
1/18/2005 Overview Lecture 1

Unification of Verification and Validation Methods

Overview

Verification and Validation

Properties and Assumptions

Requirements

Property and Assumption Specification

Truth or Falsity of Specifications – Property Evaluation
Methods

Unification of Property Evaluation Methods

Informal Principles

Design for Verification

1/18/2005 Overview Lecture 2

• Verification:
"Are we building the product right"

• The software should conform to its
specification

• Validation:
"Are we building the right product"

• The software should do what the user really
requires

Verification vs Validation

1/18/2005 Overview Lecture 3

Verification or Validation?

Depends on the property

Example: elevator response
... if a user press a request button at floor i,
an available elevator must arrive at floor i
soon…

~ this property can be validated, but NOT
verified (SOON is a subjective quantity)

... if a user press a request button at floor i, an available elevator must arrive
at floor i within 30 seconds…

~ this property can be verified (30 seconds is a precise quantity)

1/18/2005 Overview Lecture 4

Goal: A software system for which a specified set of
properties are known to hold given that a set of
assumptions also hold.

1/18/2005 Overview Lecture 5

Goal: A software system for which a specified set of
properties are known to hold given that a set of
assumptions also hold.

A property is a statement which can be evaluated as
either true or false with respect to the software
system and the assumptions.

1/18/2005 Overview Lecture 6

Goal: A software system for which a specified set of
properties are known to hold given that a set of
assumptions also hold.

A property is a statement which can be evaluated as
either true or false with respect to the software
system and the assumptions.

An assumption is a property of the environment in which
the system is defined and will execute.

1/18/2005 Overview Lecture 7

Requirements

A capability for formulating properties and
assumptions

The capability for determining the truth or falsity
of a set of properties.

1/18/2005 Overview Lecture 8

Formulation of Properties

Domain knowledge about the software system.

Domain knowledge about the external environment
of the software system.

Language in which to specify properties

1/18/2005 Overview Lecture 9

Example of simplified property:
Unmatched Semaphore Operations

synchronized(S) {
...
...

}

Static
checking for
match is
necessarily
inaccurate ...

if (....) {
...
lock(S);

}
...
if (...) {

...
unlock(S);

}

Java prescribes a
more restrictive, but
statically checkable
construct.

original problem simplified property

1/18/2005 Overview Lecture 10

Property Specification Language

What do we want to be able to establish about programs?

1/18/2005 Overview Lecture 11

Property Specification Language

What do we want to be able to establish about a program?

The final state resulting from an execution from a
given initial state will always conform to
program specifications.

It will never be in a given state.

It will always arrive in a given state.

A certain state can only be reached through a
specified sequence of other states.

It will reach a certain state within a given time.

1/18/2005 Overview Lecture 12

What methods are available for establishing the truth or falsity
of properties?

Static Analysis – What properties can be evaluated from
analysis of that part of program state which is realized
without execution.

Test – What properties can be determined by execution from a
given initial state and a set of observable states
resulting from execution from the given initial state.

Model Checking – What properties can be determined from a
complete execution which exhaustively realized the
states reachable from a given initial state.

(Initial states for model checking may be non-
deterministic.)

1/18/2005 Overview Lecture 13

Runtime Monitoring – What properties can be established (in
principle and in practice) by monitoring of states and behaviors
and/or adding redundant computation?

Monitoring – Detection of deviations from specifications

Redundant computation – Detection and sometimes
correction of deviations from specifications

Formal Proofs

What properties can be established by deduction or
induction to hold under a set of assumptions.

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 14

Getting what you need ...
Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

simple temporal
properties.

Theorem proving:
Unbounded effort to

verify general
properties.

Precise analysis of
simple syntactic
properties.

Typical testing
techniques

Data flow
analysis

Optimistic
inaccuracy

Pessimistic
inaccuracy

Simplified
properties

• optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).
– testing

• pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed
– automated program analysis

techniques
• simplified properties: reduce

the degree of freedom for
simplifying the property to
check

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 15

Verification Methods Relationships

• Static Analysis and Model Checking have a
common conceptual foundation.

