
9/4/2007 Models and Abstractions 1

Introduction to Models and Abstractions
Outline for Lecture

•Models for Software
•Overview
•Finite State Models
•Kripke Structures
•Graph Models

•CFG
•DFG

•Abstractions
•Overview
•Structural
•Data Value
•Property Specific

9/4/2007 Models and Abstractions 2

Overview of Models
• A model is some abstraction of a system

– Operational Semantics
• Verification (formal or informal) is formulated in

terms of some model of the system
• A model may be a “complete” or partial

representation of a system in a “specification”
language

• Ideally models are automatically generated from
the system representation or the system
representation can be generated from the
model.

9/4/2007 Models and Abstractions 3

Finite State Machines
A finite state machine is model of computation consisting of

a set of states, a start state, an input alphabet, and a
transition function that maps input symbols and current
states to a next state. Computation begins in the start
state with an input string. It changes to new states
depending on the transition function. There are many
variants, for instance, machines having actions (outputs)
associated with transitions (Mealy machine) or states
(Moore machine), multiple start states, transitions
conditioned on no input symbol (a null) or more than one
transition for a given symbol and state (nondeterministic
finite state machine), one or more states designated as
accepting states (recognizer), etc.

http://www.nist.gov/dads/HTML/finiteStateMachine.html

http://www.nist.gov/dads/HTML/modelOfComputation.html
http://www.nist.gov/dads/HTML/state.html
http://www.nist.gov/dads/HTML/startstate.html
http://www.nist.gov/dads/HTML/alphabet.html
http://www.nist.gov/dads/HTML/transitionfn.html
http://www.nist.gov/dads/HTML/nextstate.html
http://www.nist.gov/dads/HTML/mealyMachine.html
http://www.nist.gov/dads/HTML/mooreMachine.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/recognizer.html

9/4/2007 Models and Abstractions 4

Mealy Machines
A Mealy machine is a finite state machine that generates

an output based on its current state and an input. This
means that the state diagram will include both an input
and output signal for each transition edge. In contrast,
the output of a Moore finite state machine depends only
on the machine's current state; transitions have no input
attached. However, for each Mealy machine there is an
equivalent Moore machine whose states are the union of
the Mealy machine's states and the Cartesian product of
the Mealy machine's states and the input alphabet.

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Cartesian_product

9/4/2007 Models and Abstractions 5

Moore Machines

A Moore machine is a finite state
automaton where the outputs are
determined by the current state alone (and
do not depend directly on the input). The
state diagram for a Moore machine will
include an output signal for each state.
Compare with a Mealy machine, which
maps transitions in the machine to outputs

http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Mealy_machine

9/4/2007 Models and Abstractions 6

Simple Microwave Oven Controller

The oven has a momentary-action push button Run to start
(apply the power) and a Timer that determines the
cooking length. Cooking can be interrupted at any time
by opening the oven door. After closing the door the
cooking is continued. Cooking is terminated when the
Timer elapses. When the door is open a lamp inside the
oven is switched on, when the door is closed the lamp is
off. During cooking the lamp is also switched on.. The
solution should also take into account the possibility that
the push button Run could get blocked continuously in
the active position. In such a case cooking must not
start again until it is deactivated when the cooking is
terminated. In other words, each cooking cycle requires
intentional activation of the Run button.

9/4/2007 Models and Abstractions 7

The control system has the following inputs:
• Run momentary-action push button - when

activated starts cooking,
• Timer - while this runs keep on cooking,
• Door sensor - can be true (door closed) or false

(door open). And the following outputs:
• Power - can be true (power on) or false (power

off),
• Lamp - can be true (lamp on) or false (lamp off).

Simple Microwave Oven Controller

9/4/2007 Models and Abstractions 8

Moore model
While specifying Moore state machines the states

dominate. We think in the following manner: if the input
condition changes the state machine changes its state (if
a specific transition condition is valid). Entering the new
state, the state machine does some actions and waits for
the reaction of the controlled system. In a Moore model
the entry actions define effectively the state. For
instance, we would think about the state Cooking: it is a
state where the Timer runs and the state machines waits
for the Timer OVER signal.

