Model Based Testing

Connecting Specifications and
Testing

9/26/2007 Model Based Testing

A working definition

 Model-based testing Is

“The automatic generation of efficient test
procedures/vectors using models of system
requirements and specified functionality.”

www.goldpractices.com/practices/mbt/index.php

 There are also benefits of model creation and
analysis beyond that of automated test
generation, e.g. validation of requirements

e Mostly for integration and acceptance testing

9/26/2007 Model Based Testing

http://www.goldpractices.com/practices/mbt/index.php

Why a formal model?

* |Informal specification documents enable
engineers to get vague understanding of system
functionality

e Reliance on such implicit, mental, informal
models renders testing process that is

- Unstructured
- Hardly reproducible
- Unmotivated In its detalls

* |Informal models cannot support automated test
generation and validation

9/26/2007 Model Based Testing

Cost-benefit analysis

 Model creation costs time/money, but:

o Systems get more complex, release schedules
shorter

« Automated model-based test generation now
possible

* Testing Is 50-70% of total cost of product
release, clear need to cut that cost factor

 Models can be reused, can correct
requirements, can inform design activities

— Model-based testing often cost-effective but
requires certain skills within organization

9/26/2007 Model Based Testing

Possible workflow

1. Build the model; e.g. finite-state machine
abstraction of system'’s event structure

2. Generate expected inputs; e.g. trace of events
for finite-state machine

3. Generate expected output; e.g. target state

4. Compare actual output with expected one, e.qg.
was target state reached?

5. Decide on further actions; e.g. modify model,
generate more tests, estimate reliability

9/26/2007 Model Based Testing

Model building during

development

 Requirements engineer, designer, tester,
or developer forms mental representation
of system’s functionality

» Describes/expands mental model in easily
understandable formalism

e Uses formalism and choice of model that
facilitate frequent, automated, and
effortless test generation

9/26/2007 Model Based Testing

Model creation: other needs

e E.g. maintenance: often requires automated
extraction of information from system artifacts,
e.g. from documentation, source code, data files
etc.

« Many useful kinds of information: call graphs, file
dependences, frequent usage patterns, event
Interactions, etc.

« Example application: extract event interactions
from black-box legacy system, use that model to
determine causal structure of events

9/26/2007 Model Based Testing 7

Kinds of behavioral models, all
have tool support

e Decision tables: tables showing sets of
conditions and actions that result from conditions

being true

* Finite-state machines (FSM): finite number of
states and transitions (possibly labeled with
actions) between them

« Markov chains: like finite-state machines but
transitions guided by probability distribution

« State charts: UML diagram, shows states that
system can assume, shows circumstances that
cause state change

9/26/2007 Model Based Testing 8

Example of a state chart

r ™,
Enrollment

Open For

‘_ Froposed] Enrollrment

student dropped
[seminar size > (]

- r’_ﬁ classes
D i end -
Scheduled Full Closed o | Being Final

Enrollment [|EM Taught Exams
starte

d student dropped closed
[seminar size =[]

b -
cancelled

9/26/2007 Model Based Testing 9

9/26/2007

Example FSM model

Dial Tone
DiallParty Busy DialParty Ready

o

Model Based Testing

10

Example of Markov chain

0.05
0.35
connection @
Q‘ 7 0.9 terminated 0.5

connection
spoofed

offline, ready

0.001

@ connected
securely

offline, networlk
down

9/26/2007 Model Based Testing

11

Choice of modeling method

* E.g. use finite-state machines to model state-rich
system such as telephony

e E.g. use state charts for system with few states,
or hierarchical structure, transitions caused by
user input and external conditions

 E.g. use Markov chains when statistical analysis,
failure data, or reliability assessments are
desired

9/26/2007 Model Based Testing 12

Heuristics for building a model

1. Listall inputs

2. For each input: list situations in which input
can be applied; ditto for situations in which it
cannot be applied

3. For each input: list situations in which input
causes different behaviors or outputs,
depending on application context of input

9/26/2007 Model Based Testing 13

9/26/2007

Recall FSM model

Dial Tone
DiallParty Busy DialParty Ready

o

Model Based Testing

14

Details of example FSM model

« FSM is model of simple phone system

 Model is of phone that can call out

 Nodes are states of phone, e.g. OnHook

« Edges are actions user can take, I.e. system
Input, e.g. HangUp

e Test cases specify

- sequence of inputs p

- states system should reach &ter each &ttion

- and value of outputs of system

.......

