
9/11/2003 Internet and Grid Computing - Fall
2003

1

Introduction to P2P Systems

Lecture Coverage
1. Characteristics, Properties and Requirements
2. Survey of Approaches
3. Napster/Gnutella
4. Distributed Hash Table Based Systems

1. Chord
2. Can

5. Similarity Metric Based Systems
1. Freenet

9/11/2003 Internet and Grid Computing - Fall
2003

2

Introduction to P2P Systems

Pure P2P Systems- Properties

Fully distributed, fully symmetric control

Common knowledge – Initialization and by Discovery

Discovery is essential

Discovery is via peer interaction protocols

Functionality is composed from independent components

Self-organizing behaviors

Protocols:

Join , Leave, Insertion, Discovery, Replication

9/11/2003 Internet and Grid Computing - Fall
2003

3

Introduction to P2P Systems

Search/Discovery

• “Location Resolution”
Given an object (might be name, attribute, or even

content)
Return a channel to a node (peer) that has that object
Or the object itself

• Approaches:
– Centralized Index (Napster)
– Broadcast information to be resolved (Gnutella)
– Similarity metric based searches
– Distributed Hashing

9/11/2003 Internet and Grid Computing - Fall
2003

4

Introduction to P2P Systems

Design Goals

• Scalability
• Low latency (efficient resolution)
• Load balancing
• Completely distributed/self-organizing
• Robust – fault-tolerance
• Deployable
• Simple

9/11/2003 Internet and Grid Computing - Fall
2003

5

Introduction to P2P Systems

Spectrum of “Purity”

• Hybrid
– Centralized index, P2P

file storage and transfer
• Super-peer or Hierarchical

– A “pure” network of
“hybrid” clusters

• Pure
– functionality completely

distributed

9/11/2003 Internet and Grid Computing - Fall
2003

6

Introduction to P2P Systems

Metrics for Discovery/Insertion/Join

• Cost (aggregate)
– Number of Messages or Interactions
– Bandwidth
– Processing Power

• Quality of Results
– Number of results
– Satisfaction (true if # results >= X, false otherwise)
– Time to satisfaction

9/11/2003 Internet and Grid Computing - Fall
2003

7

Introduction to P2P Systems

P2P File-sharing

• Napster
– Decentralized storage of actual content

• transfer content directly from one peer (client) to another

– Centralized index and search
• Gnutella

– Like Napster, with decentralized indexing
– Search via flooding
– Direct download

9/11/2003 Internet and Grid Computing - Fall
2003

8

Introduction to P2P Systems

Napster

Central Napster server

(xyz.mp3, 128.1.2.3)

128.1.2.3

9/11/2003 Internet and Grid Computing - Fall
2003

9

Introduction to P2P Systems

Napster

Central Napster server

xyz
.mp3 ?

128
.1.

2.3

128.1.2.3

9/11/2003 Internet and Grid Computing - Fall
2003

10

Introduction to P2P Systems

Napster

Central Napster server

128.1.2.3
xyz.mp3 ?

9/11/2003 Internet and Grid Computing - Fall
2003

11

Introduction to P2P Systems

Gnutella

9/11/2003 Internet and Grid Computing - Fall
2003

12

Introduction to P2P Systems

Gnutella

xyz.mp3 ?

9/11/2003 Internet and Grid Computing - Fall
2003

13

Introduction to P2P Systems

Gnutella

9/11/2003 Internet and Grid Computing - Fall
2003

14

Introduction to P2P Systems

Gnutella

xyz.mp3

9/11/2003 Internet and Grid Computing - Fall
2003

15

Introduction to P2P Systems

Current Techniques: Gnutella: Breadth-First Search (BFS)

= forward
query

= processed
query

= source

= found
result

= forward
response

9/11/2003 Internet and Grid Computing - Fall
2003

16

Introduction to P2P Systems

Iterative Deepening

• Interested in satisfaction, not # of results
• BFS returns “too many” results expensive
• Iterative Deepening: common technique to reduce the cost

of BFS
– Intuition: A search at a small depth is much cheaper

than at a larger depth

9/11/2003 Internet and Grid Computing - Fall
2003

17

Introduction to P2P Systems

Iterative Deepening

= source
= forward

query
= processed

query

= found
result

= forward
response

?

