
object’s attribute name is equal to value passed in
@"attributeName == %@"

pass a string variable to %K, it will be represented as a
keypath

@"%K == %@"

templated for predicate, checks if the value of key name is
in $NAME_LIST. Uses predicateWithSubstitutionVariables

@"%name IN $NAME_LIST"

checks if the constant value ‘name’ is in $NAME_LIST. Uses
predicateWithSubstitutionVariables

@"'name' IN $NAME_LIST"

Format String Summary

predicateWithFormat: @"title == %@", @"minecraft"

predicateWithFormat: @"expenses BETWEEN {200, 400}"

Left hand expression is equal to right hand expression=,==

Left hand expression is greater than or equal to right
hand expression

>=,=>

Left hand expression is less than or equal to right hand
expression

<=,=<

Left hand expression is greater than right hand expression>

Left hand expression is less than right hand expression<

Left hand expression is not equal to right hand expression!=,<>

Left hand expression must appear in collection specified by
right hand expression. i.e. name IN {‘Milk’, ‘Eggs’, ‘Bread’}

IN

Left hand expression is between or equal to right hand
expression. i.e. 1 Between {0, 33}

BETWEEN
Left hand expression is between or equal to right hand
expression. i.e. 1 Between {0, 33}

BETWEEN

Basic Comparisons

predicateWithFormat: @"name BEGINS WITH 'm'"

Left hand expression begins with the right hand
expression

BEGINS WITH

Left hand expression contains the right hand
expressionCONTAINS

Left hand expression ends with the right hand
expressionENDSWITH

Left hand expression equals the right hand
expression using a regex - style comparisonMATCHES

Left hand expression equals the right hand
expression: ? and * are allowed as wildcard
characters, where ? matches 1 character and *
matches 0 or more characters

LIKE

String Comparison Operators

Logical ANDAND,&&

Logical OROR,||

Logical NOTNOT,!

Basic Compound Predicates

predicateWithFormat: @"age == 40 AND price > 67"

returns objects where ANY or SOME of the predicate
results are true.ANY,SOME

returns objects where ALL of the predicate results are
true.ALL

returns objects where NONE of the predicate results
are true.NONE

predicateWithFormat:@"ALL expenses > 1000"

Aggregate Operators

returns the average of the objects in the
collection as an NSNumber

@avg

returns the number of objects in a collection as
an NSNumber

@count

returns the minimum value of the objects in the
collection as an NSNumber

@min

returns the maximum value of the objects in the
collection as an NSNumber@max

returns the sum of the objects in the collection
based on the property

@sum

Keypath collection queries

predicateWithFormat:
 @"expenses.@avg.doubleValue < 200"

Iterates through the collection to return qualifying queries

Collection - array or set of objects

variableName - variable that represents an iterated object

predicateFormat - predicate that runs using the
variableName

Assume this was run on an array of projects. It will return
projects with tasks that were not completed by user Alex

predicateWithFormat: @"SUBQUERY(tasks, $task,
$task.completionDate != nil AND $task.user = 'Alex')
.@count > 0"

SUBQUERY(collection, variableName, predicateFormat)

Subqueries

NSPredicate Cheatsheet
Presented by Realm: a mobile database that replaces
Core Data and SQLite. Learn more at http://realm.io

supported by Realm

http://realm.io

CFStringTransform normalizes strings if diacritic insensitive isn’t
enough. For example you could turn Japanese characters into a
Latin alphabetic representation. It’s extremely powerful with a lot
of methods that you can see here: http://nshipster.com/
cfstringtransform/

Make sure your columns are indexed to improve performance of
using IN operators

[c] case insensitive: lower & uppercase values are treated the
same
[d] diacritic insensitive: special characters treated as the base
character
predicateWithFormat: @"name CONTAINS[c] 'f'"

Quick tips

Using SELF
When using a predicate on an array, SELF refers to each object in
the array. Here’s an example: Imagine you are a landlord figuring
out which apartments have to pay their water bill. If you have a
list of all the city wide apartment’s that still need to pay called
addressesThatOweWaterBill, we can check that against our
owned apartments, myApartmentAddresses.

NSPredicate *billingPredicate = [NSPredicate
predicateWithFormat: @"SELF IN %@",
addressesThatOweWaterBill]

NSArray *myApartmentsThatOweWaterBill =
[myApartmentAddresses
filteredArrayUsingPredicate:billingPredicate]

* matches 0 or more characters. For example:
Let’s say we have an array of names we want to filter

LIKE wildcard match with * and ?

Will return “Silva”, “silva”, “Silvy”

@["Sarah", "Silva", "silva", "Silvy", "Silvia", Si*"]

[NSPredicate predicateWithFormat: @"SELF ==
%@", "Sarah"]

Will return “Sarah”

[NSPredicate predicateWithFormat: @"SELF LIKE[c] %@",
"Silv?"]

[NSPredicate predicateWithFormat: @"SELF LIKE[c]
%@", "Si*"]

Will return “Silva”, “silva”, “Silvy”, “Silvia”, “Si*”
? matches 1 character only

How Subqueries work
SUBQUERY(collection, variableName, predicate)

A subquery takes a collection then iterates through each object
(as variableName) checking the predicate against that object
(variableName). It works well if you have a collection (A) objects,
and each object has a collection (B) other objects. If you’re trying
to filter A based on 2 or more varying attributes of B.

SUBQUERY(…) returns an array. We need to check if its count > 0
to return the true or false the predicate expects.

[NSPredicate predicateWithFormat: @"SUBQUERY(tasks,
$task, $task.completionDate != nil AND $task.user =
'Alex').@count > 0"]

Keypath collection queries
Keypath collection queries work best when you work with a lot of
numbers. Being able to easily call the min or max, adding things
up, and then filtering results can be much simpler when you only
have to append an extra parameter. By having an array of
expenses, you can easily do a quick check on if something is
below or above a range of allowed expenses.
predicateWithFormat: @"expenses.@avg.doubleValue < 200"

Using OR OR OR instead of IN, results in repeatable code and can
be less efficient

When using REGEX and Matches, make sure they are the last part
of your predicate statment so it does less work.

Using stringWithFormat: to build predicates, prone to have weird
non escaped diacritic characters and artifacts like an apostrophe.
Use NSPredicate predicateWithFormat instead.

Common mistakes

Tips, Tricks, & Examples

http://nshipster.com/cfstringtransform/
http://nshipster.com/cfstringtransform/