9/26/2007 Model Based Testing

Generating test cases

DialParitv Busy
.= : -

OnHook <PickUP> DialTone <Dial/PartyBusy> Busy
<HangUp> OnHook <PickUp> DialTone
<Dial/PartyReady> Ringing ... // Exercise: extend
sequence to cover all transitions

9/26/2007 Model Based Testing

16

Action coverage

e

OnHook <PickUP> DialTone ... sequence (from
previous slide) has 15 inputs, achieves action
coverage: every action possible at each state
“executed” at least once; easiest test coverage
criterion for FSM model

9/26/2007 Model Based Testing

DialParty Busy DialParty Ready

17

Action coverage

e

 Generated action-coverage sequence not unique,
each such sequence stresses software differently but
with same coverage criterion

e Said sequence consists of four test cases, I.e.
sequences beginning at OnHook

 If system outputs only its abstract state, can use FSM

as effective test oracle
9/26/2007 Model Based Testing

ady_ A

DialParty Busy DialParty Ready

18

Switch coverage

DialParty RE.EM

Switch coverage: for each state, each pair of actions leading
(into,out) of that state is in test sequence

Switch coverage: more rigorous than action coverage
Example: at DialTone we need to consider 2*3 = 6 such pairs,
e.g. the pair

<PartyHangsUp> DialTone <Dial/PartyReady>

26 (> 15) inputs needed for switch coverage here

DialParty Busy

9/26/2007 Model Based Testing

19

From models to tests & back

« Models deliberately abstract: simplification enables
comprehension and communication of functionality or
reguirements

 Models generate test cases guided by coverage criteria,
e.g. action coverage, or other test purposes, e.g.
“Requirement A2”

e Generated test cases have to be concrete enough to be
executable: test scripts/drivers

o EXecutable test results too concrete to map directly back
to models

— Automation needs to enable move from abstract to
concrete and vice versa

9/26/2007 Model Based Testing 20

Test scripts

o Aka test drivers, run automatically without
human interaction

* Provide general mechanisms for supporting
other test automation methods

« E.g. capture/playback and test generation
approaches

e Test scripts developable in standard application
languages VB, C, Java, C#, Tcl, ...

— Model-based testing needs to bridge the gap
between abstract models and concrete test
scripts

9/26/2007 Model Based Testing 21

Common test script pattern

 |nitialize the SUT

* |terate, for each test case:

- Initialize target (optional)

- Initialize output to value other than expected (if
possible)

- Set inputs

- Run SUT

- Capture output and state of results so that later
on a test report can be created

9/26/2007 Model Based Testing 22

Capture/playback approach

e Captures sequences of manual operations (e.qg.
In GUI) in test script written by test engineer

e Has shortcomings, e.g.

- needs to recognize GUI objects when layout has
changed

- Changing system functionality forces manual
recapture of playback sequence

- Manual recording of today’s website interaction
too complex to handle

9/26/2007 Model Based Testing 23

Model-based testing: benefits

« Comprehensive tests: models determine logical
paths, locations of program boundaries, identify
reachability problems

« |mproved requirements: testable requirement
has to be complete, consistent, unambiguous;
testing may expose “feature interaction”
requirement defects

« Defect discovery: studies suggest mode-based

testing results in early defect detection, sufficient

for Return On Investment

9/26/2007 Model Based Testing

24

Some Additional Resources

http://www.goldpractices.com/practices/mbt/i
ndex.php

http://www.geocities.com/model based testi
ng/

9/26/2007 Model Based Testing 25

http://www.goldpractices.com/practices/mbt/index.php
http://www.goldpractices.com/practices/mbt/index.php
http://www.geocities.com/model_based_testing/
http://www.geocities.com/model_based_testing/

	Model Based Testing
	A working definition
	Why a formal model?
	Cost-benefit analysis
	Possible workflow
	Model building during development
	Model creation: other needs
	Kinds of behavioral models, all have tool support
	Example of a state chart
	Example FSM model
	Example of Markov chain
	Choice of modeling method
	Heuristics for building a model
	Recall FSM model
	Details of example FSM model
	Generating test cases
	Action coverage
	Action coverage
	Switch coverage
	From models to tests & back
	Test scripts
	Common test script pattern
	Capture/playback approach
	Model-based testing: benefits
	Some Additional Resources�

