Academy for iOS App Development
Dr. William C. Bulko

Core Motion

Core Motion is a framework that allows your application to receive
motion data from device hardware.

For an iOS developer, this means you can create applications that
can observe and respond to the motion and orientation of an iOS
device.

Important note:

You can only test or use the functionality of Core Motion on an
actual device. The simulator does not have any facilities for
reproducing physical motion for your app.

Accelerometer
» Measures acceleration in all three dimensions

Gyroscope
e Calculates orientation and rotation in all three dimensions

Magnetometer
« Measures magnetic forces

Coordinate System

+X is towards the right of
the screen

+y is towards the top of
the screen

+z Is towards the user
when the screen is
faceup

vZ

+X

Rotations Within the Coordinate System

+Y

Pitch: rotation around
the x axis

Roll: rotation around

the y axis X \

Yaw: rotation around - <

the z axis %

+Z -

-
+

Z\ pitch

U/ +X

A CMDeviceMotion object contains the following objects as properties:

* attitude: CMAttitude
« Returns the orientation of the device
« Can access the data in any of 3 representations

rotationRate: CMRotationRate
« Returns the rotation rate of the device for devices with a gyro
* X, Y, zvalues in radians per second

gravity: CMAcceleration
« Returns the gravity vector expressed in the device's reference
frame
* X,Y, zvalues in g's (gravitational force)

* userAcceleration: CMAcceleration
« Returns the acceleration that the user is giving to the device
* X,Y, zvalues in g's (gravitational force)

magneticField: CMCalibratedMagneticField
« Returns the magnetic field vector with respect to the device for
devices with a magnetometer

CMAttitude contains three different representations of the
device’s orientation:

« Euler angles (pitch, roll, yaw)
* Rotation matrices
* Quaternions

Each of these is in relation to a given reference frame.

Euler Angles are the most readily understood of the 3
representations, as they simply describe
rotation around each of the axes. +

* Pitch - is rotation around the +
x-axis, increasing as the
device tilts toward you,
decreasing as it tilts away

/V'Z

* Roll - is rotation around the y- % =
axis, decreasing as the device \ |
rotates to the left, increasingto Q/‘N:Ch
the right 2

__/ +X

« Yaw - is rotation around the z-
axis, decreasing clockwise,
Increasing counter-clockwise

CMMotionManager provides a consistent interface for each of
the four motion data types:

« Attitude (rotation)
* Acceleration

« Gravity

« Magnetic Field

Although you can access data for each of these motion types
individually, it's simplest to create a CMMotionManager

instance to access all of the above.

deviceMotion.gravity.x
deviceMotion.gravity.y
deviceMotion.gravity.z

deviceMotion.userAcceleration.x
deviceMotion.userAcceleration.y
deviceMotion.userAcceleration.z

deviceMotion.attitude.pitch
deviceMotion.attitude.roll
deviceMotion.attitude.yaw

deviceMotion.magneticField.field.x
deviceMotion.magneticField.field.y
deviceMotion.magneticField.field.z

Using Core Motion in Your App

1. Create a motion manager:

In your ViewController class:

let motionManager = CMMotionManager()

2. Start receiving updates at the desired frequency:

override func viewDidLoad () {
super.viewDidLoad ()

motionManager.deviceMotionUpdateInterval = 0.1

motionManager.startDeviceMotionUpdates (to:
OperationQueue.current!) {

(deviceMotion, error) -> Void 1in

if (error == nil) { // you write these methods
self.handleUpdate (deviceMotion: deviceMotion!)

} else {
self.handleError ()

3. Write code specifying what you want to happen at each
update

func handleUpdate (deviceMotion:CMDeviceMotion) {

let acceleration = deviceMotion.userAcceleration
let xAcc = acceleration.x
let yAcc = acceleration.y
let zAcc = acceleration.z

print ("Acceleration in the x direction: \ (xAcc) ")
print ("Acceleration in the y direction: \ (yAcc) ")
print ("Acceleration in the z direction: \ (zAcc) ")

func handleError () {
print ("An error occurred")

Academy for iOS App Development
Dr. William C. Bulko

Alert Views

= Alert views are an easy way to display concise and
informative information to the user.

