
9/4/2008 Unification of Verification and
Validation

1

Property Specifications
Jim Browne

Table of Contents

Overview

Temporal Logics

Specification Patterns

The major part of this lecture is taken from slides by David Garlan

9/4/2008 Unification of Verification and
Validation

2

Property Specifications

Verified Components

Abstraction and Translation

Program

Testing

Model Checking

Theorem Proving

Runtime Monitors

Static Analysis

Composition

Environment
Specifications

Architecture
Specifications

Symbolic Execution

Template for Unification of Verification and Validation

9/4/2008 Unification of Verification and
Validation

3

Why to care about specification languages.
Reasoning About Executions

• Test Specifications – A test (A test is a
specification of an input/output relation.) is a
statement about the execution of a (sequential)
program for the path taken from a given initial
condition. So to test a program we need many
tests.

• Desired Specifications – Specifications which
make statements about many paths and many
initial conditions. If we can establish such a
property – we have made a lot of progress.

9/4/2008 Unification of Verification and
Validation

4

Property Specifications

• Complete specifications are an alternative
statement of the behavior of the
implementation in a formal language.

• Partial specifications are statements in a
formal language about a program which
are deemed critical to meeting
requirements.

9/4/2008 Unification of Verification and
Validation

5

Property Specifications
State of the Art

• There are two main branches of
specification languages:
– Temporal Logics
– Floyd/Hoare Logics

• There are many different dialects of each
language
– Linear temporal logic (LTL), Computational

tree logic (CTL)
– Java Modeling Language (JML), etc.

9/4/2008 Unification of Verification and
Validation

6

Unified Property Specification
Language

• Unified Property Specification Language
(UPSL) - Single language for expressing
properties which is readily translatable to
the input property language of any tool.
Example – Accellera PSL for timed
systems is readily translatable to multiple
model checkers and simulation-based
testing systems

9/4/2008 Unification of Verification and
Validation

7

Equivalence/Translation Among
Specification Languages

• Equivalence and translation – Write in one
specification language and translate to
other representations
– Can use existing languages
– Specific translations may be incomplete.
– Many translators are needed
– Possible solution – common intermediate

language for property specification languages.

9/4/2008 Unification of Verification and
Validation

8

Property Specification and Evaluation

Temporal Logic
(LTL,PTTL,CTL)

Floyd/Hoare Logic
JML, etc.

Implementation
C Java xUML

Property/Environment
Representation

Model Checkers Theorem Provers Instrumented
Programs

Static Analysis
Tools

Translators

Testing Systems Symbolic
Execution

9/4/2008 Unification of Verification and
Validation

9

•Properties = Knowledge of Component/System Behavior

•A property can usually be defined as a state machine.

•Properties are always defined with respect to an
environment for the component/system.

•Environment = Set of properties which generates a closed
system for execution or verification of a component or system.

•Environments should be specifiable as set of properties for
an executable entity – sets of allowable input/output
sequences

•Environments may be constraints on inputs

9/4/2008 Unification of Verification and
Validation

10

What Types of Properties Should Be Specifiable?

Pre-Condition/Post-Condition pairs for units with
identifiable semantics.

Occurrence or non-occurrence of specific states or events.

Sequences of states/events/operations which can or cannot
occur => paths.

Security properties => information flow and access control.

Performance properties => time to execute a given path, etc.

9/4/2008 Unification of Verification and
Validation

11

Representation Issues

1. Syntax should be consistent with programming system
for components/systems

2. Language should provide a library of templates for
commonly occurring properties. (Equivalent to libraries
of components.)

3. Language should support extending the library of
templates.

4. Language should practice separation of concerns.

9/4/2008 Unification of Verification and
Validation

12

Pre-Condition => Post-Condition

Specify some subset of the state of the system before
the execution of a component and some
subset of the state after the execution of a
component.

