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Testing Systems

•Properties = Knowledge of Component/System Behavior

•A property can usually be defined as a state machine.

•Properties are always defined with respect to an 
environment for the component/system.

•Environment = Set of properties which generates a closed 
system for execution or verification of a component or system.

•Environments should be specifiable as set of properties for 
an executable entity 
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What Types Properties Should Be Specifiable?

Pre-Condition/Post-Condition pairs for units with 
identifiable semantics.

Occurrence or non-occurrence of specific states or events.

Sequences of states/events/operations which can or cannot 
occur => paths.

Security properties => information flow and access control.

Performance properties => time to execute a given path, etc.

Representation Issues

1. Syntax should be consistent with programming system 
for components/systems

2. Language should provide a library of templates for 
commonly occurring properties.

3. Language should support extending the library of 
templates.

4. Language should practice separation of concerns.

Pre-Condition => Post-Condition

Specify some subset of the state of the system before 
the execution of a component and some 
subset of the state after the execution of a 
component.

Pre-Condition => Post-Condition pairs can be specified 
in temporal logics

Input/Output Relation is an example of a pre-
condition => post-condition

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 8

Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable 

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]
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Branching Time Logic

• Branching time logic views a 
computation as a (possibly infinite) tree
or dag of states connected by atomic 
events

• At each state the outgoing arcs 
represent the actions leading to the 
possible next states in some execution

• Example: 

P = (a → P) ⎡⎤ (b→ P) 

a b

a b a b
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Notation

• Variant of branching time logic that we 
will look at is called CTL*, for 
Computational Tree Logic (star)

• In this logic
> A = "for every path"
> E = "there exists a path"
> G = “globally” (similar to )
> F =  “future” (similar to ◊)
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Paths versus States

• A & E refer to paths
> A requires that all paths have some 

property
> E requires that at least some path has the 

property
• G & F refer to states on a path

> G requires that all states on the given path 
have some property

> F requires that at least one state on the path 
has the property
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Examples

• AG  p
> For every computation (i.e., path from the 

root), in every state, p is true
> Hence, means the same as p

• EG p
> There exists a computation (path) for which 

p is always true
> Note, unlike LTL not all executions need 

have this property 
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Examples

• AF p
> For every path, eventually state p is true
> Hence, means the same as ◊ p
> Therefore, p is inevitable

• EF p
> There is some path for which p is eventually 

true
> I.e. p is "reachable”
> Therefore, p will hold potentially
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More Examples

• EFAG p
> For some computation (E), there is a state 

(F), such that for all paths from that state 
(A), globally (G) p is true

• AGEF halt
> For all computations (A), and for all states in 

it (G), there is a path (E) along which 
eventually (F) halt occurs

• EGEF p
> For some computation (E), for all states in 

that computation (G), there is a path (E) in 
which p is eventually (F) true
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Other Operators for States

• Can also have next and until
> represented as X and U respectively
> AX p means that for all next states, p will 

hold
> E[p U q] means that for some path there is a 

state where q holds and p holds in all states 
up to that state
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More Examples

• Show that EGEF p is the same as EGF p 
or provide a counter example to 
illustrate why not

> EGEF p means that there is a path such that 
from all states, there is a path such that p is 
eventually true

> EGF p means that there is a path such that 
from all states, p is eventually true in that 
path

> Consider the following tree
First one is true
Second one is not

p p

p
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CTL

• In some versions the symbols are 
required to occur in pairs of the form

> AG, AF, EG, EF
> Called CTL (no star)
> Important restriction for tools such as 

model checkers
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Traffic Controller

• Consider a traffic controller on a north-
south highway with a road off to the 
east

• Each road has a sensor that goes to 
true when a car crosses it

• For simplicity, no north or south bound 
car will turn

s

s

s
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Traffic Controller

• To reason about them, we name the 
sensors

> N (north)
> S (south)
> E (east)

• We also name the output signals at 
each end of the intersection

> N-go (cars from the north can go)
> S-go (cars from the south can go)
> E-go (cars from the east can go)
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Safety Property

• If cars from the east have a go-signal, 
then no other car can have a go-signal

AG ¬ (E-go ∧ (N-go ∨ S-go))
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Liveness properties

• If a sensor registers a car, then the car 
will be able to go through the 
intersection

AG ( ¬ N-go ∧ N → AF N-go)
AG ( ¬ S-go ∧ S → AF S-go)
AG ( ¬ E-go ∧ E → AF E-go)

• If the above are true, then the controller 
is free of deadlock
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Efficiency

• Since north and south bound cars can 
safely pass by each other we can state 
a possibility

EF (N-go ∧ S-go)
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Fairness

• We can’t have a car stop in the 
intersection

AG ¬ (N-go ∧ N)
AG ¬ (S-go ∧ S)
AG ¬ (E-go ∧ E)
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Yet More Temporal Logics

• The logic we’ve used so far is 
concerned with instances of state

> assertions about a future state(s)
> predicate is applied to each selected state

• What about contiguous collections of 
states?

• Interval temporal logic
> assertions over intervals of time
> have to worry about overlapping intervals
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Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable 

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0
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Computational Tree Logic (CTL)

Φ ::=  P                                  …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator
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Computational Tree Logic (CTL)

Φ ::=  P                                  …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds
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Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p
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Computation Tree Logic

EG p p

p

p

p
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Computation Tree Logic

AF p

p

p p p

p

p
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Computation Tree Logic

EF p

p
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Computation Tree Logic

AX p

p

p p

p

p p

p

p

p
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Computation Tree Logic

EX p

p

p

p

p p p
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Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p
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Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q
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Example CTL Specifications

• For any state, a request (for some resource) will eventually be 
acknowledged

AG(requested -> AF acknowledged)

• From any state, it is possible to get to a restart state

AG(EF restart)

• An upwards travelling elevator at the second floor does not 
changes its direction when it has passengers waiting to go to 
the fifth floor

AG((floor=2 && direction=up && button5pressed) 
-> A[direction=up U floor=5])
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CTL Notes

• Invented by E. Clarke and E. A. Emerson (early 
1980’s)

• Specification language for Symbolic Model Verifier 
(SMV) model-checker

• SMV is a symbolic model-checker instead of an 
explicit-state model-checker

• Symbolic model-checking uses Binary Decision 
Diagrams (BDDs) to represent boolean functions 
(both transition system and specification
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Linear Temporal Logic

Restrict path quantification to “ALL”  (no “EXISTS”)

Reason in terms of linear traces instead of branching trees
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Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ  U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::=  P                               …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ     | X Φ …temporal operators

Syntax
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LTL Notes

• Invented by Prior (1960’s), and first use to reason 
about concurrent systems by A. Pnueli, Z. Manna, 
etc.

• LTL model-checkers are usually explicit-state 
checkers due to connection between LTL and 
automata theory

• Most popular LTL-based checker is Spin 
(G. Holzman)
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Comparing LTL and CTL

CTL LTL

CTL*

• CTL is not strictly more expression than LTL (and vice versa)
• CTL* invented by Emerson and Halpern in 1986 to unify CTL 

and LTL
• We believe that almost all properties that one wants to express about 

software lie in intersection of LTL and CTL
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Motivation for 
Specification Patterns

• Temporal properties are not always easy to write
• Clearly many specifications can be captured in both CTL 

and LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q) 

Example: action Q must respond to action P

• Capure the experience base of expert designers
• Transfer that experience between practictioners.

We use specification patterns to:
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Pattern Hierarchy

Property Patterns

Occurrence Order

Absence
Universality Existence

Bounded Existence Precedence

Response Chain 
Precedence

Chain 
Response

Classification

• Occurrence Patterns: 
> require states/events to occur or not to occur 

• Order Patterns
> constrain the order of states/events
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Occurrence Patterns

• Absence: A given state/event does not occur within a scope
• Existence: A given state/event must occur within a scope
• Bounded Existence: A given state/event must occur k times 

within a scope
> variants: at least k times in scope, at most k times in scope

• Universality: A given state/event must occur throughout a scope
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Order Patterns

• Precedence: A state/event P must always be preceded by a 
state/event Q within a scope

• Response: A state/event P must always be followed a 
state/event Q within a scope

• Chain Precedence: A sequence of state/events P1, …, Pn must 
always be preceded by a sequence of states/events Q1, …, Qm
within a scope

• Chain Response:  A sequence of state/events P1, …, Pn must 
always be followed by a sequence of states/events Q1, …, Qm
within a scope
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Pattern Scopes

Global

Before Q

After Q

Between Q and R

After Q and R

State sequence Q R Q Q R Q

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 47

The Response Pattern

To describe cause-effect relationships between a pair of events/states. An 
occurrence of the first, the cause, must be followed by an occurrence of the 
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect

[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:
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The Response Pattern (continued)

Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

CTL:

Examples and Known Uses:

Response properties occur quite commonly in specifications of concurrent systems. 
Perhaps the most common example is in describing a requirement that a resource 
must be granted after it is requested. 

Relationships
Note that a Response property is like a converse of a Precedence property. 
Precedence says that some cause precedes each effect, and...
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Specify Patterns in Bandera

The Bandera Pattern Library is populated by writing pattern macros:

pattern {
name = “Response”
scope = “Globally”
parameters = {P, S}
format = “{P} leads to {S} globally”
ltl = “[]({P} –> <>{S})”
ctl = “AG({P} –> AF({S}))”

}
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Evaluation

• 555 TL specs collected from at least 35 different sources
• 511 (92%) matched one of the patterns
• Of the matches...

> Response: 245 (48%)
> Universality: 119 (23%)
> Absence: 85 (17%)
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Questions

• Do patterns facilitate the learning of specification formalisms like 

CTL and LTL?
• Do patterns allow specifications to be written more quickly?
• Are the specifications generated from patterns more likely to be

correct?
• Does the use of the pattern system lead people to write more 

expressive specifications?

Based on anecdotal evidence, we believe the answer to each of these 
questions is “yes”
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For more information...

http://www.cis.ksu.edu/santos/spec-patterns
• Pattern web pages and papers