9/11/2003 Internet and Grid Computing - Fall
2003

18

Introduction to P2P Systems

Directed BFS

• Sends query to a subset of neighbors
• Maintains statistics on neighbors

– E.g., ping latency, history of number of results
• Chooses subset intelligently (via heuristics), to maximize

quality of results
– E.g., Neighbors with shortest message queue, since

long message queue implies neighbor is saturated/dead

9/11/2003 Internet and Grid Computing - Fall
2003

19

Introduction to P2P Systems

Directed BFS

= source
= forward

query
= processed

query

= found
result

= forward
response

?

9/11/2003 Internet and Grid Computing - Fall
2003

20

Introduction to P2P Systems

Directed BFS: Heuristics
RAND (Random)

RES Returned greatest # results in past

TIME Had shorted avg. time to satisfaction in
past

HOPS Had smallest avg. # hops for response
messages in past

MSG Sent our client greatest # of messages

QLEN Shortest message queue

DEG Highest degree

SIMPLE

9/11/2003 Internet and Grid Computing - Fall
2003

21

Introduction to P2P Systems

Local Indices

• Each node maintains index over other nodes’ collections
– r is the radius of the index
– Index covers all nodes within r hops away

• Can process query at fewer nodes, but get just as many
results back

r

9/11/2003 Internet and Grid Computing - Fall
2003

22

Introduction to P2P Systems

sdf
nrd

sdf
nrd

sdf
nrd

Local Indices (r=1)

= source
= forward

query
= processed

query

= found
result

= forward
response

sdf
nrd

9/11/2003 Internet and Grid Computing - Fall
2003

23

Introduction to P2P Systems

Distributed Hashing — General Approach

Objects Nodes

1. Map both objects and nodes into some topology (“id
space”)

9/11/2003 Internet and Grid Computing - Fall
2003

24

Introduction to P2P Systems

Distributed Hashing — General Approach

Objects Nodes

1. Map both objects and nodes into some topology (“id
space”)

2. Each node “owns” some neighborhood in the topology,
has channel to some neighbors

9/11/2003 Internet and Grid Computing - Fall
2003

25

Introduction to P2P Systems

Distributed Hashing — General Approach

Objects Nodes

1. Map both objects and nodes into some topology (“id space”)
2. Each node “owns” some neighborhood in the topology, has channel

to some neighbors
3. Topological structure lets query be routed to the “owner” of a given

point

9/11/2003 Internet and Grid Computing - Fall
2003

26

Introduction to P2P Systems

Chord Architecture

• Interface:
– lookup(DocumentID) → NodeID, IP-Address

• Chord consists of
– Consistent Hashing
– Small routing (finger) tables: log(n)
– Fast join/leave protocol

9/11/2003 Internet and Grid Computing - Fall
2003

27

Introduction to P2P Systems

Consistent Hashing

N32

N90

N105

D80

D20

D120 (0)

Circular 7-bit
ID space

Example: Node 90 is the “successor” of document 80.

9/11/2003 Internet and Grid Computing - Fall
2003

28

Introduction to P2P Systems

Chord Uses log(N) “Fingers”
(0)

N80 knows of only seven other nodes.

N80

½¼

1/8

1/16
1/32
1/64
1/128

Circular 7-bit
ID space

9/11/2003 Internet and Grid Computing - Fall
2003

29

Introduction to P2P Systems

Chord Finger Table
(0)

N32

N60

N79

N70

N113

N102

N40

N52

33..33 N40
34..35 N40
36..39 N40
40..47 N40
48..63 N52
64..95 N70
96..31 N102

Node n’s i-th entry: first node ≥ n + 2i-1

N32’s
Finger Table

N80

N85

9/11/2003 Internet and Grid Computing - Fall
2003

30

Introduction to P2P Systems

Chord Lookup

33..33 N40
34..35 N40
36..39 N40
40..47 N40
48..63 N52
64..95 N70
96..31 N102

N32’s
Finger Table

Node 32, lookup(82): 32 → 70 → 80 → 85.