Pre-Condition => Post-Condition pairs can be specified
in temporal logics

Input/Output Relation is an example of a pre-
condition => post-condition

9/4/2008 Unification of Verification and
Validation

13

Temporal Logics – Reasoning about
Executions

• Specify behaviors along paths (Linear
Temporal Logic - LTL)
– Specify environment such that all paths from

all initial conditions are traversed.
• Specify behaviors for all paths on the tree

of execution paths traversable from a
given set of initial conditions (Computation
Tree Logic – CTL)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 14

Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 15

Branching Time Logic

• Branching time logic views a
computation as a (possibly infinite) tree
or dag of states connected by atomic
events

• At each state the outgoing arcs
represent the actions leading to the
possible next states in some execution

• Example:

P = (a → P) ⎡⎤ (b→ P)

a b

a b a b

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 16

Notation

• Variant of branching time logic that we
will look at is called CTL*, for
Computational Tree Logic (star)

• In this logic
> A = "for every path"
> E = "there exists a path"
> G = “globally” (similar to)
> F = “future” (similar to ◊)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 17

Paths versus States

• A & E refer to paths
> A requires that all paths have some

property
> E requires that at least some path has the

property
• G & F refer to states on a path

> G requires that all states on the given path
have some property

> F requires that at least one state on the path
has the property

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 18

Examples

• AG p
> For every computation (i.e., path from the

root), in every state, p is true
> Hence, means the same as p

• EG p
> There exists a computation (path) for which

p is always true
> Note, unlike LTL not all executions need

have this property

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 19

Examples

• AF p
> For every path, eventually state p is true
> Hence, means the same as ◊ p
> Therefore, p is inevitable

• EF p
> There is some path for which p is eventually

true
> I.e. p is "reachable”
> Therefore, p will hold potentially

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 20

More Examples

• EFAG p
> For some computation (E), there is a state

(F), such that for all paths from that state
(A), globally (G) p is true

• AGEF halt
> For all computations (A), and for all states in

it (G), there is a path (E) along which
eventually (F) halt occurs

• EGEF p
> For some computation (E), for all states in

that computation (G), there is a path (E) in
which p is eventually (F) true

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 21

Other Operators for States

• Can also have next and until
> represented as X and U respectively
> AX p means that for all next states, p will

hold
> E[p U q] means that for some path there is a

state where q holds and p holds in all states
up to that state

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 22

More Examples

• Show that EGEF p is the same as EGF p
or provide a counter example to
illustrate why not

> EGEF p means that there is a path such that
from all states, there is a path such that p is
eventually true

> EGF p means that there is a path such that
from all states, p is eventually true in that
path

> Consider the following tree
First one is true
Second one is not

p p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 23

CTL

• In some versions the symbols are
required to occur in pairs of the form

> AG, AF, EG, EF
> Called CTL (no star)
> Important restriction for tools such as

model checkers

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 24

Traffic Controller

• Consider a traffic controller on a north-
south highway with a road off to the
east

• Each road has a sensor that goes to
true when a car crosses it

• For simplicity, no north or south bound
car will turn

s

s

s

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 25

Traffic Controller

• To reason about them, we name the
sensors

> N (north)
> S (south)
> E (east)

• We also name the output signals at
each end of the intersection

> N-go (cars from the north can go)
> S-go (cars from the south can go)
> E-go (cars from the east can go)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 26

Safety Property

• If cars from the east have a go-signal,
then no other car can have a go-signal

AG ¬ (E-go ∧ (N-go ∨ S-go))

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 27

Liveness properties

• If a sensor registers a car, then the car
will be able to go through the
intersection

AG (¬ N-go ∧ N → AF N-go)
AG (¬ S-go ∧ S → AF S-go)
AG (¬ E-go ∧ E → AF E-go)

• If the above are true, then the controller
is free of deadlock

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 28

Efficiency

• Since north and south bound cars can
safely pass by each other we can state
a possibility

EF (N-go ∧ S-go)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 29

Fairness

• We can’t have a car stop in the
intersection

AG ¬ (N-go ∧ N)
AG ¬ (S-go ∧ S)
AG ¬ (E-go ∧ E)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 30

Yet More Temporal Logics

• The logic we’ve used so far is
concerned with instances of state

> assertions about a future state(s)
> predicate is applied to each selected state

• What about contiguous collections of
states?

• Interval temporal logic
> assertions over intervals of time
> have to worry about overlapping intervals

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 31

Reasoning about Executions

• We want to reason about execution trees
> tree node = snap shot of the program’s state

• Reasoning consists of two layers
> defining predicates on the program states (control points, variable

values)
> expressing temporal relationships between those predicates

[L3, (mt3, vr3), ….]

