
Core Motion

Academy for iOS App Development

Dr. William C. Bulko

Core Motion is a framework that allows your application to receive
motion data from device hardware.

For an iOS developer, this means you can create applications that
can observe and respond to the motion and orientation of an iOS
device.

Important note:
You can only test or use the functionality of Core Motion on an
actual device. The simulator does not have any facilities for
reproducing physical motion for your app.

Core Motion

Accelerometer
• Measures acceleration in all three dimensions

Gyroscope
• Calculates orientation and rotation in all three dimensions

Magnetometer
• Measures magnetic forces

Hardware Elements of Core Motion

Coordinate System

+x is towards the right of
 the screen

+y is towards the top of
 the screen

+z is towards the user
 when the screen is
 faceup

Rotations Within the Coordinate System

Pitch: rotation around
the x axis

Roll: rotation around
the y axis

Yaw: rotation around
the z axis

A CMDeviceMotion object contains the following objects as properties:
• attitude: CMAttitude

• Returns the orientation of the device
• Can access the data in any of 3 representations

• rotationRate: CMRotationRate
• Returns the rotation rate of the device for devices with a gyro
• x, y, z values in radians per second

• gravity: CMAcceleration
• Returns the gravity vector expressed in the device's reference

frame
• x, y, z values in g’s (gravitational force)

• userAcceleration: CMAcceleration
• Returns the acceleration that the user is giving to the device
• x, y, z values in g’s (gravitational force)

• magneticField: CMCalibratedMagneticField
• Returns the magnetic field vector with respect to the device for

devices with a magnetometer

CMDeviceMotion

CMAttitude contains three different representations of the
device’s orientation:

• Euler angles (pitch, roll, yaw)
• Rotation matrices
• Quaternions

Each of these is in relation to a given reference frame.

CMAttitude

Euler Angles are the most readily understood of the 3
representations, as they simply describe
rotation around each of the axes.

Euler Angles

• Pitch - is rotation around the
x-axis, increasing as the
device tilts toward you,
decreasing as it tilts away

• Roll - is rotation around the y-
axis, decreasing as the device
rotates to the left, increasing to
the right

• Yaw - is rotation around the z-
axis, decreasing clockwise,
increasing counter-clockwise

CMMotionManager provides a consistent interface for each of
the four motion data types:

• Attitude (rotation)

• Acceleration

• Gravity

• Magnetic Field

Although you can access data for each of these motion types
individually, it’s simplest to create a CMMotionManager
instance to access all of the above.

CMMotionManager

deviceMotion.gravity.x
deviceMotion.gravity.y
deviceMotion.gravity.z

deviceMotion.userAcceleration.x
deviceMotion.userAcceleration.y
deviceMotion.userAcceleration.z

deviceMotion.attitude.pitch
deviceMotion.attitude.roll
deviceMotion.attitude.yaw

deviceMotion.magneticField.field.x
deviceMotion.magneticField.field.y
deviceMotion.magneticField.field.z

If deviceMotion is a CMDeviceMotion object:

1. Create a motion manager:

In your ViewController class:

Using Core Motion in Your App

2. Start receiving updates at the desired frequency:

Using Core Motion in Your App

override func viewDidLoad() {
 super.viewDidLoad()

 motionManager.deviceMotionUpdateInterval = 0.1

 motionManager.startDeviceMotionUpdates(to:
 OperationQueue.current!) {
 (deviceMotion, error) -> Void in

 if(error == nil) { // you write these methods
 self.handleUpdate(deviceMotion: deviceMotion!)
 } else {
 self.handleError()
 }
 }
}

3. Write code specifying what you want to happen at each
update

Using Core Motion in Your App

func handleUpdate(deviceMotion:CMDeviceMotion) {

 let acceleration = deviceMotion.userAcceleration
 let xAcc = acceleration.x
 let yAcc = acceleration.y
 let zAcc = acceleration.z

 print("Acceleration in the x direction: \(xAcc) ")
 print("Acceleration in the y direction: \(yAcc) ")
 print("Acceleration in the z direction: \(zAcc) ")
}

func handleError() {
 print("An error occurred")

Alert Views

Academy for iOS App Development

Dr. William C. Bulko

Alert Views

§ Alert views are an easy way to display concise and
informative information to the user.