71..71 N79
72..73 N79
74..77 N79
78..85 N80
86..101 N102
102..5 N102
6..69 N32

N70’s
Finger Table

(0)

N32

N60
N79

N70

N113

N102

N40

N52

N80

N85 81..81 N85
82..83 N85
84..87 N85
88..95 N102
96..111 N102
112..15 N113
16..79 N32

N80’s
Finger Table

9/11/2003 Internet and Grid Computing - Fall
2003

31

Introduction to P2P Systems

New Node Join Procedure

(0)

N32

N60

N80

N70

N113

N102

N40

N52

21..21
22..23
24..27
28..35
36..51
52..83
84..19

N20’s
Finger Table

N20

9/11/2003 Internet and Grid Computing - Fall
2003

32

Introduction to P2P Systems

New Node Join Procedure (2)
(0)

N32

N60

N80

N70

N113

N102

N40

N52

21..21 N32
22..23 N32
24..27 N32
28..35 N32
36..51 N40
52..83 N52
84..19 N102

N20’s
Finger TableN20

Node 20 asks any node for successor to 21, 22, …, 52, 84.

9/11/2003 Internet and Grid Computing - Fall
2003

33

Introduction to P2P Systems

New Node Join Procedure (3)

(0)

N32

N60

N80

N70

N113

N102

N40

N52

21..21 N32
22..23 N32
24..27 N32
28..35 N32
36..51 N40
52..83 N52
84..19 N102

N20’s
Finger TableN20

D114..20

Node 20 moves documents from node 32.

9/11/2003 Internet and Grid Computing - Fall
2003

34

Introduction to P2P Systems

Chord Properties

• Log(n) lookup messages and table space.
• Well-defined location for each ID.

– No search required.
• Natural load balance.
• No name structure imposed.
• Minimal join/leave disruption.
• Does not store documents…

9/11/2003 Internet and Grid Computing - Fall
2003

35

Introduction to P2P Systems

Building Systems with Chord

Chord ChordChord

Key/Value Key/Value Key/Value

Client App
(e.g. Browser)

Client Server Server

lookup(id)

get(key)
put(k, v)

Data auth.

Storage
Update auth.
Fault tolerance
Load balance

9/11/2003 Internet and Grid Computing - Fall
2003

36

Introduction to P2P Systems

Naming and Authentication

1. Name could be hash of file content
– Easy for client to verify
– But update requires new file name

2. Name could be a public key
– Document contains digital signature
– Allows verified updates w/ same name

9/11/2003 Internet and Grid Computing - Fall
2003

37

Introduction to P2P Systems

Naming and Fault Tolerance

IDi = hash(name + i)

Replica1

Replica2

Replica3

Replica3

Replica2

Replica1

IDi = successori(hash(name))

9/11/2003 Internet and Grid Computing - Fall
2003

38

Introduction to P2P Systems

Naming and Load Balance

B1

B2

B3

IDB1 = hash(B1)

IDB3 = hash(B3)

IDB2 = hash(B2)
IDB1
IDB2
IDB3

IDInode = hash(name)

Inode

File
Blocks

9/11/2003 Internet and Grid Computing - Fall
2003

39

Introduction to P2P Systems

Naming and Caching

D30 @ N32
Client 1

Client 2

9/11/2003 Internet and Grid Computing - Fall
2003

40

Introduction to P2P Systems

Overview

• Maps keys onto nodes in a 1D circular space
• Uses consistent hashing –D.Karger, E.Lehman

• Aimed at large-scale peer-to-peer applications

• Consistent hashing
• Algorithm for key location
• Algorithm for node joining
• Algorithm for stabilization
• Failures and replication

Chord:

Talk

9/11/2003 Internet and Grid Computing - Fall
2003

41

Introduction to P2P Systems

Consistent hashing

• Distributed caches to relieve hotspots on the web
• Node identifier hash = hash(IP address)
• Key identifier hash = hash(key)
• Designed to let nodes enter and leave the network

with minimal disruption

In Chord hash function is
Secure Hash SHA-1

A key is stored at its successor:
node with next higher ID

9/11/2003 Internet and Grid Computing - Fall
2003

42

Introduction to P2P Systems

Key Location

• Finger tables allow faster location by providing
additional routing information than simply
successor node

Notation Definition
finger[k].start (n+2k-1)mod 2m, 1=<k=<m
.interval [finger[k].start,finger[k+1].start)
.node first node>=n.finger[k].start
successor the next node on the identifier circle; finger[1].node

predecessor the previous node on the identifier circle

k is the finger table index

9/11/2003 Internet and Grid Computing - Fall
2003

43

Introduction to P2P Systems

Lookup(id)

Finger table for Node 1 Finger tables and key locations with nodes
0,1,3 and keys 1,2 and 6

9/11/2003 Internet and Grid Computing - Fall
2003

44

Introduction to P2P Systems

Lookup PseudoCode

To find the successor of an id :

Chord returns the successor of
the closest preceding finger to
this id.

