Academy for iOS App Development
Dr. William C. Bulko

View Frame and Bounds

* CGPoint: a structure that contains a point in a two-
dimensional coordinate system.

EX. let pt = CGPoint (x:3, y:-5)
" CGSize: a structure that contains width and height values.

EX. let mySize = CGSize (width:10,
height:5)

= CGRect: a structure that contains the location and dimensions
of a rectangle.

EX. let rect = CGRect(x: 3, y: 5,
width: 10, height: 5)

Oor let rect = CGRect(origin:pt,
size:mySize)

» Frame and Bounds are fundamental concepts for all of
the elements in the UI.

= Each view has both a frame and a bounds structure. The
structure is a CGRect and consists of 4 floats.

— The frame of an UlView is the rectangle, expressed
as a location (x,y) and size (width,height) relative to
the superview it is contained within.

— The bounds of an UlView is the rectangle, expressed
as a location (x,y) and size (width,height) relative to
its own coordinate system (0,0).

Frame and Bounds

Frame
origin = (0,0)
width = 219
height = 300

=

N

Bounds
origin = (0,0)
width = 219
height = 300

Frame and Bounds

z’gf J
c Z{—\\
al
Frame
origin = (71,50)
width = 219

height = 300

Bounds

origin

Sy

N\
i

4
<

= (0,0)

width = 219

height

= 300

Academy for iOS App Development
Dr. William C. Bulko

Scroll Views

= Scroll Views provide a way to present content larger than a
single screen.

— Critical for phones since they have limited screen real estate
— Also helpful for iPads

= Scroll Views provide a way for moving within the content to
view various parts of it.

To implement scrolling:
» Create a UIScrollview and define its properties

= Make the UIScrollVview a subview of the VC’s view

* Make the view you want scrollable a subview of the
UIScrollView.

Academy for iOS App Development
Dr. William C. Bulko

Gesture Recognizers

There are 4 general types of Ul events in iOS:

Touch events: the most common

Motion events

Remote-control events: allow a responder object to receive
commands from an external accessory or headset (usually to
manage audio and video)

Press events: represent interactions with a game controller,
AppleTV remote, or other device that has physical buttons

Gestures refer to touches and touch events.
» Central to the modern smart phone experience
* A core built-in capability in iOS

A touch is an instance of the user putting a finger on the screen.
The OS and the hardware work together to know when a finger
touches the screen, where it is, when it moves, and when it is no

longer touching the screen.

Its location at any point in time is reduced to a single appropriate
point.

Why are they important?

* They allow us to interact more naturally and intuitively with the
application

* It is a significant paradigm shift to how humans interact with
computers: analogous to what happened when people were first
provided GUIs to interact with computers

Gesture recognizers are high-level mechanisms provided by iOS
that takes care of the nitty-gritty of touch events, and makes it very
easy to respond to a set of common touch events/sequences.

* They handle touches and movements of one or more fingers that
happen on a specific area of the screen

* They are objects derived from the abstract UlGestureRecognizer
class that are related to a view, and monitor for a predefined
gesture made on that view

* There are some predefined subclasses which deal with specific
(common) kinds of gestures

« They all perform an action once a valid gesture is detected.

Without gesture recognizers, you would be writing pages of code to
handle what takes only a few lines of code with gesture

recognizers.

You can set up gesture recognizers in IB or in code.
« A view can contain more than one gesture recognizer

* They are contained in a UlView property (an array) named
gestureRecognizers

However, just one gesture can occur at any given point in time.

There are two types of gesture recognizers:

« Discrete: manage a single event; for example, touch to select
an object

« Continuous: manage a series of events; for example, dragging
an object on the screen

Predefined gesture recognizer classes:

UITapGestureRecognizer (discrete)
UISwipeGestureRecognizer (discrete)
UIPanGestureRecognizer (continuous)
UIPinchGestureRecognizer (continuous)
UIRotationGestureRecognizer (continuous)
UILongPressGestureRecognizer (continuous)

UIScreenEdgePanGestureRecognizer (continuous)

In 1B, identify the object that you want to manipulate on the

storyboard. Drag a Gesture Recognizer object on top of the
target object.

In the Swift file, write a function to handle the gesture.

In IB, ctrl-drag the Gesture Recognizer object to the View
Controller. Choose the name of the function you wrote.

Click on the target object and go to the Attribute
Inspector. Make sure "User Interface Enabled" is clicked on.

Create a Gesture Recognizer using one of the functions listed

on the previous chart.

let tapRecognizer =
UlTapGestureRecognizer (target: self, action:
#selector (handleTap (recognizer:)))

Set up any properties for the Gesture Recognizer that you may
want.

Associate the Gesture Recognizer with the target object.
targetObject.addTapRecognizer (tapRecognizer)

In the Swift file, write a function to handle the gesture.
@IBAction func handleTap (recognizer:
UlTapGestureRecognizer) {
<code>

Academy for iOS App Development
Dr. William C. Bulko

Camera

Starting with the iOS 8 SDK, you can get access to the

camera device, camera roll and photo library through the
UIImagePickerController class.

This allows photos and videos to be taken from within an
application and for existing photos and videos to be

presented to the user for selection.

The UIImagePickerController is a view controller that

gets presented modally (meaning as a popover). When we
select or cancel the picker, it runs the delegate, where we
handle the case and dismiss the modal.

The ultimate purpose of the UIImagePickerController
class is to provide applications with either a photo or video. |t
achieves this by providing the user with access to the
camera, camera roll or photo library on the device.

In the case of the camera, the user is able to either
take a photo or record a video depending on the capabilities

of the device and the application’s configuration of the
UIImagePickerController object.

* sourceTlype
UIImagePickerControllerSourceType
One of

.camera
.photolLibrary
.savedPhotosAlbum

« mediaTypes . array of strings
kUTTypeImage (image)
kUTTypeMovie (video)

e allowsEditing : Boolean
allow changes before the image is passed back to

the application

Optionally, check to make sure you have access to the

camera / camera roll / photo library using the
isSourceTypeAvailable(:) class method

Optionally, check to make sure the media type you want to
use is available by using the
availlableMediaTypes (for:) class method

Create an instance of UIImagePickerController and
set up its parameters.

|ldentify a UIImagePickerControllerDelegate.

Present the image picker using present () .

Example code for UIImagePickerController

// create instance
let imagePicker = UIImagePickerController ()

// identify delegate
imagePicker.delegate = self

// set up properties

imagePicker.sourceType =
UlImagePickerControllerSourceType.photoLibrary

imagePicker.allowsEditing = false

// present the instance
present (1magePicker, animated:true, completion: nil)

UlImagePickerController delegate methods

As part of the UIImagePickerController delegate, you need
to implement these protocol methods:

// Indicate that the user selected a photo/video
func imagePickerController (

(UIImagePickerController,

didFinishPickingMediaWithInfo:
[String:Any])

// Indicate that the user cancelled the pick
func imagePickerControllerDidCancel
(UIImagePickerController)