* The kind of Ul that is displayed in a Ul Alert Controller is
specified by the controller’s preferred style when

creating the controller

* You customize the Ul by identifying what buttons or text
fields you want to include

The primary classes used in an Alert are:

= UIAlertController
Is a VC that displays an alert message to the user

" UIAlertAction

represents an action that can be taken when tapping a
button in an alert

You create a UIAlertController object first, and
then add as many UIAlertAction objects as needed,
typically based on the number of buttons defined.

UIAlertController Style Settings

Alert. a Ul that displays over
and grays out the current Ul.

= “Trust” and “Don’t Trust” are
the two UIAlertAction

objects.

Trust This Computer?

Your settings and data will be
accessible from this computer when

Trust

connected.

Don’t Trust

UIAlertController Style Settings

Action Sheet: a Ul that slides
up from the bottom of the

screen and grays out the
current Ul.

* |n this example, there are five
UIAlertAction

objects.

Please Select

Open File

Download File
Send Link

Delete

Cancel

" A UIAlertAction represents an action that can be
taken when tapping a button in an alert

* You use this class to configure information about a
single action, including
— The title to display in the button
— Any style information
— A handler to execute when the user taps the button

= Default:

— Apply the default style to the action’s button
— Normal text

= Cancel.

— Apply a style that indicate the action cancels the operation and
leaves things unchanged

— Can only have one of these. (App crashes if you define more
than one for a given button)

— Bold text

= Destructive:

— Apply a style that indicates the action might change or delete
data

— Red text color

Academy for iOS App Development
Dr. William C. Bulko

Calendar and EventKit

Event Kit is a set of classes for accessing and manipulating a
user’s calendar events and reminders, which live in the Event
Store database on a device.

You can, among other things:
« Create a calendar
« Delete a calendar
« Get a list of calendars
« Get the attributes of a given calendar
* Create an event
* Modify an event
* Delete an event

At the heart of EventKit is the class EKEventStore.

An instance of EKEventStore provides access to an APl for

performing read and write operations on the user’s calendars
and reminder lists.

let eventStore = EKEventStore ()

Your app must ask for permission to access the calendars
and/or reminders.

« Check to see if your app is authorized:

authorizationStatus (
for entityType: EKEntityType) ->
EKAuthorizationStatus

entityType: either .event or .reminder

returns EKAuthorizationStatus:
.authorized
.denied
.notDetermined
.restricted

« If your app isn’t authorized, you must request access.

requestAccess (
to entityType: EKEntityType,
completion: <completion handler>)

entityType: either .event or .reminder
completion: code to execute when the request completes.

* Your app is not blocked while the user decides.

« The completion handler executes regardless of what the
user’s choice was.

Note that the user can change the calendar access state at any
time. Consequently, include this code in viewWillAppear to
make sure that the current state of authorization is used each
time the user sees the application interface.

To use Event Kit:
e Import EventKit
« Create an instance of EKEventStore
* Through the EKEventStore object:

 Verify that your app has permission to access the event
store

* Include handling if you don’t have access

 Read and write calendars / events from and to the event
store

To check to see if your app is authorized to access the event
store:

1f (EKEventStore.authorizationStatus(for: .event) !=

EKAuthorizationStatus.authorized) ({
< handle error >

} else {
< do stuff >

If the status returned is Authorized, you can start reading and
writing from or to the Event Store.

If the status returned is NotDetermined (as in the first
execution), then ask the user for access to the calendars:

eventStore.requestAccess (to: .event,
completion: { (accessGranted: Bool, error: NSError?) in

1f accessGranted == true {
<we can access the event store>
} else {

<help the user give you access>

}

Once you’ve been given access to the calendars, you can get a
list of them:

eventStore.calendarsForEntityType (EKEntityType.Event)

This returns an array of EKCalendar objects.

Creating calendars:

« Create an EKCalendar object.
« Set various attributes.
« After saving, store the key associated with that calendar.

Deleting a calendar:

« Get the calendar to delete using the stored key.
 Remove the calendar.

Creating events:
« (et the calendar you want to add an event to.
« Create an EKEvent object.

e Set various attributes.
e Save.

To create an event:

« create an instance of EKEvent for the appropriate
eventStore:

let event = EKEvent (eventStore:eventStore)

» set the properties of the event:

event.title = “UT wvs. Oklahoma”
event.startDate = Date (“2019-10-12")
event.calendar = calendarKey