• Model checking is exhaustive testing for a
specific property.

• Model checking is equivalent to proof for a
specific property.

• Runtime monitor can be based as model
checking over traces (or abstractions of traces)
as they occur.

• All are some kind of search of a many
dimensional space.

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 16

Definitions

• Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

• Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

• Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program
actually does satisfy the formula.

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 17

Dependability Qualities

• Correctness:
– A program is correct if it is consistent with its specification

• seldom practical for non-trivial systems

• Reliability:
– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile
• statistical approximation to correctness (100% reliable = correct)

• Safety:
– preventing hazards

• Robustness
– acceptable (degraded) behavior under extreme conditions

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 18

Example of Dependability Qualities

• Correctness, reliability:
let traffic pass according
to correct pattern and
central scheduling

• Robustness, safety:
Provide degraded
function when possible;
never signal conflicting
greens.

• Blinking red / blinking
yellow is better than no
lights; no lights is better
than conflicting greens

(c) 2007 Mauro Pezzè & Michal Young Ch 2, slide 19

Relation among Dependability Qualites

Correct

Reliable

Safe

Robust

robust but not
safe: catastrophic
failures can occur

safe but not
correct:

annoying
failures can

occur

reliable but
not correct:

failures
occur rarely

correct but
not safe or
robust: the

specification
is inadequate

1/18/2005 Overview Lecture 20

Limitations and Synergism

Static Analysis

Limited in properties to which it applies

Readily automatable

Testing

Can only establish the absence of faults for specific
initial states and assumptions.

Can be automated but seldom is

Model Checking

Limited by state space explosion

Can be fully automated

1/18/2005 Overview Lecture 21

Runtime Monitoring

Can only be applied to a limited set of properties

Adds runtime overhead

Can be automated but seldom is

Formal Proofs

Limited in application to “well-structured” systems and
requires great expertise to use.

Just about impossible to automate at the current time.

1/18/2005 Overview Lecture 22

Synergism

Property Specification

“Most” of the properties verifiable by any method can be
expressed in an extended version of temporal
logic which incorporates types and values of
variables.

Assumption – “Most” correctness, reliability and
performance properties can be expressed in an
extended temporal logic.

1/18/2005 Overview Lecture 23

Synergism

Static analysis – Abstraction and model development basic
to all other methods are largely based on static
analysis.

Testing – Can be made systematic and complete for some
subset of properties. Effective testing is a
prerequisite for model checking and runtime
monitoring.

Model Checking – Complete for the properties and systems
to which it applies. Properties established via model
checking need not be tested or monitored while
assumptions hold.

1/18/2005 Overview Lecture 24

Runtime Monitoring – Can be made complete for a subset of
properties. Overlaps in coverage with model
checking.

Formal Proofs – Complete when it can be applied.

1/18/2005 Overview Lecture 25

Synergism

Many state space reduction algorithms are based on static
analysis.

Automation of testing is largely based on static analysis.

Automatic generation of runtime monitoring code is based
on static analysis.

State space reduction for model checking is largely based
on static analysis

Theorem proving and model checking

Model checking and testing

1/18/2005 Overview Lecture 26

Taxonomy and Classification of Verification Methods

Attributes

Applied to: representation (static) or execution (dynamic)

Complexity Management: abstraction (folding) or sampling
of state space

Accuracy: pessimistic inaccuracy or optimistic inaccuracy

Pessimistic – find errors which are not real

Optimistic – miss errors which are present

1/18/2005 Overview Lecture 27

Different emphasis to the same properties

Dependability requirements
• They different radically between

– Safety-critical applications
• flight control systems have strict safety requirements
• telecommunication systems have strict robustness

requirements
– Mass-market products

• dependability is less important than time to market

• can vary within the same class of products:
– reliability and robustness are key issues for multi-user

operating systems (e.g., UNIX) less important for single
users operating systems (e.g., Windows or MacOS)

1/18/2005 Overview Lecture 28

Different type of software may require
different properties

• Timing properties

– deadline satisfaction is a key issue for real time systems,

but can be irrelevant for other systems

– performance is important for many applications, but not

the main issue for hard-real-time systems

• Synchronization properties

– absence of deadlock is important for concurrent or
distributed systems, not an issue for other systems