Finding successor of identifier 1

9/11/2003 Internet and Grid Computing - Fall
2003

45

Introduction to P2P Systems

Lookup cost

• The finger pointers at repeatedly doubling
distances around the circle cause each
iteration of the loop in find_predecessor to
halve the distance to the target identifier.
In an N node Network the number of
messages is of

O(Log N)

9/11/2003 Internet and Grid Computing - Fall
2003

46

Introduction to P2P Systems

Node Join/Leave

Finger Tables and key locations after Node 6 joins After Node 3 leaves

Changed values are in black, unchanged in gray

9/11/2003 Internet and Grid Computing - Fall
2003

47

Introduction to P2P Systems

Join PseudoCode

Three steps:

1- Initialize finger and predecessor of
new node n

2- Update finger and predecessor of
existing nodes to reflect the addition of n

n becomes ith finger of node p if:

• p precedes n by at least 2i-1

• ith finger of node p succeeds n

3- Transfer state associated with keys
that node n is now responsible for

New node n only needs to contact node
that immediately forwards it to transfer
responsibility for all relevant keys

9/11/2003 Internet and Grid Computing - Fall
2003

48

Introduction to P2P Systems

Join/leave cost

Number of nodes that need to be updated
when a node joins is

O(Log N)

Finding and updating those nodes takes

O(Log2 N)

9/11/2003 Internet and Grid Computing - Fall
2003

49

Introduction to P2P Systems

Stabilization

• If nodes join and stabilization not completed 3
cases are possible
– finger tables are current lookup successful
– successors valid, fingers not lookup successful

(because find_successor succeeds) but slower
– successors are invalid or data hasn’t migrated

lookup fails

9/11/2003 Internet and Grid Computing - Fall
2003

50

Introduction to P2P Systems

Stabilization cont’d

ns

n

np

Node n joins

n acquires ns as successor

np runs stabilize:

• asks ns for its predecessor (n)

• np acquires n as its successor

• np notifies n which acquires np
as predecessor

Predecessors and successors are correct

9/11/2003 Internet and Grid Computing - Fall
2003

51

Introduction to P2P Systems

Failures and replication

• Key step in failure recovery is correct
successor pointers

• Each node maintains a successor-list of r
nearest successors

• Knowing r allows Chord to inform the
higher layer software when successors
come and go when it should propagate
new replicas

9/11/2003 Internet and Grid Computing - Fall
2003

52

Introduction to P2P Systems

Algorithms
find_successor()

return find_predecessor().successor
find_predecessor()

while(id not in [n,n.successor])
n=n.closest_preceding_finger()

closest_preceding_finger()
from last level in FT to first:
if(succAtLevel in (n,id))

return succAtLevel

join()
init_finger_tables()
update_others()

init_finger_tables()
successor=node.find_successor()
predecessor=successor.predecessor
predecessor.successor=new
everything btw new and successor
gets assigned this successor as
succ

update_others()
for each level in FT

l=find_predecessor()
l.update_finger_table

update_finger_table()
if(new in [this, successor])

p=getPredecessor
if(p!new) p.update_finger_table

1

5

7 joins

6

9/11/2003 Internet and Grid Computing - Fall
2003

53

Introduction to P2P Systems

Document Routing – CAN

• Associate to each node and item a unique id in an
d-dimensional space

• Goals
– Scales to hundreds of thousands of nodes
– Handles rapid arrival and failure of nodes

• Properties
– Routing table size O(d)
– Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes

Slide modified from another presentation

9/11/2003 Internet and Grid Computing - Fall
2003

54

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Space divided between nodes
• All nodes cover the entire space
• Each node covers either a square or

a rectangular area of ratios 1:2 or
2:1

• Example:
– Node n1:(1, 2) first node that

joins cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

9/11/2003 Internet and Grid Computing - Fall
2003

55

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Node n2:(4, 2) joins space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

9/11/2003 Internet and Grid Computing - Fall
2003

56

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Node n3:(3, 5) joins space is
divided between n1 and n3

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

9/11/2003 Internet and Grid Computing - Fall
2003

57

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Nodes n4:(5, 5) and n5:(6,6) join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