Simple Microwave Oven Controller

9/4/2007 Models and Abstractions 9

Moore Machine Model

9/4/2007 Models and Abstractions 10

Moore Machine Model

9/4/2007 Models and Abstractions 11

Moore Machine Model

9/4/2007 Models and Abstractions 12

Moore Machine Model

9/4/2007 Models and Abstractions 13

Note the necessity of having two states DoorOpened. The DoorOpened2 is
required to keep the information about the Run button: until it stays active in
the state CookingCompleted the state machine must not return to the state Idle.

Moore Machine Model

9/4/2007 Models and Abstractions 14

Mealy Machine Model

The states: Idle, Cooking and
CookingInterrupted illustrate its features.
All activities are done as Input actions,
which means that actions essential for a
state must be performed in all states which
have a transition to that state. The Timer
must be now started in both states: Idle
and CookingInterrupted.

9/4/2007 Models and Abstractions 15

Mealy Machine Model

9/4/2007 Models and Abstractions 16

In a Mealy model the inputs dominate thinking during
specification. If an input condition changes the state
machine reacts to that change performing some
action(s); it may also change the state. In a Mealy model
the inputs in a given state determine less the present
state but rather the next states. For instance, the Timer
which decides about the state Cooking must be started
in both neighboring states: Idle and CookingInterrupted.
Therefore the meaning of states is more hazy: the state
Cooking is determined by the Timer but the Timer control
is spread over several states.

Mealy Machine Model

9/4/2007 Models and Abstractions 17

Mealy Machine Model

9/4/2007 Models and Abstractions 18

Mealy Machine Model

9/4/2007 Models and Abstractions 19

Mealy Machine Model

9/4/2007 Models and Abstractions 20

Mixed Model

The states Cooking and CookingInterrupted
correspond to the Moore model. The
states Init and CookingCompleted is a
mixture of both models where we use
both: Entry and Input actions.

9/4/2007 Models and Abstractions 21

9/4/2007 Models and Abstractions 22

Mixed Model
In the example, we use essentially a Moore model

completed by Input Actions in the states: Idle and
CookingCompleted. That small change gives a reduction
from 7 to 5 states. Considering the complexity both state
machines: Moore and mixed model are similar, the
mixed model having the advantage of fewer states.

On the other hand, though the Mealy model and the mixed
model have the same number of states, they are very
different. Comparing the Mealy model with the mixed
model we notice an essential simplification in favour of
the mixed model.

9/4/2007 Models and Abstractions 23

Mixed Model

9/4/2007 Models and Abstractions 24

Mixed Model

9/4/2007 Models and Abstractions 25

Mixed Model

9/4/2007 Models and Abstractions 26

Mixed Model

9/4/2007 Models and Abstractions 27

Mixed Model

• Exit Actions expand the possible specification
modes but are not supported by many FSM
systems.

• A Moore model is very easy to code, the
transition may be often implemented just by
constants as initialized tables. The Mealy model
opens the Pandora box: the program becomes
so complex that we lose the state machine in the
confusing code.

9/4/2007 Models and Abstractions 28

Example Problem from PY
Consider the problem of converting among DOS, Unix and Mac line

end conventions in the form of a Mealy machine. An event is
reading a character or encountering an “end of file marker.” The
possible input characters are divided into four catagories: carriage
return, line feed, end of file and everything else. The states are
defined by program control points with some associated variables.
The specification is to read in lines in one format and emit lines in
another format.

The actions are:
1. A character is input
2. If the character is an EOF then the program empties its buffer and

terminates.
3. If the character is a CR then the program emits the buffer and sets

the number of characters in the buffer to zero.
4. For any other character, the character is appended to the current

position in the buffer and the current position is incremented.

9/4/2007 Models and Abstractions 29

The obvious states of the program are: the
buffer is empty, the machine is processing
a buffer, the machine is removing a LF
and the program is terminating.

Example Problem from PY

9/4/2007 Models and Abstractions 30

Program (more or
less) corresponding
to the specification.