• External properties

– user friendliness is an issue for GUI, irrelevant for
embedded controllers

1/18/2005 Overview Lecture 29

Different properties require different V&V techniques

• Performance can be analyzed using statistical techniques, but
deadline satisfaction requires exact computation of
execution times

• Reliability can be checked with statistical based testing
techniques, correctness can be checked with test selection
criteria based on structural coverage (to reveal failures) or
weakest precondition computation (to prove the absence of
faults)

1/18/2005 Overview Lecture 30

Different V&V for checking the same
properties for different software

• Test selection criteria based on structural coverage are different
for:

– procedural software (statement, branch, path,…) – object
oriented software (coverage of combination of

polymorphic calls and dynamic bindings,…)

– concurrent software (coverage of concurrent execution

sequences,…)

– mobile software (?)

• Absence of deadlock can be statically checked on some systems,
requires the construction of the reachability space for other
systems

1/18/2005 Overview Lecture 31

Principles

Principles underlying effective software testing and analysis techniques
include:

• Sensitivity: better to fail every time than sometimes

• Redundancy: making intentions explicit

• Partitioning: divide and conquer

• Restriction: making the problem easier

• Feedback: tuning the development process

1/18/2005 Overview Lecture 32

Sensitivity:

Better to fail every time than sometimes

• Consistency helps:

– a test selection criterion works better if every selected test
provides the same result, i.e., if the program fails with one
of the selected tests, it fails with all of them (reliable
criteria)

– run time deadlock analysis works better if it is machine
independent, i.e., if the program deadlocks when analyzed
on one machine, it deadlocks on every machine

1/18/2005 Overview Lecture 33

Redundancy:

Making intentions explicit

• Redundant checks can increase the capabilities of catching specific
faults early or more efficiently.

– Static type checking is redundant with respect to dynamic
type checking, but it can reveal many type
mismatches earlier and more efficiently.

– Validation of requirements is redundant with respect to
validation of final software, but can reveal errors
earlier and more efficiently.

– Testing and proof of properties are redundant, but are
often used together to increase confidence

1/18/2005 Overview Lecture 34

Partitioning:

Divide and conquer

• Hard testing and verification problems can be handled by suitably
partitioning the input space:

– both structural and functional test selection criteria identify
suitable partitions of code or specifications (partitions
drive the sampling of the input space)

– verification techniques fold the input space according to
specific characteristics, thus grouping homogeneous
data together and determining partitions

1/18/2005 Overview Lecture 35

Restriction.

Making the problem easier

• Suitable restrictions can reduce hard (unsolvable) problems to
simpler (solvable) problems

– A weaker spec may be easier to check: it is impossible (in
general) to show that pointers are used correctly,
but the simple Java requirement that pointers are
initialized before use is simple to enforce.

– A stronger spec may be easier to check: it is impossible
(in general) to show that type errors do not occur
at run-time in a dynamically typed language, but
statically typed languages impose stronger
restrictions that are easily checkable.

1/18/2005 Overview Lecture 36

Role of Design and Structure in Verification and
Validation

The program or system must be amenable to verification.
Assumption: Component-oriented development is required

for systems of non-trivial size.
1. Components provide a semantic basis for definition of

properties and assumptions.
2. Properties can be established on components under

assumptions which model compositions and
execution environments.

3. The components can then be replaced in verifications of
compositions by an adequate set of established
properties.

4. Exhaustive analysis and/or testing is sometimes possible
on a component by component basis.

1/18/2005 Overview Lecture 37

5. Components provide a basis for larger semantic units for
monitoring and definition of redundancy.

6. Patterns of components enable definition of properties to be
defined and assumptions for verification of properties.

	Verification vs Validation
	Example of simplified property: Unmatched Semaphore Operations
	Getting what you need ...
	Verification Methods Relationships
	Definitions
	Dependability Qualities
	Example of Dependability Qualities
	Relation among Dependability Qualites

