointers, objects that
were rooted at A are now reachable through new surrogates. As
a final step, it simply goes through all backpointers and forward
pointers and tells those nodes that it is leaving. This removes all
links to A (including those marked as “deleting” ).

5.2 Involuntary Delete
We propose that unexpected deletes be handled lazily. That is, when
a node notices some other node is down, it does everything it can to
fix its own state, but does not attempt to dictate state changes to any
other node. However, in the process of fixing its state, it may hint
to other nodes that their state may be out of date. Deletion can be
detected by soft-state beacons [22] or when a node sends a message
to a defunct node and does not get a response.

When node B detects a faulty node, it should first remove the
node from its neighbor table, then find a suitable replacement. B
can find a replacement using a simple local search algorithm; that
is, asking its remaining neighbors for their nearest matching nodes.
This is not guaranteed to give the closest replacement node. Al-
ternatively, the nearest neighbor algorithm can be repeated. If this
produces a hole in the table, B will have to do additional work,
described below, to ensure Property 1 is maintained. In any case, it
should also use OPTIMIZEOBJECTPOINTERS on all object pointers
that would have gone through the deleted node.

To ensure Property 1, if deleting the node leaves a hole in the
routing table, B contacts the deleted node’s surrogate. The surro-
gate either replies with a replacement node, or performs a multicast
to all nodes sharing the same prefix asB and the dead node. If none
of those nodes knows of a node to fill the hole, then B can safely
assume the hole cannot be filled, and the surrogate informs all the
nodes touched in the multicast. Likewise, if the surrogate does find
a node to fill the hole, it informs these nodes of the replacement.
During the multicast, all nodes republish any objects that would
route through the departed node. Note that choosing the surrogate
is arbitrary; any node could run this multicast, and we choose the
surrogate node to ensure agreement on the multicast source.

Unfortunately, this does not maintain object availability. Objects
rooted at the deleted node may become unavailable until a repub-
lish arrives at the node’s surrogate. In fact, a network partition may
result in an inconsistent deletion; we do not address this here.

6. OBJECT LOCATION IN GENERAL
METRIC SPACES.

For any metric space S, we show a way to route to an object
such that the stretch is polylogarithmic with O(jIDj log2 n) aver-
age space, where jIDj is the size of an object ID, or O(log n). We
remark that this is the strawman scheme proposed by Plaxton, Ra-
jaraman, and Richa [14] without load balancing, and is similar to
the scheme of Thorup and Zwick [19].

Let Si;j be a sample of the metric space such that each node
is chosen with probability 2i=n, and let i 2 [1; log n] and j 2
[0; c log n]. Pick a single node at random to be in S0;0. Each node
in the network stores the closest node in Si;j for each pair i; j. Also,
each node in Si;j stores a list of all objects located at nodes which
point to it.

Suppose node X wants to find object Y . Starting with i = log n,
X asks (for all j in parallel) its representative in the set Si;j if it
knows of Y . If one of them does, it returns the pointer to Y . If this
fails, it tries Si�1;j for all j. Recall that there is one node in S0;0,
so this will always find the object, if it exists.

THEOREM 7. Let i� be the largesti such that there is some
Si;j that points to bothX andY . We will show thatd(Si�;j ; X) �
log n�d(X;Y ) with high probability. Moreover, the averagespace
used by the data structure isO(log2 n).



PROOF. Let BX(r) be the ball around X of radius r, that is, all
the nodes with in distance r ofX . Now, consider a sequence of radii
such that rk = kd for k 2 [1; log n]. If jBX(rk) \ BY (rk)j �
1
2
jBX(r) [ BY (rk)j we call rk good. We now show that if there

exists a good rk the theorem holds.
Let r = rk be a good radius. Then consider i such

that 2log n�i � jBX(r) [ BY (r)j � 2log n�i+1. When
jBX(r) \ BY (r)j is 1

2
of jBX(r) [ BY (r)j, for a given a j, with

constant probability there will exactly one member of Si;j in the
intersection and no other member in the union. We view each j as a
trial, and since we have c log n trials, with high probability at least
one will succeed. And if there is s 2 Si;j that points to both X and
Y , when X queries s, X will get a pointer to Y , so i� = i.

We will now argue that you cannot have log n bad rk as
follows: Suppose that rk is bad. Then jBX(dk) \ BY (dk)j
is less than 1

2
of jBX(dk) [ BY (dk)j. Notice that

BX(kd) \ BY (kd) contains jBX((k � 1)d) [ BY ((k � 1)d)j,
and since jBX(kd) [ BY (kd)j � 2 jBX(kd) \ BY (kd)j �
2 jBX((k � 1)d) [ BY ((k � 1)d)j, we can say that
jBX(kd) [ BY (kd)j � 2 jBX((k � 1)d) [ BY ((k � 1)d)j. But
this can happen at most log n times, since jBX(r1) \ BY (r1)j � 2
(since it contains X and Y ) and the network has only n nodes.

Finally, if at any point jBX(rk) [ BY (rk)j contains the whole
network, then let i� = 0, and since there is only one element of
each S0;0, it will clearly be pointed to by X and have a pointer
to Y .

To get the stretch bound, notice that if d(Si�;j ; X) � log n �
d(X;Y ), the total distance traveled on level i is log2 nd(X;Y ),
and the latency (waiting time) is log nd(X;Y ). Since there may
be log n levels, this means the total latency is proportional to
d(X;Y ) log2 n and total distance traveled proportional to c �
d(X;Y ) log3 n.

To provide load balancing, we let i range over all possible ID
prefixes, and only search i’s that are prefixes of Y ’s ID. This re-
sults in a very large table size. We do not know how to efficiently
maintain this data structure.

7. CONCLUSION
We illustrate how to adapt to arriving and departing nodes in
Tapestry, a location-independent overlay routing infrastructure with
routing locality. This adaptation involves an efficient, distributed
solution to the nearest-neighbor problem as well as a distributed
algorithm for maintaining the prefix-based routing mesh. Both are
presented for the first time in this paper. One of the salient prop-
erties of our system is that objects remain available, even as the
network changes. Further, the cost of integrating new nodes is sim-
ilar to that of systems that do not provide routing locality. The result
is an infrastructure that provides deterministic location, routing lo-
cality, and load balance – even in a changing network.
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