Environment for
program is a
procedure which
supplies characters
and a procedure
which absorbs
characters.

9/4/2007 Models and Abstractions 31

Finite State Machine Representations

LF CR EOF other

e e/emit e/emit d/- w/append

w e/emit e/emit d/emit w/append

l e/- d/- w/append

• finite set of states (nodes)

• set of transitions among states (edges)

Graph representation (Mealy machine) Tabular representation

9/4/2007 Models and Abstractions 32

Abstraction
Function

9/4/2007 Models and Abstractions 33

Labeled State Graph
Kripke Structure

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p

Each state represents all
variable values and
location counters

The labels represent
predicates in each state
e.g. (x = 5)

Each transition
represents an execution
step in the system

9/4/2007 Models and Abstractions 34

Kripke Structures
• Kripke structures can be generated by the

execution of a finite state machine (or set of
interacting state machines.)

• Kripke structure is a finite state machine
• Extension to infinite state systems as (Buchi

automata) will be taken up later under model
checking

• A Kripke structure which captures the complete
set of states of a program represents all possible
executions of the program from a given initial
state (or environment).

9/4/2007 Models and Abstractions 35

Kripke Structures

• Kripke structures can be represented as
guarded equational systems (model of
execution must be specified) and visa
versa.

9/4/2007 Models and Abstractions 36

Microwave Oven Specification

This simple oven has a single control button. When the oven
door is closed and the user presses the button, the oven will cook (that
is, energize the power tube) for 1 minute.

If the control button is pressed and the door is open the power
tube is not energized.

When the oven times out (cooks until the timer expires), it
turns off both the power tube.

The user can stop the cooking by opening the door. Once the
door is opened, the timer resets to zero.

9/4/2007 Models and Abstractions 37

Simple Microwave Oven

• K (or M) = (S, S0, R, L)
• S = (S1, S2, S3, S4)
• S0 = S1 is the initial state
• R = ({S1, S2} {S2, S1}, {S1, S4}, {S4, S2}, {S2,
• S3}, {S3, S2}, {S3, S3}
• L (S1) = {¬close, ¬ start, ¬ cooking} L (S2) =
• {close, ¬ start, ¬ cooking} L (S3) = {close, start,
• cooking} L (S4) = {¬close, start, ¬ cooking}

9/4/2007 Models and Abstractions 38

Kripke Structure (State Model) for
Microwave Oven

9/4/2007 Models and Abstractions 39

Environment for Microwave Oven

• Entity to open and close door (send open
and close events)

• Timer which receives start events and
sends finish events.

9/4/2007 Models and Abstractions 40

Mutual Exclusion Example

N1 → T1
T1 ∧ S0 → C1 ∧ S1
C1 → N1 ∧ S0

N2 → T2
T2 ∧ S0 → C2 ∧ S1
C2 → N2 ∧ S0

||

• Two process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1)
• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S0

9/4/2007 Models and Abstractions 41

Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Execution model is asynchronous interleaved with atomic
actions.

9/4/2007 Models and Abstractions 42

Graph Representations:
directed graphs

• Directed graph:
– N (set of nodes)
– E (relation on the set of nodes) edges

Nodes: {a, b, c}
Edges: {(a,b), (a, c), (c, a)}

a

b c

b a c

9/4/2007 Models and Abstractions 43

Graph Representations: labels
and code

• We can label nodes with the names or
descriptions of the entities they represent.
– If nodes a and b represent program regions

containing assignment statements, we might draw the
two nodes and an edge (a,b) connecting them in this
way:

x = y + z;

a = f(x);

9/4/2007 Models and Abstractions 44

Multidimensional Graph
Representations

• Sometimes we draw a single diagram to
represent more than one directed graph,
drawing the shared nodes only once
– class B extends (is a subclass of) class A
– class B has a field that is an object of type C

extends relation
NODES = {A, B, C}
EDGES = {(A,B)}

includes relation
NODES = {A, B, C}
EDGES = {(B,C)}

a

b c

9/4/2007 Models and Abstractions 45

Finite Abstraction of Behavior
an abstraction function suppresses some details of

program execution

⇒
it lumps together execution states that differ with respect to the

suppressed details but are otherwise identical

9/4/2007 Models and Abstractions 46

(Intraprocedural) Control Flow
Graph

• nodes = regions of source code (basic blocks)
– Basic block = maximal program region with a single

entry and single exit point
– Often statements are grouped in single regions to get

a compact model
– Sometime single statements are broken into more

than one node to model control flow within the
statement

• directed edges = possibility that program
execution proceeds from the end of one region
directly to the beginning of another

9/4/2007 Models and Abstractions 47

Example of Control Flow Graph
public static String collapseNewlines(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

9/4/2007 Models and Abstractions 48

Linear Code Sequence and Jump (LCSJ)

Fro
m

Sequence of basic
blocs

To
Entr
y

b1 b2 b3 jX
Entr
y

b1 b2 b3 b4 jT
Entr
y

b1 b2 b3 b4 b5 jE
Entr
y

b1 b2 b3 b4 b5 b6 b7 jL
jX b8 ret
jL b3 b4 jT
jL b3 b4 b5 jE
jL b3 b4 b5 b6 b7 jL

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

b1

jX

jT

jE

jL

Essentially subpaths of the control flow graph from one
branch to another

9/4/2007 Models and Abstractions 49

Interprocedural control flow
graph

• Call graphs
– Nodes represent procedures

• Methods
• C functions
• ...

– Edges represent calls relation

9/4/2007 Models and Abstractions 50

Overestimating the calls relation

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

System.out.println("You called the parent's method");
}
public static void main(String args[]) {

(new A()).check();
}

}
class S extends C {

void foo() {
System.out.println("You called the child's method");

}
}
class A {

void check() {
C myC = C.cFactory("S");
myC.foo();

}
}

The static call graph includes calls through dynamic
bindings that never occur in execution.

A.check()

C.foo() S.foo() CcFactory(string)

9/4/2007 Models and Abstractions 51

Contex Insensitive Call graphs
public class Context {

public static void main(String
args[]) {
Context c = new Context();
c.foo(3);
c.bar(17);

}

void foo(int n) {
int[] myArray = new int[n];
depends(myArray, 2) ;

}

void bar(int n) {
int[] myArray = new int[n];
depends(myArray, 16) ;

}

void depends(int[] a, int n) {
a[n] = 42;

}
}

main

C.foo C.bar

C.depends

9/4/2007 Models and Abstractions 52

Contex Sensitive Call graphs
public class Context {

public static void main(String
args[]) {
Context c = new Context();
c.foo(3);
c.bar(17);

}
void foo(int n) {

int[] myArray = new int[n];
depends(myArray, 2) ;

}
void bar(int n) {

int[] myArray = new int[n];
depends(myArray, 16) ;

}
void depends(int[] a, int n) {

a[n] = 42;
}

}

main

C.foo(3) C.bar(17)

C.depends(int(3),a,2) C.depends (int(3),a,2)

9/4/2007 Models and Abstractions 53

Context Sensitive CFG
exponential growth

A

B

D

F

H

C

E

G

I

J

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE

8 contexts …

16 calling contexts …

9/4/2007 Models and Abstractions 54

Dependence and Data Flow
Models

9/4/2007 Models and Abstractions 55

Why Data Flow Models?
• Models from Chapter 5 emphasized control

• Control flow graph, call graph, finite state machines
• We also need to reason about dependence

• Where does this value of x come from?
• What would be affected by changing this?
• ...

• Many program analyses and test design techniques use data flow
information
– Often in combination with control flow

• Example: “Taint” analysis to prevent SQL injection attacks
• Example: Dataflow test criteria (Ch.13)

9/4/2007 Models and Abstractions 56

Learning objectives
• Understand basics of data-flow models and the related

concepts (def-use pairs, dominators…)
• Understand some analyses that can be performed with

the data-flow model of a program
– The data flow analyses to build models
– Analyses that use the data flow models

• Understand basic trade-offs in modeling data flow
– variations and limitations of data-flow models and

analyses, differing in precision and cost

9/4/2007 Models and Abstractions 57

Def-Use Pairs (1)
• A def-use (du) pair associates a point in a program where a value

is produced with a point where it is used
• Definition: where a variable gets a value

– Variable declaration (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns

9/4/2007 Models and Abstractions 58

Def-Use Pairs

...
if (...) {

x = ... ;
...
}
y = ... + x + ... ;

x = ...

if (...) {

...

y = ... + x + ...

...

...

Definition:
x gets a
value

Use: the value
of x is

extractedDef-Use
path

9/4/2007 Models and Abstractions 59

Def-Use Pairs (3)

/** Euclid's algorithm */
public class GCD
{
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x,
y

x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x
}

Figure 6.2, page 79

9/4/2007 Models and Abstractions 60

Def-Use Pairs (3)
• A definition-clear path is a path along the CFG from a

definition to a use of the same variable without* another
definition of the variable between
– If, instead, another definition is present on the path,

then the latter definition kills the former
• A def-use pair is formed if and only if there is a definition-

clear path between the definition and the use

*There is an over-simplification
here, which we will repair later.

9/4/2007 Models and Abstractions 61

Definition-Clear or Killing
x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z = ...
y = f(x); // C: use x

x = ...

...

...
Definition: x
gets a value

Use: the value
of x is

extracted

A

x = y

Definition: x gets
a new value, old

value is killed

...

y = f(x)

B

C

Path B..C is
definition-clear

Path A..C is
not definition-clear

9/4/2007 Models and Abstractions 62

(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

(Figure 6.3, page 80)

Dependence
edges show this
x value could be
the unchanged
parameter or

could be set at
line D

9/4/2007 Models and Abstractions 63

Control dependence (1)
• Data dependence: Where did these values come from?
• Control dependence: Which statement controls whether this

statement executes?
– Nodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled

blocks

9/4/2007 Models and Abstractions 64

Dominators
• Pre-dominators in a rooted, directed graph can be used to make

this intuitive notion of “controlling decision” precise.
• Node M dominates node N if every path from the root to N passes

through M.
– A node will typically have many dominators, but except for the

root, there is a unique immediate dominator of node N which is
closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.

– Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the control flow
graph, using a special “exit” node as the root.

9/4/2007 Models and Abstractions 65

Dominators (example)
A

B

C

D

E

F

G

• A pre-dominates all nodes; G
post-dominates all nodes

• F and G post-dominate E
• G is the immediate post-

dominator of B
– C does not post-dominate B

• B is the immediate pre-
dominator of G
– F does not pre-dominate G

9/4/2007 Models and Abstractions 66

Control dependence (2)
• We can use post-dominators to give a more precise definition of control

dependence:
– Consider again a node N that is reached on some but not all execution

paths.
– There must be some node C with the following property:

• C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

• C is not post-dominated by N
• there is a successor of C in the control flow graph that is post-

dominated by N.
– When these conditions are true, we say node N is control-dependent on

node C.
• Intuitively: C was the last decision that controlled whether N

executed

9/4/2007 Models and Abstractions 67

Control Dependence
A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is
not inevitable at B

Execution of F is
inevitable at E

9/4/2007 Models and Abstractions 68

Data Flow Analysis

Computing data flow information

9/4/2007 Models and Abstractions 69

Calculating def-use pairs
• Definition-use pairs can be defined in terms of paths in the program control

flow graph:
– There is an association (d,u) between a definition of variable v at d and

a use of variable v at u iff
• there is at least one control flow path from d to u
• with no intervening definition of v.

– vd reaches u (vd is a reaching definition at u).
– If a control flow path passes through another definition e of the same

variable v, ve kills vd at that point.
• Even if we consider only loop-free paths, the number of paths in a graph

can be exponentially larger than the number of nodes and edges.
• Practical algorithms therefore do not search every individual path. Instead,

they summarize the reaching definitions at a node over all the paths
reaching that node.

9/4/2007 Models and Abstractions 70

Exponential paths
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is
not efficient, and we
can do much better.