§ The kind of UI that is displayed in a UI Alert Controller is
specified by the controller’s preferred style when
creating the controller

§ You customize the UI by identifying what buttons or text
fields you want to include

Key classes

The primary classes used in an Alert are:

§ UIAlertController
is a VC that displays an alert message to the user

§ UIAlertAction
represents an action that can be taken when tapping a
button in an alert

You create a UIAlertController object first, and
then add as many UIAlertAction objects as needed,
typically based on the number of buttons defined.

UIAlertController Style Settings

Alert: a UI that displays over
and grays out the current UI.

§ “Trust” and “Don’t Trust” are
the two UIAlertAction
objects.

UIAlertController Style Settings

Action Sheet: a UI that slides
up from the bottom of the
screen and grays out the
current UI.

§ In this example, there are five
UIAlertAction
objects.

UIAlertAction

§ A UIAlertAction represents an action that can be
taken when tapping a button in an alert

§ You use this class to configure information about a
single action, including
– The title to display in the button
– Any style information
– A handler to execute when the user taps the button

UIAlertAction Style Settings

§ Default:
– Apply the default style to the action’s button
– Normal text

§ Cancel:
– Apply a style that indicate the action cancels the operation and

leaves things unchanged
– Can only have one of these. (App crashes if you define more

than one for a given button)
– Bold text

§ Destructive:
– Apply a style that indicates the action might change or delete

data
– Red text color

Calendar and EventKit

Academy for iOS App Development

Dr. William C. Bulko

Event Kit

Event Kit is a set of classes for accessing and manipulating a
user’s calendar events and reminders, which live in the Event
Store database on a device.

You can, among other things:
• Create a calendar
• Delete a calendar
• Get a list of calendars
• Get the attributes of a given calendar
• Create an event
• Modify an event
• Delete an event

Event Kit

At the heart of EventKit is the class EKEventStore.

An instance of EKEventStore provides access to an API for
performing read and write operations on the user’s calendars
and reminder lists.

 let eventStore = EKEventStore()

Event Kit Authorization

Your app must ask for permission to access the calendars
and/or reminders.
• Check to see if your app is authorized:
 authorizationStatus(
 for entityType: EKEntityType) ->
 EKAuthorizationStatus

entityType: either .event or .reminder

returns EKAuthorizationStatus:
 .authorized
 .denied
 .notDetermined
 .restricted

Event Kit

• If your app isn’t authorized, you must request access.
 requestAccess(
 to entityType: EKEntityType,
 completion: <completion handler>)

entityType: either .event or .reminder
completion: code to execute when the request completes.
• Your app is not blocked while the user decides.
• The completion handler executes regardless of what the

user’s choice was.

Note that the user can change the calendar access state at any
time. Consequently, include this code in viewWillAppear to
make sure that the current state of authorization is used each
time the user sees the application interface.

Event Kit

To use Event Kit:
• import EventKit

• Create an instance of EKEventStore
• Through the EKEventStore object:

• Verify that your app has permission to access the event
store

• Include handling if you don’t have access
• Read and write calendars / events from and to the event

store

Event Kit

To check to see if your app is authorized to access the event
store:

if (EKEventStore.authorizationStatus(for: .event) !=
 EKAuthorizationStatus.authorized) {
 < handle error >
} else {
 < do stuff >
}

Event Kit

If the status returned is Authorized, you can start reading and
writing from or to the Event Store.

If the status returned is NotDetermined (as in the first
execution), then ask the user for access to the calendars:

eventStore.requestAccess(to: .event,
 completion: {(accessGranted: Bool, error: NSError?) in

if accessGranted == true {
 <we can access the event store>
 } else {
 <help the user give you access>
 }

})

Event Kit

Once you’ve been given access to the calendars, you can get a
list of them:

eventStore.calendarsForEntityType(EKEntityType.Event)

This returns an array of EKCalendar objects.

Managing Calendars

Creating calendars:
• Create an EKCalendar object.
• Set various attributes.
• After saving, store the key associated with that calendar.

Deleting a calendar:
• Get the calendar to delete using the stored key.
• Remove the calendar.

Creating events:
• Get the calendar you want to add an event to.
• Create an EKEvent object.
• Set various attributes.
• Save.

Events

To create an event:

• create an instance of EKEvent for the appropriate
eventStore:

 let event = EKEvent(eventStore:eventStore)

• set the properties of the event:

 event.title = “UT vs. Oklahoma”
 event.startDate = Date(“2019-10-12”)
 event.calendar = calendarKey