Explored State-Space (computation tree)

Conceptual View

[L1, (mt1, vr1), ….]

[L2, (mt2, vr2), ….]

[L5, (mt5, vr5), ….]

L1 L4

L2

L3

L5

?b1

?err

?b0

?b1 !a1

?a1
?b0

?err

!a0

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 32

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AG p …along All paths p holds Globally

EG p …there Exists a path where p holds Globally

AF p …along All paths p holds at some state in the Future

EF p …there Exists a path where p holds at some state in the Future

path quantifier

temporal operator

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 33

Computational Tree Logic (CTL)

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| AG Φ | EG Φ | AF Φ | EF Φ …path/temporal operators
| AX Φ | EX Φ | A[Φ U Φ] | E[Φ U Φ]

Syntax

Semantic Intuition

AX p …along All paths, p holds in the neXt state

EX p …there Exists a path where p holds in the neXt state

A[p U q] …along All paths, p holds Until q holds

E[p U q] …there Exists a path where p holds Until q holds

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 34

Computation Tree Logic

p

p

p

p p p

p

p

p

p

p

p p p p

AG p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 35

Computation Tree Logic

EG p p

p

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 36

Computation Tree Logic

AF p

p

p p p

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 37

Computation Tree Logic

EF p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 38

Computation Tree Logic

AX p

p

p p

p

p p

p

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 39

Computation Tree Logic

EX p

p

p

p

p p p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 40

Computation Tree Logic

A[p U q]
p

p

p

q q p

p

q

q

p

p

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 41

Computation Tree Logic

E[p U q]
p

p

q q p

p

q

q

q

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 42

Example CTL Specifications

• For any state, a request (for some resource) will eventually be
acknowledged

AG(requested -> AF acknowledged)

• From any state, it is possible to get to a restart state

AG(EF restart)

• An upwards travelling elevator at the second floor does not
changes its direction when it has passengers waiting to go to
the fifth floor

AG((floor=2 && direction=up && button5pressed)
-> A[direction=up U floor=5])

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 43

CTL Notes

• Invented by E. Clarke and E. A. Emerson (early
1980’s)

• Specification language for Symbolic Model Verifier
(SMV) model-checker

• SMV is a symbolic model-checker instead of an
explicit-state model-checker

• Symbolic model-checking uses Binary Decision
Diagrams (BDDs) to represent boolean functions
(both transition system and specification

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 44

Linear Temporal Logic

Restrict path quantification to “ALL” (no “EXISTS”)

Reason in terms of linear traces instead of branching trees

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 45

Linear Temporal Logic (LTL)

Semantic Intuition

[]Φ …always Φ

<>Φ …eventually Φ

Φ U Γ …Φ until Γ

Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ

Φ Φ

Φ Φ Φ Φ Φ Φ Γ Φ Γ

Φ ::= P …primitive propositions
| !Φ | Φ && Φ | Φ || Φ | Φ -> Φ …propositional connectives
| []Φ | <>Φ | Φ U Φ | X Φ …temporal operators

Syntax

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 46

LTL Notes

• Invented by Prior (1960’s), and first use to reason
about concurrent systems by A. Pnueli, Z. Manna,
etc.

• LTL model-checkers are usually explicit-state
checkers due to connection between LTL and
automata theory

• Most popular LTL-based checker is Spin
(G. Holzman)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 47

Comparing LTL and CTL

CTL LTL

CTL*

• CTL is not strictly more expression than LTL (and vice versa)
• CTL* invented by Emerson and Halpern in 1986 to unify CTL

and LTL
• We believe that almost all properties that one wants to express about

software lie in intersection of LTL and CTL

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 48

Motivation for
Specification Patterns

• Temporal properties are not always easy to write
• Clearly many specifications can be captured in both CTL and

LTL

LTL: [](P -> <>Q) CTL: AG(P -> AF Q)

Example: action Q must respond to action P

• Capure the experience base of expert designers
• Transfer that experience between practictioners.