9/4/2007 Models and Abstractions 71

DF Algorithm
• An efficient algorithm for computing reaching definitions (and several

other properties) is based on the way reaching definitions at one
node are related to the reaching definitions at an adjacent node.

• Suppose we are calculating the reaching definitions of node n, and
there is an edge (p,n) from an immediate predecessor node p.
– If the predecessor node p can assign a value to variable v, then

the definition vp reaches n. We say the definition vp is generated
at p.

– If a definition vp of variable v reaches a predecessor node p, and
if v is not redefined at that node (in which case we say the vp is
killed at that point), then the definition is propagated on from p to
n.

9/4/2007 Models and Abstractions 72

Equations of node E (y = tmp)

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

Calculate reaching
definitions at E in
terms of its
immediate
predecessor D

9/4/2007 Models and Abstractions 73

Equations of node B (while (y !=
0))

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
• ReachOut(A) = gen(A) = {xA, yA, tmpA}
• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

int tmp; // A: def x, y, tmp
while (y != 0) { // B: use y

tmp = x % y; // C: def tmp; use x, y
x = y; // D: def x; use y
y = tmp; // E: def y; use tmp

}
return x; // F: use x

}

This line has two
predecessors:
Before the loop,
end of the loop

9/4/2007 Models and Abstractions 74

General equations for Reach analysis

Reach(n) = ∪ ReachOut(m)
m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n) = { vx | v is defined or modified at x,

x≠n }

9/4/2007 Models and Abstractions 75

Avail equations

Avail (n) = ∩ AvailOut(m)
m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at

n }

9/4/2007 Models and Abstractions 76

Live variable equations

Live(n) = ∪ LiveOut(m)

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }

9/4/2007 Models and Abstractions 77

Classification of analyses

• Forward/backward: a node’s set depends on
that of its predecessors/successors

• Any-path/all-path: a node’s set contains a value
iff it is coming from any/all of its inputs

Any-path (∪) All-paths (∩)

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”

9/4/2007 Models and Abstractions 78

Iterative Solution of Dataflow
Equations

• Initialize values (first estimate of answer)
– For “any path” problems, first guess is “nothing” (empty set) at

each node
– For “all paths” problems, first guess is “everything” (set of all

possible values = union of all “gen” sets)
• Repeat until nothing changes

– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution where every new
calculation produces the same value as the previous guess.

9/4/2007 Models and Abstractions 79

Worklist Algorithm for Data Flow
See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young
One way to iterate to a fixed point solution.
General idea:
• Initially all nodes are on the work list, and have default values

– Default for “any-path” problem is the empty set, default for “all-path”
problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then

• Add successors (for forward analysis) or predecessors (for
backward analysis) on the work list

• Eventually the work list will be empty (because new computed values = old
values for each node) and the algorithm stops.

9/4/2007 Models and Abstractions 80

Cooking your own: From Execution to
Conservative Flow Analysis

• We can use the same data flow algorithms to approximate other
dynamic properties
– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”
– Flow equations will describe propagation

• Example: Taintedness (in web form processing)
– “Taint”: a user-supplied value (e.g., from web form) that has not

been validated
– Gen: we get this value from an untrusted source here
– Kill: we validated to make sure the value is proper

9/4/2007 Models and Abstractions 81

Cooking your own analysis (2)
• Flow equations must be

monotonic
– Initialize to the bottom

element of a lattice of
approximations

– Each new value that
changes must move up the
lattice

• Typically: Powerset lattice
– Bottom is empty set, top is

universe
– Or empty at top for all-

paths analysis

Monotonic: y > x implies f(y) ≥ f(x)

(where f is application of the flow
equations on values from successor
or predecessor nodes, and “>” is
movement up the lattice)

9/4/2007 Models and Abstractions 82

Data flow analysis with arrays and
pointers

• Arrays and pointers introduce uncertainty:
Do different expressions access the same storage?
– a[i] same as a[k] when i = k
– a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to the kind of
analysis
– Any-path: gen sets should include all potential aliases

and kill set should include only what is definitely
modified

– All-path: vice versa

9/4/2007 Models and Abstractions 83

Scope of Data Flow Analysis
• Intraprocedural

– Within a single method or procedure
• as described so far

• Interprocedural
– Across several methods (and classes) or procedures

• Cost/Precision trade-offs for interprocedural analysis are critical, and
difficult
– context sensitivity
– flow-sensitivity

