
9/4/2007 Models and Abstractions 1

Introduction to Models and Abstractions
Outline for Lecture

•Models for Software
•Overview
•Finite State Models
•Kripke Structures
•Graph Models

•CFG
•DFG

•Abstractions
•Overview
•Structural 
•Data Value
•Property Specific 
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Overview of Models
• A model is some abstraction of a system

– Operational Semantics
• Verification (formal or informal) is formulated in 

terms of some model of the system
• A model may be a “complete” or partial 

representation of a system in a “specification” 
language

• Ideally models are automatically generated from 
the system representation or the system 
representation can be generated from the 
model.
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Finite State Machines
A finite state machine is model of computation consisting of 

a set of states, a start state, an input alphabet, and a 
transition function that maps input symbols and current 
states to a next state. Computation begins in the start 
state with an input string. It changes to new states 
depending on the transition function. There are many 
variants, for instance, machines having actions (outputs) 
associated with transitions (Mealy machine) or states 
(Moore machine), multiple start states, transitions 
conditioned on no input symbol (a null) or more than one 
transition for a given symbol and state (nondeterministic 
finite state machine), one or more states designated as 
accepting states (recognizer), etc. 

http://www.nist.gov/dads/HTML/finiteStateMachine.html

http://www.nist.gov/dads/HTML/modelOfComputation.html
http://www.nist.gov/dads/HTML/state.html
http://www.nist.gov/dads/HTML/startstate.html
http://www.nist.gov/dads/HTML/alphabet.html
http://www.nist.gov/dads/HTML/transitionfn.html
http://www.nist.gov/dads/HTML/nextstate.html
http://www.nist.gov/dads/HTML/mealyMachine.html
http://www.nist.gov/dads/HTML/mooreMachine.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/nondetermFiniteStateMach.html
http://www.nist.gov/dads/HTML/recognizer.html
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Mealy Machines
A Mealy machine is a finite state machine that generates 

an output based on its current state and an input. This 
means that the state diagram will include both an input 
and output signal for each transition edge. In contrast, 
the output of a Moore finite state machine depends only 
on the machine's current state; transitions have no input 
attached. However, for each Mealy machine there is an 
equivalent Moore machine whose states are the union of 
the Mealy machine's states and the Cartesian product of 
the Mealy machine's states and the input alphabet. 

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Union_%28set_theory%29
http://en.wikipedia.org/wiki/Cartesian_product
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Moore Machines

A Moore machine is a finite state 
automaton where the outputs are 
determined by the current state alone (and 
do not depend directly on the input). The 
state diagram for a Moore machine will 
include an output signal for each state. 
Compare with a Mealy machine, which 
maps transitions in the machine to outputs 

http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/Finite_state_automaton
http://en.wikipedia.org/wiki/State_diagram
http://en.wikipedia.org/wiki/Mealy_machine
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Simple Microwave Oven Controller

The oven has a momentary-action push button Run to start 
(apply the power) and a Timer that determines the 
cooking length. Cooking can be interrupted at any time 
by opening the oven door. After closing the door the 
cooking is continued. Cooking is terminated when the 
Timer elapses. When the door is open a lamp inside the 
oven is switched on, when the door is closed the lamp is 
off. During cooking the lamp is also switched on.. The 
solution should also take into account the possibility that 
the push button Run could get blocked continuously in 
the active position.  In such a case cooking must not 
start again until it is deactivated when the cooking is 
terminated. In other words, each cooking cycle requires 
intentional activation of the Run button.
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The control system has the following inputs:
• Run momentary-action push button - when 

activated starts cooking, 
• Timer - while this runs keep on cooking,
• Door sensor - can be true (door closed) or false 

(door open). And the following outputs:
• Power - can be true (power on) or false (power 

off),
• Lamp - can be true (lamp on) or false (lamp off).

Simple Microwave Oven Controller
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Moore model
While specifying Moore state machines the states 

dominate. We think in the following manner: if the input 
condition changes the state machine changes its state (if 
a specific transition condition is valid). Entering the new 
state, the state machine does some actions and waits for 
the reaction of the controlled system. In a Moore model 
the entry actions define effectively the state. For 
instance, we would think about the state Cooking: it is a 
state where the Timer runs and the state machines waits 
for the Timer OVER signal. 

Simple Microwave Oven Controller
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Moore Machine Model
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Moore Machine Model
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Moore Machine Model
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Moore Machine Model
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Note the necessity of having two states DoorOpened. The DoorOpened2 is 
required to keep the information about the Run button: until it stays active in 
the state CookingCompleted the state machine must not return to the state Idle.

Moore Machine Model
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Mealy Machine Model

The states: Idle, Cooking and 
CookingInterrupted illustrate its features. 
All activities are done as Input actions, 
which means that actions essential for a 
state must be performed in all states which 
have a transition to that state. The Timer 
must be now started in both states: Idle 
and CookingInterrupted. 
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Mealy Machine Model
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In a Mealy model the inputs dominate thinking during 
specification. If an input condition changes the state 
machine reacts to that change performing some 
action(s); it may also change the state. In a Mealy model 
the inputs in a given state determine less the present 
state but rather the next states. For instance, the Timer 
which decides about the state Cooking must be started 
in both neighboring states: Idle and CookingInterrupted. 
Therefore the meaning of states is more hazy: the state 
Cooking is determined by the Timer but the Timer control 
is spread over several states.

Mealy Machine Model
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Mealy Machine Model
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Mealy Machine Model
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Mealy Machine Model
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Mixed Model

The states Cooking and CookingInterrupted
correspond to the Moore model. The 
states Init and CookingCompleted is a 
mixture of both models where we use 
both: Entry and Input actions. 
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Mixed Model
In the example, we use essentially a Moore model 

completed by Input Actions in the states: Idle and 
CookingCompleted. That small change gives a reduction 
from 7 to 5 states. Considering the complexity both state 
machines: Moore and mixed model are similar, the 
mixed model having the advantage of fewer states.

On the other hand, though the Mealy model and the mixed 
model have the same number of states, they are very 
different. Comparing the Mealy model with the mixed 
model we notice an essential simplification in favour of 
the mixed model.
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Mixed Model
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Mixed Model
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Mixed Model
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Mixed Model
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Mixed Model

• Exit Actions expand the possible specification 
modes but are not supported by many FSM 
systems.

• A Moore model is very easy to code, the 
transition may be often implemented just by 
constants as initialized tables. The Mealy model 
opens the Pandora box: the program becomes 
so complex that we lose the state machine in the 
confusing code.
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Example Problem from PY
Consider the problem of converting among DOS, Unix and Mac line 

end conventions in the form of a Mealy machine.  An event is 
reading a character or encountering an “end of file marker.”  The 
possible input characters are divided into four catagories: carriage 
return, line feed, end of file and everything else. The states are 
defined by program control points with some associated variables. 
The specification is to read in lines in one format and emit lines in 
another format. 

The actions are:
1. A character is input
2. If the character is an EOF then the program empties its buffer and 

terminates.
3. If the character is a CR then the program emits the buffer and sets 

the number of characters in the buffer to zero.
4. For any other character, the character is appended to the current 

position in the buffer and the current position is incremented.
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The obvious states of the program are: the 
buffer is empty, the machine is processing 
a buffer, the machine is removing a LF 
and the program is terminating.

Example Problem from PY
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Program (more or 
less) corresponding 
to the specification.

Environment for 
program is a 
procedure which 
supplies characters 
and a procedure 
which absorbs 
characters.
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Finite State Machine Representations

LF CR EOF other

e e/emit e/emit d/- w/append

w e/emit e/emit d/emit w/append

l e/- d/- w/append

• finite set of states (nodes)

• set of transitions among states (edges)

Graph representation (Mealy machine) Tabular representation
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Abstraction 
Function
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Labeled State Graph
Kripke Structure

K = ({p,~p},{x,y,z,k,h},R,{x},L)

x

y

z

k

~p

~p

~p

p

hh ~p

Each state represents all
variable values and 
location counters

The labels represent
predicates in each state
e.g. (x = 5)

Each transition 
represents an execution 
step in the system
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Kripke Structures
• Kripke structures can be generated by the 

execution of a finite state machine (or set of 
interacting state machines.) 

• Kripke structure is a finite state machine
• Extension to infinite state systems as (Buchi

automata) will be taken up later under model 
checking

• A Kripke structure which captures the complete 
set of states of a program represents all possible 
executions of the program from a given initial 
state (or environment).
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Kripke Structures

• Kripke structures can be represented as 
guarded equational systems (model of 
execution must be specified) and visa 
versa.
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Microwave Oven Specification

This simple oven has a single control button. When the oven 
door is closed and the user presses the button, the oven will cook (that 
is, energize the power tube) for 1 minute.

If the control button is pressed and the door is open the power 
tube is not energized.

When the oven times out (cooks until the timer expires), it 
turns off both the power tube.

The user can stop the cooking by opening the door. Once the 
door is opened, the timer resets to zero.
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Simple Microwave Oven

• K (or M) = (S, S0, R, L)
• S = (S1, S2, S3, S4)
• S0 = S1 is the initial state
• R = ({S1, S2} {S2, S1}, {S1, S4}, {S4, S2}, {S2,
• S3}, {S3, S2}, {S3, S3}
• L (S1) = {¬close, ¬ start, ¬ cooking} L (S2) =
• {close, ¬ start, ¬ cooking} L (S3) = {close, start,
• cooking} L (S4) = {¬close, start, ¬ cooking}
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Kripke Structure (State Model) for 
Microwave Oven
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Environment for Microwave Oven

• Entity to open and close door (send open 
and close events)

• Timer which receives start events and 
sends finish events.
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Mutual Exclusion Example

N1  → T1
T1 ∧ S0 → C1 ∧ S1     
C1 → N1 ∧ S0

N2  → T2
T2 ∧ S0 → C2 ∧ S1
C2 → N2 ∧ S0

||

• Two process mutual exclusion with shared semaphore
• Each process has three states

• Non-critical (N)
• Trying (T)
• Critical (C)

• Semaphore can be available (S0) or taken (S1) 
• Initially both processes are in the Non-critical state and

the semaphore is available --- N1 N2 S0
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Execution model is asynchronous interleaved with atomic 
actions.
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Graph Representations: 
directed graphs

• Directed graph:
– N (set of nodes)
– E (relation on the set of nodes ) edges

Nodes: {a, b, c}
Edges: {(a,b), (a, c), (c, a)}

a

b c

b a c
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Graph Representations: labels 
and code

• We can label nodes with the names or 
descriptions of the entities they represent. 
– If nodes a and b represent program regions 

containing assignment statements, we might draw the 
two nodes and an edge (a,b) connecting them in this 
way:

x = y + z;

a = f(x);



9/4/2007 Models and Abstractions 44

Multidimensional Graph 
Representations

• Sometimes we draw a single diagram to 
represent more than one directed graph, 
drawing the shared nodes only once
– class B extends (is a subclass of) class A 
– class B has a field that is an object of type C

extends relation 
NODES = {A, B, C}
EDGES = {(A,B)} 

includes relation
NODES = {A, B, C}
EDGES = {(B,C)}

a

b c
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Finite Abstraction of Behavior
an abstraction function suppresses some details of 

program execution

⇒
it lumps together execution states that differ with respect to the 

suppressed details but are otherwise identical
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(Intraprocedural) Control Flow 
Graph

• nodes = regions of source code (basic blocks)
– Basic block = maximal program region with a single 

entry and single exit point
– Often statements are grouped in single regions to get 

a compact model
– Sometime single statements are broken into more 

than one node to model control flow within the 
statement

• directed edges = possibility that program 
execution proceeds from the end of one region 
directly to the beginning of another
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Example of Control Flow Graph 
public static String collapseNewlines(String argStr)

{
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}
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Linear Code Sequence and Jump (LCSJ)

Fro
m

Sequence of basic 
blocs

To
Entr
y

b1 b2 b3 jX
Entr
y

b1 b2 b3 b4 jT
Entr
y

b1 b2 b3 b4 b5 jE
Entr
y

b1 b2 b3 b4 b5 b6 b7 jL
jX b8 ret
jL b3 b4 jT
jL b3 b4 b5 jE
jL b3 b4 b5 b6 b7 jL

 {
        char last = argStr.charAt(0);
        StringBuffer argBuf = new StringBuffer();

        for (int cIdx = 0 ; 

{
            char ch = argStr.charAt(cIdx);
            if (ch != '\n' 

cIdx < argStr.length();

True

True

{
                argBuf.append(ch);
                last = ch;
            }

True

}
cIdx++)

return argBuf.toString();
    }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

b1

jX

jT

jE

jL

Essentially subpaths of the control flow graph from one 
branch to another
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Interprocedural control flow 
graph

• Call graphs
– Nodes represent procedures

• Methods
• C functions
• ... 

– Edges represent calls relation 
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Overestimating the calls relation

public class C {
public static C cFactory(String kind) {

if (kind == "C") return new C(); 
if (kind == "S") return new S(); 
return null; 

}
void foo() { 

System.out.println("You called the parent's method"); 
}
public static void main(String args[]) { 

(new A()).check(); 
}

}
class S extends C { 

void foo() {
System.out.println("You called the child's method"); 

}
}
class A {

void check() {   
C myC = C.cFactory("S"); 
myC.foo();  

}
}

The static call graph includes calls through dynamic 
bindings that never occur in execution.

A.check()

C.foo() S.foo() CcFactory(string)
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Contex Insensitive Call graphs 
public class Context {

public static void main(String 
args[]) { 
Context c = new Context(); 
c.foo(3); 
c.bar(17); 

}

void foo(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 2) ; 

}

void bar(int n) {
int[]  myArray = new int[ n ]; 
depends( myArray, 16) ; 

}

void depends( int[] a, int n ) {
a[n] = 42; 

}
}

main

C.foo C.bar

C.depends
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Contex Sensitive Call graphs 
public class Context {

public static void main(String 
args[]) { 
Context c = new Context(); 
c.foo(3); 
c.bar(17); 

}
void foo(int n) {

int[]  myArray = new int[ n ]; 
depends( myArray, 2) ; 

}
void bar(int n) {

int[]  myArray = new int[ n ]; 
depends( myArray, 16) ; 

}
void depends( int[] a, int n ) {

a[n] = 42; 
}

}

main

C.foo(3) C.bar(17)

C.depends(int(3),a,2) C.depends (int(3),a,2)
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Context Sensitive CFG
exponential growth

A

B

D

F

H

C

E

G

I

J

1 context A

2 contexts AB AC

4 contexts ABD ABE ACD ACE

8 contexts …

16 calling contexts …
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Dependence and Data Flow 
Models
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Why Data Flow Models?
• Models from Chapter 5 emphasized control

• Control flow graph, call graph, finite state machines
• We also need to reason about dependence

• Where does this value of x come from?
• What would be affected by changing this? 
• ... 

• Many program analyses and test design techniques use data flow 
information
– Often in combination with control flow

• Example:  “Taint” analysis to prevent SQL injection attacks
• Example:  Dataflow test criteria (Ch.13)
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Learning objectives
• Understand basics of data-flow models and the related 

concepts (def-use pairs, dominators…)
• Understand some analyses that can be performed with 

the data-flow model of a program
– The data flow analyses to build models
– Analyses that use the data flow models

• Understand basic trade-offs in modeling data flow
– variations and limitations of data-flow models and 

analyses, differing in precision and cost
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Def-Use Pairs (1)
• A def-use (du) pair associates a point in a program where a value 

is produced with a point where it is used
• Definition: where a variable gets a value

– Variable declaration  (often the special value “uninitialized”)
– Variable initialization
– Assignment
– Values received by a parameter 

• Use: extraction of a value from a variable
– Expressions
– Conditional statements
– Parameter passing
– Returns
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Def-Use Pairs

...
if (...) {

x = ... ; 
... 
}
y = ... + x + ... ; 

x = ... 

if (...) {

... 

y = ... + x + ...

... 

... 

Definition: 
x gets a 
value

Use: the value 
of x is 

extractedDef-Use
path
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Def-Use Pairs (3)

/**  Euclid's algorithm */
public class GCD 
{ 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, 
y

x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x
}

Figure 6.2, page 79
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Def-Use Pairs (3)
• A definition-clear path is a path along the CFG from a 

definition to a use of the same variable without* another 
definition of the variable between
– If, instead, another definition is present on the path, 

then the latter definition kills the former
• A def-use pair is formed if and only if there is a definition-

clear path between the definition and the use

*There is an over-simplification 
here, which we will repair later.
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Definition-Clear or Killing
x = ...     // A: def x
q = ...  
x = y;     //  B: kill x, def x
z = ... 
y = f(x);  // C: use x

x = ... 

... 

... 
Definition: x 
gets a value

Use: the value 
of x is 

extracted

A

x = y 

Definition: x gets 
a new value, old 

value is killed

... 

y = f(x)

B

C

Path B..C is 
definition-clear

Path A..C is 
not definition-clear
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(Direct) Data Dependence Graph
• A direct data dependence graph is:

– Nodes: as in the control flow graph (CFG)
– Edges: def-use (du) pairs, labelled with the variable name

(Figure 6.3, page 80)

Dependence 
edges show this 
x value could be 
the unchanged 
parameter or 

could be set at 
line D



9/4/2007 Models and Abstractions 63

Control dependence (1)
• Data dependence: Where did these values come from?
• Control dependence: Which statement controls whether this 

statement executes? 
– Nodes: as in the CFG
– Edges: unlabelled, from entry/branching points to controlled 

blocks
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Dominators
• Pre-dominators in a rooted, directed graph can be used to make 

this intuitive notion of “controlling decision” precise.
• Node M dominates node N if every path from the root to N passes 

through M. 
– A node will typically have many dominators, but except for the 

root, there is a unique immediate dominator of node N which is 
closest to N on any path from the root, and which is in turn 
dominated by all the other dominators of N. 

– Because each node (except the root) has a unique immediate 
dominator, the immediate dominator relation forms a tree.

• Post-dominators: Calculated in the reverse of the control flow 
graph, using a special “exit” node as the root.



9/4/2007 Models and Abstractions 65

Dominators (example)
A

B

C

D

E

F

G

• A pre-dominates all nodes; G 
post-dominates all nodes

• F and G post-dominate E
• G is the immediate post-

dominator of B
– C does not post-dominate B

• B is the immediate pre-
dominator of G
– F does not pre-dominate G
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Control dependence (2)
• We can use post-dominators to give a more precise definition of control 

dependence:
– Consider again a node N that is reached on some but not all execution 

paths.
– There must be some node C with the following property: 

• C has at least two successors in the control flow graph (i.e., it 
represents a control flow decision); 

• C is not post-dominated by N 
• there is a successor of C in the control flow graph that is post-

dominated by N.  
– When these conditions are true, we say node N is control-dependent on 

node C.
• Intuitively: C was the last decision that controlled whether N 

executed
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Control Dependence
A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is 
not inevitable at B

Execution of F is 
inevitable at E
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Data Flow Analysis

Computing data flow information
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Calculating def-use pairs
• Definition-use pairs can be defined in terms of paths in the program control 

flow graph:
– There is an association (d,u) between a definition of variable v at d and 

a use of variable v at u iff
• there is at least one control flow path from d to u 
• with no intervening definition of v. 

– vd reaches u (vd is a reaching definition at u).  
– If a control flow path passes through another definition e of the same 

variable v, ve kills vd at that point.
• Even if we consider only loop-free paths, the number of paths in a graph 

can be exponentially larger than the number of nodes and edges. 
• Practical algorithms therefore do not search every individual path. Instead, 

they summarize the reaching definitions at a node over all the paths 
reaching that node.
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Exponential paths 
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is 
not efficient, and we 
can do much better.
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DF Algorithm
• An efficient algorithm for computing reaching definitions (and several 

other properties) is based on the way reaching definitions at one 
node are related to the reaching definitions at an adjacent node.  

• Suppose we are calculating the reaching definitions of node n, and 
there is an edge (p,n) from an immediate predecessor node p.  
– If the predecessor node p can assign a value to variable v, then

the definition vp reaches n.  We say the definition vp is generated 
at p.

– If a definition vp of variable v reaches a predecessor node p, and 
if v is not redefined at that node (in which case we say the vp is 
killed at that point), then the definition is propagated on from p to 
n.
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Equations of node E (y = tmp)

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x

}

Calculate reaching 
definitions at E in 
terms of its 
immediate 
predecessor D
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Equations of node B (while (y != 
0))

• Reach(B) = ReachOut(A) ∪ ReachOut(E)
• ReachOut(A) = gen(A) = {xA, yA, tmpA}
• ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD  { 
public int gcd(int x, int y) {

int tmp;               // A: def x, y, tmp              
while (y != 0) {     // B: use y

tmp = x % y;     // C: def tmp; use x, y
x = y;               // D: def x; use y
y = tmp;           // E: def y; use tmp

}
return x;              // F: use x

}

This line has two 
predecessors: 
Before the loop,
end of the loop
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General equations for Reach analysis

Reach(n) =  ∪ ReachOut(m)
m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }
kill(n) = { vx | v is defined or modified at x, 

x≠n }
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Avail equations

Avail (n) =  ∩ AvailOut(m) 
m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at 

n }
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Live variable equations

Live(n) = ∪ LiveOut(m) 

m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }
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Classification of analyses

• Forward/backward: a node’s set depends on 
that of its predecessors/successors

• Any-path/all-path: a node’s set contains a value 
iff it is coming from any/all of its inputs

Any-path (∪) All-paths (∩)

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”
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Iterative Solution of Dataflow 
Equations

• Initialize values (first estimate of answer)
– For “any path” problems, first guess is “nothing” (empty set) at

each node
– For “all paths” problems, first guess is “everything” (set of all 

possible values = union of all “gen” sets)
• Repeat until nothing changes

– Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution where every new 
calculation produces the same value as the previous guess.
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Worklist Algorithm for Data Flow
See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young
One way to iterate to a fixed point solution.
General idea: 
• Initially all nodes are on the work list, and have default values 

– Default for “any-path” problem is the empty set, default for “all-path” 
problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
– Pick any node n on work list; remove it from the list
– Apply the data flow equations for that node to get new values
– If the new value is changed (from the old value at that node), then 

• Add successors (for forward analysis) or predecessors (for 
backward analysis) on the work list

• Eventually the work list will be empty (because new computed values = old 
values for each node) and the algorithm stops. 
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Cooking your own: From Execution to 
Conservative Flow Analysis

• We can use the same data flow algorithms to approximate other 
dynamic properties
– Gen set will be “facts that become true here”
– Kill set will be “facts that are no longer true here”
– Flow equations will describe propagation

• Example:  Taintedness (in web form processing)
– “Taint”:  a user-supplied value (e.g., from web form) that has not 

been validated
– Gen: we get this value from an untrusted source here
– Kill:  we validated to make sure the value is proper
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Cooking your own analysis (2)
• Flow equations must be 

monotonic
– Initialize to the bottom 

element of a lattice of 
approximations

– Each new value that 
changes must move up the 
lattice

• Typically: Powerset lattice
– Bottom is empty set, top is 

universe
– Or empty at top for all-

paths analysis

Monotonic: y > x implies f(y) ≥ f(x)

(where f is application of the flow
equations on values from successor
or predecessor nodes, and “>” is
movement up the lattice)
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Data flow analysis with arrays and 
pointers

• Arrays and pointers introduce uncertainty: 
Do different expressions access the same storage?
– a[i] same as a[k] when i = k
– a[i] same as b[i] when a = b (aliasing)

• The uncertainty is accomodated depending to the kind of 
analysis
– Any-path: gen sets should include all potential aliases 

and kill set should include only what is definitely 
modified

– All-path: vice versa
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Scope of Data Flow Analysis
• Intraprocedural

– Within a single method or procedure
• as described so far

• Interprocedural
– Across several methods (and classes) or procedures

• Cost/Precision trade-offs for interprocedural analysis are critical, and 
difficult
– context sensitivity
– flow-sensitivity
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Context Sensitivity

sub() sub()

bar() {

}

sub() {
foo() {

}

}

(call)

(return)

(call)

(return)

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()
from sub() called from bar();
A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()
and sub() could then return to bar()
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Flow Sensitivity
• Reach, Avail, etc. were flow-sensitive, intraprocedural analyses

– They considered ordering and control flow decisions
– Within a single procedure or method, this is (fairly) cheap —

O(n3) for n CFG nodes
• Many interprocedural flow analyses are flow-insensitive

– O(n3) would not be acceptable for all the statements in a 
program!

• Though O(n3) on each individual procedure might be ok
– Often flow-insensitive analysis is good enough ... consider type 

checking as an example
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Summary

• Data flow models detect patterns on CFGs:
– Nodes initiating the pattern
– Nodes terminating it
– Nodes that may interrupt it

• Often, but not always, about flow of information (dependence)
• Pros:

– Can be implemented by efficient iterative algorithms
– Widely applicable (not just for classic “data flow” properties)

• Limitations:
– Unable to distinguish feasible from infeasible paths
– Analyses spanning whole programs (e.g., alias analysis) must 

trade off precision against computational cost
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