9/11/2003 Internet and Grid Computing - Fall
2003

58

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Nodes: n1:(1, 2); n2:(4,2); n3:(3,
5); n4:(5,5);n5:(6,6)

• Items: f1:(2,3); f2:(5,1); f3:(2,1);
f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

9/11/2003 Internet and Grid Computing - Fall
2003

59

Introduction to P2P Systems

CAN Example: Two Dimensional Space

• Each item is stored by the node
who owns its mapping in the space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f3

f2

f4

9/11/2003 Internet and Grid Computing - Fall
2003

60

Introduction to P2P Systems

CAN: Query Example

• Each node knows its neighbors in
the d-space

• Forward query to the neighbor that
is closest to the query id

• Example: assume n1 queries f4
• Can route around some failures

– some failures require local
flooding

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f3

f2

f4

9/11/2003 Internet and Grid Computing - Fall
2003

61

Introduction to P2P Systems

CAN: Query Example

• Each node knows its neighbors in
the d-space

• Forward query to the neighbor that
is closest to the query id

• Example: assume n1 queries f4
• Can route around some failures

– some failures require local
flooding

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

9/11/2003 Internet and Grid Computing - Fall
2003

62

Introduction to P2P Systems

CAN: Query Example

• Each node knows its neighbors in
the d-space

• Forward query to the neighbor that
is closest to the query id

• Example: assume n1 queries f4
• Can route around some failures

– some failures require local
flooding

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

9/11/2003 Internet and Grid Computing - Fall
2003

63

Introduction to P2P Systems

CAN: Query Example

• Each node knows its neighbors in
the d-space

• Forward query to the neighbor that
is closest to the query id

• Example: assume n1 queries f4
• Can route around some failures

– some failures require local
flooding

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

9/11/2003 Internet and Grid Computing - Fall
2003

64

Introduction to P2P Systems

Node Failure Recovery

• Simple failures
– know your neighbor’s neighbors
– when a node fails, one of its neighbors takes

over its zone
• More complex failure modes

– simultaneous failure of multiple adjacent nodes
– scoped flooding to discover neighbors
– hopefully, a rare event

9/11/2003 Internet and Grid Computing - Fall
2003

65

Introduction to P2P Systems

Doc Routing – Tapestry/Pastry

• Global mesh
• Suffix-based routing
• Uses underlying network

distance in constructing
mesh

13FE

ABFE

1290
239E

73FE

9990

F990

993E

04FE

43FE

9/11/2003 Internet and Grid Computing - Fall
2003

66

Introduction to P2P Systems

CAN: node failures

• Simple failures
– know your neighbor’s neighbors
– when a node fails, one of its neighbors takes over its

zone

• More complex failure modes
– simultaneous failure of multiple adjacent nodes
– scoped flooding to discover neighbors
– hopefully, a rare event

• Background zone reassignment algorithm

9/11/2003 Internet and Grid Computing - Fall
2003

67

Introduction to P2P Systems

CAN: scalability

• For a uniformly partitioned space with n nodes
and d dimensions
– per node, number of neighbors is 2d
– average routing path is (dn1/d)/4 hops

– A hop here is an application-level hop
– 1 app-level hop = (possibly) multiple IP-level hops

– simulations show that the above bounds hold for
imperfectly partitioned spaces

Can scale the network without increasing per-node
state

9/11/2003 Internet and Grid Computing - Fall
2003

68

Introduction to P2P Systems

Comparing Guarantees

logbNNeighbor
map

Pastry

b logbNlogbNGlobal MeshTapestry

2ddN1/dMulti-
dimensional

CAN

log Nlog NUni-
dimensional

Chord

StateSearchModel

b logbN + b

9/11/2003 Internet and Grid Computing - Fall
2003

69

Introduction to P2P Systems

Summary

• Two similar approaches to locating objects
by “computed routing”
– Similar to Manhattan Street Networks

• Both are scalabe, reasonably robust
• All these P2P networks ignore underlying

topology!