9/4/2007 Models and Abstractions 84

Context Sensitivity

sub() sub()

bar() {

}

sub() {
foo() {

}

}

(call)

(return)

(call)

(return)

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()
from sub() called from bar();
A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()
and sub() could then return to bar()

9/4/2007 Models and Abstractions 85

Flow Sensitivity
• Reach, Avail, etc. were flow-sensitive, intraprocedural analyses

– They considered ordering and control flow decisions
– Within a single procedure or method, this is (fairly) cheap —

O(n3) for n CFG nodes
• Many interprocedural flow analyses are flow-insensitive

– O(n3) would not be acceptable for all the statements in a
program!

• Though O(n3) on each individual procedure might be ok
– Often flow-insensitive analysis is good enough ... consider type

checking as an example

9/4/2007 Models and Abstractions 86

Summary

• Data flow models detect patterns on CFGs:
– Nodes initiating the pattern
– Nodes terminating it
– Nodes that may interrupt it

• Often, but not always, about flow of information (dependence)
• Pros:

– Can be implemented by efficient iterative algorithms
– Widely applicable (not just for classic “data flow” properties)

• Limitations:
– Unable to distinguish feasible from infeasible paths
– Analyses spanning whole programs (e.g., alias analysis) must

trade off precision against computational cost

	Introduction to Models and Abstractions
	Overview of Models
	Finite State Machines
	Mealy Machines
	Moore Machines
	Simple Microwave Oven Controller
	Simple Microwave Oven Controller
	Simple Microwave Oven Controller
	Moore Machine Model
	Moore Machine Model
	Moore Machine Model
	Moore Machine Model
	Moore Machine Model
	Mealy Machine Model
	Mealy Machine Model
	Mealy Machine Model
	Mealy Machine Model
	Mealy Machine Model
	Mealy Machine Model
	Mixed Model
	Mixed Model
	Mixed Model
	Mixed Model
	Mixed Model
	Mixed Model
	Mixed Model
	Example Problem from PY
	Example Problem from PY
	Finite State Machine Representations
	Abstraction Function
	Labeled State Graph�Kripke Structure
	Kripke Structures
	Kripke Structures
	Simple Microwave Oven
	Kripke Structure (State Model) for Microwave Oven
	Environment for Microwave Oven
	Mutual Exclusion Example
	Mutual Exclusion Example
	Graph Representations: directed graphs
	Graph Representations: labels and code
	Multidimensional Graph Representations
	Finite Abstraction of Behavior
	(Intraprocedural) Control Flow Graph
	Example of Control Flow Graph
	Linear Code Sequence and Jump (LCSJ)
	Interprocedural control flow graph
	Overestimating the calls relation
	Contex Insensitive Call graphs
	Contex Sensitive Call graphs
	Context Sensitive CFG�exponential growth
	Dependence and Data Flow Models
	Why Data Flow Models?
	Learning objectives
	Def-Use Pairs (1)
	Def-Use Pairs
	Def-Use Pairs (3)
	Def-Use Pairs (3)
	Definition-Clear or Killing
	(Direct) Data Dependence Graph
	Control dependence (1)
	Dominators
	Dominators (example)
	Control dependence (2)
	Control Dependence
	Data Flow Analysis
	Calculating def-use pairs
	Exponential paths �(even without loops)
	DF Algorithm
	Equations of node E (y = tmp)
	Equations of node B (while (y != 0))
	General equations for Reach analysis
	Avail equations
	Live variable equations
	Classification of analyses
	Iterative Solution of Dataflow Equations
	Worklist Algorithm for Data Flow
	Cooking your own: From Execution to �Conservative Flow Analysis
	Cooking your own analysis (2)
	Data flow analysis with arrays and pointers
	Scope of Data Flow Analysis
	Context Sensitivity
	Flow Sensitivity
	Summary