We use specification patterns to:

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 49

Pattern Hierarchy

Property Patterns

Occurrence Order

Absence
Universality

Bounded Existence Precedence

Response Chain
Precedence

Chain
ResponseExistence

Classification

• Occurrence Patterns:
> require states/events to occur or not to occur

• Order Patterns
> constrain the order of states/events

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 50

Occurrence Patterns

• Absence: A given state/event does not occur within a scope
• Existence: A given state/event must occur within a scope
• Bounded Existence: A given state/event must occur k times

within a scope
> variants: at least k times in scope, at most k times in scope

• Universality: A given state/event must occur throughout a scope

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 51

Order Patterns

• Precedence: A state/event P must always be preceded by a
state/event Q within a scope

• Response: A state/event P must always be followed a
state/event Q within a scope

• Chain Precedence: A sequence of state/events P1, …, Pn must
always be preceded by a sequence of states/events Q1, …, Qm
within a scope

• Chain Response: A sequence of state/events P1, …, Pn must
always be followed by a sequence of states/events Q1, …, Qm
within a scope

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 52

Pattern Scopes

Global

Before Q

After Q

Between Q and R

After Q and R

State sequence Q R Q Q R Q

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 53

The Response Pattern

To describe cause-effect relationships between a pair of events/states. An
occurrence of the first, the cause, must be followed by an occurrence of the
second, the effect. Also known as Follows and Leads-to.

Intent

Mappings: In these mappings, P is the cause and S is the effect

[](P -> <>S)

<>R -> (P -> (!R U (S & !R))) U R

[](Q -> [](P -> <>S))

[]((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

[](Q & !R -> ((P -> (!R U (S & !R))) W R)

Globally:

Before R:

After Q:

Between Q and R:

After Q until R:

LTL:

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 54

The Response Pattern (continued)

Mappings: In these mappings, P is the cause and S is the effect

AG(P -> AF(S))Globally:

A[((P -> A[!R U (S & !R)]) | AG(!R)) W R]

A[!Q W (Q & AG(P -> AF(S))]

Before R:

After Q:

AG(Q & !R -> A[((P -> A[!R U (S & !R)]) | AG(!R)) W R])Between Q and R:

AG(Q & !R -> A[(P -> A[!R U (S & !R)]) W R])After Q until R:

CTL:

Examples and Known Uses:
Response properties occur quite commonly in specifications of concurrent systems.
Perhaps the most common example is in describing a requirement that a resource
must be granted after it is requested.

Relationships
Note that a Response property is like a converse of a Precedence property.
Precedence says that some cause precedes each effect, and...

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 55

Specify Patterns in Bandera

The Bandera Pattern Library is populated by writing pattern macros:

pattern {
name = “Response”
scope = “Globally”
parameters = {P, S}
format = “{P} leads to {S} globally”
ltl = “[]({P} –> <>{S})”
ctl = “AG({P} –> AF({S}))”

}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 56

Evaluation

• 555 TL specs collected from at least 35 different sources
• 511 (92%) matched one of the patterns
• Of the matches...

> Response: 245 (48%)
> Universality: 119 (23%)
> Absence: 85 (17%)

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 57

Questions

• Do patterns facilitate the learning of specification formalisms like

CTL and LTL?
• Do patterns allow specifications to be written more quickly?
• Are the specifications generated from patterns more likely to be

correct?
• Does the use of the pattern system lead people to write more

expressive specifications?

Based on anecdotal evidence, we believe the answer to each of these
questions is “yes”

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 58

For more information...

http://www.cis.ksu.edu/santos/spec-patterns
• Pattern web pages and papers

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 59

Property Specifications - Lecture 2

Assertions
Basics
JML

Verification Conditions,
Hoare Logics,

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 60

Assertations/Specifications

Assertions/Specifications
Precise, formal specifications
concerning the behavior of some unit of
code
Usually written in a language separate
from programming language.
Used for documentation, verification,
runtime monitoring, testing

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 61

Assertions - Types

Invariants (from Wikipedia) - A predicate that will always keep its truth
value throughout a specific sequence of operations, is called (an)
invariant to that sequence.

State Invariants

Loop Invariants

Pre-conditions/Post-Conditions - Pre- and post-conditions are
constraints that define a contract that an implementation of the operation
has to fulfill. A precondition must hold when an operation is called, a
postcondition must be true when the operation returns.

-

http://en.wikipedia.org/wiki/Predicate
http://en.wikipedia.org/wiki/Operation_%28mathematics%29

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 62

Invariants

• Definition
> An invariant is a property that is always true of an

object’s state (when control is not inside the object’s
methods).

• Invariants allow you to define:
> Acceptable states of an object, and
> Consistency of an object’s state.

//@ public invariant !name.equals(“”) && weight >= 0;

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 63

Pre and Postconditions

• Definition
> A method or function precondition says what must be

true to call it.
> A method or function normal postcondition says what

is true when it returns normally (i.e., without throwing
an exception).

> A method or function exceptional postcondition says
what is true when a method throws an exception.

//@ signals (IllegalArgumentException e) x < 0;

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 64

Relational Model of Methods

• Can think of a method as a relation:
Inputs ↔ Outputs

Input Output

100 10
-10

…

…
…

…

0 0
postcondition

precondition

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 65

Assertions – How Used

Program annotated with invariants,
pre/post-conditions

Verification
condition
generator

Source to
source
Compiler

Test
generation
compiler

Theorem
Prover

Runtime
Monitor

Testing
Environment

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 66

Relationship to Temporal Logic

Temporal logic predicates are same as
assertion/specfication predicates.

Assertion specifications are local with
respect to some code unit (composed
by Hoare logic rules)

Temporal logic predicates apply to states
during execution of some code unit and
are defined on paths or structures of
paths

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 67

Relationship to Temporal Logic

Temporal logic properties for code units
can be composed into properties for
larger code units

System level temporal logic can be
decomposed into component level
properties.

Component level temporal logic
properties can be translated into
invariants, preconditions and
postconditions

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 68

Relationship to Temporal Logic

System Level
Temporal Logic
Properties

Environment
Specifications

Temporal
Logic
Properties for
Components

Invariants,
Preconditions and
Postconditions for
Components

Automatable?

Automatable

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 69

Temporal Logic Composition

Component A

Properties and
environment

Component B

Properties and
environment

Component C

Properties and
environment

Component D

Properties and
environment

Component E

Properties and
environment

Component E

Properties and
environment

System

Properties and
Environment

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 70

Decomposition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

Automatable?

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 71

Composition of I/P/P Specifications

System Level Preconditions == Environment Specifications

Component Level Preconditions

Component Level Invariants and Postconditions

??

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 72

Composition of I/P/P Specifications

Component A

Invariants, P/P
Conditions

Component B

Invariants, P/P
Conditions

Component C

Invariants, P/P
Conditions

Component D

Invariants, P/P
Conditions

Component E

Invariants, P/P
Conditions

Component E

Invariants, P/P
Conditions

System

Invariants, P/P
Conditions

Hoare Rules for
composition
should apply.
Automatable??

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 73

Tools for JML-Based Verification

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 74

Java Modeling Language

Ilustrate Assertions with Java Modeling
Language

> Hoare-style (Contracts).
> Method pre- and postconditions.
> Invariants.

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 75

Java Modeling Language

• JML Annotations/Assertions
• Top-level in classes and interfaces:

> invariant
> spec_public
> nullable

• For methods and constructors:
> requires
> ensures
> assignable
> pure

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 76

Example JML

public class ArrayOps {
private /*@ spec_public @*/ Object[] a;
//@ public invariant 0 < a.length;
/*@ requires 0 < arr.length;
@ ensures this.a == arr;
@*/

public void init(Object[] arr) {
this.a = arr;
}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 77

spec_public, nullable, and invariant

• spec_public
> Public visibility.
> Only public for specification purposes.

• nullable
> field (and array elements) may be null.
> Default is non_null.

• invariant must be:
> True at end of constructor.
> Preserved by each method.

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 78

requires and ensures

• requires clause:
> Precondition.
> Obligation on callers, after parameter

passing.
> Assumed by implementor.

• ensures clause:
> Postcondition.
> Obligation on implementor, at return.
> Assumed by caller.

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 79

assignable and pure

• assignable
> Frame axiom.
> Locations (fields) in pre-state.
> New object fields not covered.
> Mostly checked statically.
> Synonyms: modifies, modifiable

• pure
> No side effects.
> Implies assignable \nothing
> Allows method’s use in specifications.

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 80

Redundant Clauses

• ensures_redundantly
> Alerts reader.
> States something to prove.
> Must be implied by:

» ensures clauses,
» assignable clause,
» invariant, and
» JML semantics.

• Also requires_redundantly, etc.

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 81

Formal Specifications

• Formal assertions are written as Java
expressions, but:

> Can’t have side effects
» No use of =, ++, --, etc., and
» Can only call pure methods.

> Can use some extensions to Java:

Syntax Meaning

\result result of method call
a ==> b a implies b
a <== b b implies a
a <==> b a iff b
a <=!=> b !(a <==> b)
\old(E) value of E in the pre-state

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 82

BoundedStack’s Data and Invariant

BoundedStack’s Data and Invariant
public class BoundedStack {
private /*@ spec_public nullable @*/
Object[] elems;
private /*@ spec_public @*/ int size = 0;
//@ public invariant 0 <= size;
/*@ public invariant elems != null
@ && (\forall int i;
@ size <= i && i < elems.length;
@ elems[i] == null);
@*/

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 83

BoundedStack’s Constructor

BoundedStack’s Constructor
/*@ requires 0 < n;
@ assignable elems;
@ ensures elems.length == n;
@*/
public BoundedStack(int n) {
elems = new Object[n];
}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 84

BoundedStack’s push Method

BoundedStack’s push Method
/*@ requires size < elems.length1;
@ assignable elems[size], size;
@ ensures size == \old(size+1);
@ ensures elems[size1] == x;
@ ensures_redundantly
@ (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void push(Object x) {
elems[size] = x;
size++;
}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 85

BoundedStack’s pop Method

BoundedStack’s pop Method
/*@ requires 0 < size;
@ assignable size, elems[size1];
@ ensures size == \old(size1);
@ ensures_redundantly
@ elems[size] == null
@ && (\forall int i; 0 <= i && i < size1;
@ elems[i] == \old(elems[i]));
@*/
public void pop() {
size;
elems[size] = null;
}

© Garlan, 2001Models of Software Systems Lecture 26 --Temporal Logic 2 - 86

BoundedStack’s top Method

BoundedStack’s top Method
/*@ requires 0 < size;
@ assignable \nothing;
@ ensures \result == elems[size1];
@*/
public /*@ pure @*/ Object top() {
return elems[size1];
}
}

	Why to care about specification languages. Reasoning About Executions�
	Property Specifications
	Property Specifications�State of the Art
	Unified Property Specification Language
	Equivalence/Translation Among Specification Languages
	Temporal Logics – Reasoning about Executions
	Reasoning about Executions
	Branching Time Logic
	Notation
	Paths versus States
	Examples
	Examples
	More Examples
	Other Operators for States
	More Examples
	CTL
	Traffic Controller
	Traffic Controller
	Safety Property
	Liveness properties
	Efficiency
	Fairness
	Yet More Temporal Logics
	Reasoning about Executions
	Computational Tree Logic (CTL)
	Computational Tree Logic (CTL)
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Computation Tree Logic
	Example CTL Specifications
	CTL Notes
	Linear Temporal Logic
	Linear Temporal Logic (LTL)
	LTL Notes
	Comparing LTL and CTL
	Motivation for �Specification Patterns
	Pattern Hierarchy
	Occurrence Patterns
	Order Patterns
	Pattern Scopes
	The Response Pattern
	The Response Pattern (continued)
	Specify Patterns in Bandera
	Evaluation
	Questions
	For more information...
	Property Specifications - Lecture 2
	Assertations/Specifications
	Assertions - Types
	Invariants
	Pre and Postconditions
	Relational Model of Methods
	Assertions – How Used
	Relationship to Temporal Logic
	Relationship to Temporal Logic
	Relationship to Temporal Logic
	Temporal Logic Composition
	Decomposition of I/P/P Specifications
	Composition of I/P/P Specifications
	Composition of I/P/P Specifications
	Tools for JML-Based Verification
	Java Modeling Language
	Java Modeling Language
	Example JML
	spec_public, nullable, and invariant
	requires and ensures�
	assignable and pure�
	Redundant Clauses
	Formal Specifications
	BoundedStack’s Data and Invariant�
	BoundedStack’s Constructor
	BoundedStack’s push Method
	BoundedStack’s pop Method
	BoundedStack’s top Method