9/11/2003 Internet and Grid Computing - Fall
2003

70

Introduction to P2P Systems

FreeNet - Serverless, Symmetric, Secure, Parallel Internet File System

FreeNet Nodes

9/11/2003 Internet and Grid Computing - Fall
2003

71

Introduction to P2P Systems

Content Summary
Conceptual Elements
File Insertion
File Retrieval
File Update
Large File Management
Node Join
Communication Protocols

9/11/2003 Internet and Grid Computing - Fall
2003

72

Introduction to P2P Systems

Conceptual Elements of FreeNet

Network Nodes
Storage
Files
Routing Tables

Files
Byte String
Path Name
Search Key

Keyword Signed Key
Content Key

File Signature
Directories - Personal Name

Spaces
Signed SubSpace Key

Interactions/Transactions
Join Network
Insert File
Request File

Storage Management Algorithm
File Storage, Retrieval and

Retention
Routing Tables

9/11/2003 Internet and Grid Computing - Fall
2003

73

Introduction to P2P Systems

Files

File Content = string of bytes

File Name/ File Description - Unix text string

/text/philosophy/sun-tzu/art-of-war

/peertopeer/books/oram

Keys associated with each file.

{Public Key, Private Key} = PPKP-Generator(File Descriptor)

File Keys

Keyword Signed Key = Secure Hash Algorithm(Public Key)

Content Hash Key = SHA(File Content)

File Encryption Key - Use file descriptor as an encryption key.

File Signature = Private Key

9/11/2003 Internet and Grid Computing - Fall
2003

74

Introduction to P2P Systems

Node Resource Management

1. Each node allocates the amount of storage to be assigned to FreeNet Functions.

2. Storage is partitioned for file data storage and routing table storage.

3. Node data storage is managed as an LRU Cache. Files which are not accessed are
eventually deleted from a node.

4. Routing table entries are also managed as an LRU cache but entries of the
routing tables persist after eviction of file data.

Definitions:

1. Node Locality Set

* Each node has a locality set of neighbors.

2. Node Routing Table

* A Node Routing Table is a set of Search Key - Node pairs.

9/11/2003 Internet and Grid Computing - Fall
2003

75

Introduction to P2P Systems

Personal Name Spaces/Directories

File keys may be coupled to a unique identifier for a personal name space The
personal name space is created as follows.

1. Randomly generate a public/private key pair (The signed subspace
key.)

{Public Key, Private Key} = PPKP(Random())
2. Hash the public key

HPK = SHA(Public Key)
3. Hash the file path name/file descriptor

HFPN = SHA(Path Name)
4. File Key = XOR(HFPN, HPK)
5. File Signature = Private Key
6. Publish the file descriptor, the public key and the File Encryption

Key.
7. This file is a “directory file” to which only the owner of the private

key can add files.

9/11/2003 Internet and Grid Computing - Fall
2003

76

Introduction to P2P Systems

Name Space “Directory Structure”
Create a file using the signed-subspace key process with hypertext links to other

files, perhaps signed-subspace key files.
The linked files may themselves contain links, etc.
Used to implement file update.

9/11/2003 Internet and Grid Computing - Fall
2003

77

Introduction to P2P Systems

3. File Insertion Algorithm

a) Create a path name and a binary file key for the file.

b) The creating node sends a message to itself including a “hops to live”
counter for this insertion.

c) The originating node then checks to see if that key is already in use.

d) If a match is found then the file associated with the previously defined
key is returned as though a request had been made and the node knows
this key has already been used. The node generates a new key for this file
and again attempts the insertion process.

e) If no match is found then the originating node finds the node with the
nearest key in its routing table and sends it an “insert” message with the
key and the “hops to live” counter.

f) If this insert message causes a collision then the file is returned to
the upstream inserter and again behave as though a request had
been made. (Cache the file locally and create a routing table entry
for the data source.

9/11/2003 Internet and Grid Computing - Fall
2003

78

Introduction to P2P Systems

3. File Insertion Algorithm - Continued

g) If the “hops to live” limit is reached without a collision being
detected then the insertion is successful and the “all clear” message
is sent back to the originator of the file insertion.

h) The originator of the file insertion then sends the file itself which
is propagated along the path of the key collision search. Each node
will create a local copy of the file and establish a routing table entry
matching the inserting node and the key. (A forwarding node may
choose to arbitrarily change the supposed source when it forwards
the insert message.)

i) The descriptive string (path name) is published by some out of
band mechanism or in the case of name space encoded files, the
descriptive string name and the subspace public key.

9/11/2003 Internet and Grid Computing - Fall
2003

79

Introduction to P2P Systems

a b

c

d

e

1

2

4

5

7

3

6

Inserter

6

6

Successful
insertion of
file key in five
nodes. File
data will
follow the
same path.

