
Testing 
Role in Unified Approach
Coverage:

Structural/Coverage
Model Based
Test Generation from Model Checking (project)

Interaction of Coverage/Model Based Testing
Will Not Cover

Statistical Methods
Partition Methods
Functional Testing



Role of Testing

Most Accessible and Common Method of V&V

Thorough testing should precede application of formal 
methods.

Some properties may be rigorously verified by testing.

(particularly at the component level)



Interaction and Relationships with Other V&V Methods

•Functional testing may (should) based on property 
specifications

•Structural/overage testing based on static analysis

•Model checking can be used for test generation

•Model checking and testing are a continuum

•Runtime monitoring is continuous testing

•Open Issues: 

Derivation of structural/coverage tests from property 
specifications.

Unification of model-based and coverage testing



Component/Unit Test

Requires precise specification at component level.

Functionality defined as properties or pre-
conditions/post-conditions.

Pre-conditions (test cases) must be defined

Exceptions to preconditions must be defined

Coverage tests may be readily derivable.



Oracle Problems

Post-Condition verifiers (Oracles) must be constructed

Complete oracle is correct implementation!

Common oracles are not complete.

Most oracles are human inspectors

Oracles for specific properties??



Coverage Analyses

Control Flow
– Statement coverage
– Decision coverage
– Condition coverage

single/multiple
– Condition/Decision coverage

variants of C/D coverage
– Path coverage

Data Flow
Use/Def relations



coverage (other)

Function coverage

Call coverage

Loop 

Race

Mutation coverage

Table coverage

Relational operator coverage



Structural/Coverage Testing

Establishes that a given execution “covers” some set of program 
structures or functions.

Why useful?

Errors are likely to arise from control flow.

Errors are likely to arise from widely separated definition 
and use of variables

Challenges

Generating test cases conforming to coverage cases

Cost of creating test cases



Issues:

Integration of property specification and coverage 
specification.

Construction of property specific coverage, 
abstraction and state space specification.

Combining abstraction with coverage testing



Role of Design in Testing

Formal model for component 
Components with precise definitions
Implementation should follow model

Simple control structures
State machine structure

Prescribed ranges for variables



Web Resources

http://www.testing.com/
http://www.bullseye.com/
http://www.codecoveragetools.com/
http://www.semdesigns.com/Products/TestCo

verage/CTestCoverage.html

http://www.testing.com/
http://www.bullseye.com/
http://www.codecoveragetools.com/
http://www.semdesigns.com/Products/TestCoverage/CTestCoverage.html
http://www.semdesigns.com/Products/TestCoverage/CTestCoverage.html


1 function P return INTEGER is
2 begin
3 X, Y: INTEGER;
4 READ(X); READ(Y); -- definition of X and Y
5 while (X > 10) loop
6 X := X – 10;
7 exit when X = 10;
8 end loop;
9 if (Y < 20 and then X mod 2 = 0) then-- “short circuit” and operator
10 Y := Y + 20;
11 else
12 Y := Y – 20;
13 end if;
14 return 2 * X + Y;
15 end P;

















Structural Testing

– Data-flow based adequacy criteria

• All definitions criterion

– Each definition to some reachable use

• All uses criterion

– Definition to each reachable use

• All def-use criterion

– Each definition to each reachable use









All DU-paths criterion

• A set P of execution paths satisfies

the all-DU paths criterion iff

– for all definitions of a variable x and

all paths q through which that

definition reaches a use of x,

– there is at least one path p in P such

that

• q is a subpath of p and q is cycle-free



Subsumption

• Criteria C1 subsumes criteria C2, iff

– For all programs p being tested with 
specifications s

– All test sets t

– t is adequate according to C1 fortesting p with 
respect to s impliesthat t is adequate 
according to C2 fortesting p with respect 
to s

• Path subsumes branch

• Path subsumes statement



Subsumption and Covers

• C1 subsumes C2 if any C1-adequate T is also C2-adequate –
But some T1 satisfying C1 may detect fewer faults than 
some T2 satisfying C2

• C1 properly covers C2 if each subdomain induced by C2 is a 
union of subdomains induced by C1

Clarke, Podgurski, Richardson & Zeil, “A Formal Evaluation 
of Data Flow Path Selection Criteria”, IEEE Transactions 
on Software Engineering, November 1989.





Challenges in Structural Coverage

Interprocedural and gross-level coverage

– e.g., interprocedural data flow, call-graph coverage

Regression testing

Late binding (OO programming languages)

– coverage of actual and apparent polymorphism

Fundamental challenge: Infeasible behaviors

– underlies problems in inter-procedural and polymorphic 
coverage, as well as obstacles to adoption of more sophisticated 
coverage criteria and dependence analysis



The Infeasibility Problem

• Syntactically indicated behaviors (paths, data flows, etc.) are
often impossible

– Infeasible control flow, data flow, and data states

• Adequacy criteria are typically impossible to satisfy

• Unsatisfactory approaches:

– Manual justification for omitting each impossible test 
case (esp.. for more demanding criteria) 

– Adequacy “scores” based on coverage

example: 95% statement coverage, 80% def-use 
coverage



Coverage and Components
State and Encapsulation

• Procedural programming
– Basic component: Subroutine
– Testing method: Subroutine input/output based

• Object-oriented and component programming
– Basic component: Class = Data structure + Set of operations
– Objects are instances of classes
– The data structure defines the state of the object. Correctness is
not based only on output, but also on the state.
– The data structure is not directly accessible, but can only be
accessed using the class public operations (Encapsulation).

• Problems:
– What are the basic elements to test?
– Is it enough to observe input/output relations?
– How is it possible to observe the state without violating 

encapsulation? 
– What if the source code is not available (for a third-party 
component)?


	Coverage Analyses
	Role of Design in Testing
	Web Resources