0

9/11/2003 Internet and Grid Computing - Fall
2003

80

Introduction to P2P Systems

Properties of Insertion Algorithm

1. Key-space locality

Files are cached on nodes with similar keys.

2. New nodes can use inserts to extend their network locality space.

3. Discourages fake file propagation. (A fake file is a file with “junk” or
malicious content with a key identical to some file with actual data.)

The original files are propagated upon collision.

9/11/2003 Internet and Grid Computing - Fall
2003

81

Introduction to P2P Systems

File Search and Retrieval Algorithm

a) Obtain or calculate the binary file search key.

b) Send a message to yourself with the key and a “hops to live”
counter.

c) If the data is stored locally the request is satisfied.

d) If the data is not found then the search is continued at the node
in the local routing table associated with the key “nearest” to the
search key.

e) If the search is successful then the data is returned to the
upstream requestor which will cache the data and create a new
entry in its routing table associating the actual data source with
the key.

9/11/2003 Internet and Grid Computing - Fall
2003

82

Introduction to P2P Systems

File Search and Retrieval Algorithm- Continued

f) If a node in the search path cannot forward a request to its
preferred downstream node then the node with the second nearest
key is selected as the downstream target, etc. If a node runs out of
possible downstream paths without finding the file then it reports
failure to the immediately upstream requestor. This upstream
requestor then chooses its second choice target. This process is
recursively followed until the originator runs out of downstream
targets at which time failure is reported.

g) If the “hops to live” limit is exceeded at any time in this search
process then the failure result is propagated back to the original
requestor.

9/11/2003 Internet and Grid Computing - Fall
2003

83

Introduction to P2P Systems

a b

c

d

e

f

1

2

3

4

5

6
7

8

9

10

11

12

Requestor

Data Source

9/11/2003 Internet and Grid Computing - Fall
2003

84

Introduction to P2P Systems

Properties of Search Algorithm
1. Nodes will tend to accumulate similar keys and similar files.

2. This should lead to better routing as well as better caching performance.

3. The greater the number of requests the more copies of the file which will
exist.

4. The more localized the requests the more localized the number of copies of
the file will become.

5. Network connectivity is increased as routing tables are built by requests and
inserts.

6. Nodes with popular files will preferentially appear in routing tables of other
nodes.

7. While files are clustered by key they are dispersed with respect to subject.

9/11/2003 Internet and Grid Computing - Fall
2003

85

Introduction to P2P Systems

File Search and Retrieval for Up-datable Files

a) An up-datable file should be stored under a “content hash” key.

b) A file with the content hash key is inserted in a personal name
space (signed-subspace key)

c) The file is encrypted with a random key which is published with
the file key.

d) Retrieval is by first retrieving the file containing the content hash
key and using this key to search for the file.

9/11/2003 Internet and Grid Computing - Fall
2003

86

Introduction to P2P Systems

File Update Algorithm

a) A new version of an up-datable file is inserted under its content
hash key.

B) The insert algorithm is executed for the new indirect file under
the original signed subspace key.

C) When the insert reaches a node with the old version of the file a
key collision will occur.

D) The node will check the signature on the new version, verify that
it is correct and replace the old version of the file with the new
version. Then the signed subspace key will always lead to the
new version while a content hash search will still lead to the
old version.

9/11/2003 Internet and Grid Computing - Fall
2003

87

Introduction to P2P Systems

Management of Large Files

1. Partition a large file.

2. Create a content hash key for each partition.

3. Create a file to serve as the indirect access file for the partitions of the large file.

3. Insert the content hash key for each partition separately as an entry in the
indirect file.

5. Insert the indirect file.

9/11/2003 Internet and Grid Computing - Fall
2003

88

Introduction to P2P Systems

Publication of Names and Search Mechanisms

1. Create a search engine specific to FreeNet.

2. Create for each actual file a family of “lightweight indirect files” each
named by a search keyword relating to the actual file and
containing a pointer to the actual file.

3. Encourage users to create directories of “favorites”

9/11/2003 Internet and Grid Computing - Fall
2003

89

Introduction to P2P Systems

Node Join Protocol
1. The joining node must obtain the address of at least one node which is

already a member of FreeNet by some out of band means.
2. The joining node chooses a random seed and sends an announcement

message containing the hash of that seed, its address and a “hops to
live” counter to the existing nodes for which it knows addresses.

3. When a node receives an announcement message it generates a random
seed, XORs that with the hash it received and hashes the result
again to generated a “commitment.”

4. The node which received the announcement message forwards the new hash
to some node chosen randomly from its routing table and decrements
the hops to live counter.

5. The last node to receive the announcement message just generates a seed.
6. There all the nodes in the announce chain share their seeds and the key for
the new node is assigned as the XOR of all of the seeds.
7. Then each of the nodes in the announce chain add the new node to their
routing table under that key.

9/11/2003 Internet and Grid Computing - Fall
2003

90

Introduction to P2P Systems

FreeNet Communication Protocols

1. Each request, insert or join action is a transaction which has a (probably)
unique ID associated with it.

2. Each message originated as a result of a transaction has a transaction ID
which is carried in each message resulting from a transaction.

3.Node addresses are {transport identifier, transport specific identifier}, for
example {tcp/192.168.1.1:19114}

4. Nodes which change addresses frequently may wish to used address
resolution keys which are signed subspace keys updated to contain the
current actual address of the node.

5. All transactions begin with a Request.Handshake message specifying the
return address of the sending node.

6. The receiver of a Request.Handshake message may (or may not) respond
with a Reply.Handshake message specifying the protocol it
understands.

9/11/2003 Internet and Grid Computing - Fall
2003

91

Introduction to P2P Systems

FreeNet Communication Protocols - Continued

7. All messages have a 64 bit randomly generated transaction ID, a hops to
live counter, and a depth counter.

8. Hops to live and depth are set by the originator of a transaction is
decremented by each receiver.

9. The propagation chain is continued with hops to live = 1 with some finite
probability.

10. Depth is incremented at each hop and is used by a replying node to set
hops to live high enough to reach a requestor. A depth of 1 is not
automatically incremented but may be passed unchanged with some
finite probability.

11. A time-out is superimposed on transactions.

12. Nodes in a chain may send back Reply.Restart messages based on
knowledge of network delays not accessible to the originator.

9/11/2003 Internet and Grid Computing - Fall
2003

92

Introduction to P2P Systems

Summary and Conclusions

1. Design achieves goals of symmetry, fully distributed control, parallelism,
high security and use of “unused resources.”

2. Performance properties are generally unknown except for simulations.

3. Algorithm domain for fully distributed control is largely unexplored.

4. State of the art is about where client-server systems were 10 years ago.

5. Next step - Integration of distributed computation and distributed file system.

6. Problem - Application design

	Search/Discovery
	Design Goals
	Spectrum of “Purity”
	Metrics for Discovery/Insertion/Join
	P2P File-sharing
	Napster
	Napster
	Napster
	Gnutella
	Gnutella
	Gnutella
	Gnutella
	Current Techniques: Gnutella: Breadth-First Search (BFS)
	Iterative Deepening
	Iterative Deepening
	Directed BFS
	Directed BFS
	Directed BFS: Heuristics
	Local Indices
	Local Indices (r=1)
	Distributed Hashing — General Approach
	Distributed Hashing — General Approach
	Distributed Hashing — General Approach
	Chord Architecture
	Consistent Hashing
	Chord Uses log(N) “Fingers”
	Chord Finger Table
	Chord Lookup
	New Node Join Procedure
	New Node Join Procedure (2)
	New Node Join Procedure (3)
	Chord Properties
	Building Systems with Chord
	Naming and Authentication
	Naming and Fault Tolerance
	Naming and Load Balance
	Naming and Caching
	Overview
	Consistent hashing
	Key Location
	Lookup(id)
	Lookup PseudoCode
	Lookup cost
	Node Join/Leave
	Join PseudoCode
	Join/leave cost
	Stabilization
	Stabilization cont’d
	Failures and replication
	Algorithms
	Document Routing – CAN
	CAN Example: Two Dimensional Space
	CAN Example: Two Dimensional Space
	CAN Example: Two Dimensional Space
	CAN Example: Two Dimensional Space
	CAN Example: Two Dimensional Space
	CAN Example: Two Dimensional Space
	CAN: Query Example
	CAN: Query Example
	CAN: Query Example
	CAN: Query Example
	Node Failure Recovery
	Doc Routing – Tapestry/Pastry
	CAN: node failures
	CAN: scalability
	Comparing Guarantees
	Summary

