Academy for iOS App Development
Dr. William C. Bulko

2D Graphics

Vector Graphics

In vector graphics, a graphical object is defined using
geometric primitives such as points, lines, curves, and shapes
or polygons based on mathematical expressions.

This means when you want to draw a line, for example, you
define the starting and ending point of that line in a coordinate
space and let the rendering engine draw it.

Core Graphics is Apple’s drawing framework. It covers:

« declaration of basic geometric shapes, such as points, sizes,
vectors, and rectangles

 functions that render the pixels onto the screen

« everything in between

Example: CGRect: we saw this structure before when we
talked about a view’s frame and bounds. CG stands for “Core
Graphics”.

Core Graphics is a vector drawing framework.

|t was previously known as “Quartz” or “Quartz 2D”.

It was originally built on top of the open high-level API
OpenGL.

« As of iOS 9, it’s built on top of Apple’s low-level AP| Metal.

A graphics context serves as the “canvas” you're drawing on.

It identifies the current drawing destination (screen, printer,
file, etc.), the coordinate system, and any graphics
attributes associated with the destination.

It maintains global information and settings about the
current draw environment:

« current fill and stroke colors

* line width and pattern

 line cap and join (miter) styles
» alpha (transparency)

« antialiasing and blend mode
 shadows

 text attributes (font, size, etc.)

It acts like a buffer for accumulating subsequent drawing
operations.

In iIOS, each UlView has a graphics context, and all drawing
for the view renders into this context before being transferred
to the device’s hardware.

Two important methods associated with the UlView class:

draw ()

|t contains your custom drawing code.

setNeedsDisplay ()

« (Call this whenever you change something that affects
what’s drawn in draw (), like a view’s frame or

background color.
 |tcauses draw () to be called.

* The request to draw gets queued in the main queue.

draw () Is automatically called whenever:

* The view is new to the screen.
« Other views on top of it are moved.
« The view’s “hidden” property is changed.

* Your app explicitly calls the setNeedsDisplay ()
method on the view.

When a view’'s draw () method is executed, it renders the
view into the appropriate context. You can override draw ()
for custom rendering.

Never call draw () directly.

 If you need to update your view, call
setNeedsDisplay () on the view.

« setNeedsDisplay () does notitself call draw (), but it
flags the view as ‘dirty’, triggering a redraw using draw ()

on the next screen update cycle.

* Note that even if you call setNeedsDisplay () five
times in the same method, you'll only ever actually call
draw () once.

Order of draw () calls

Drawing order Result

Order matters when drawing
in Core Graphics! @ .

Pixels cannot be changed
once they're "painted”

Drawing order

You must draw over
existing pixels with new ‘ @
draw () commands

Whenever you want to do some custom drawing, all you have
to do is:

e Create aUIView subclass

(et the view’s current context:
let context = UIGraphicsGetCurrentContext ()

* Override the draw method and add your Core Graphics
drawing code to paint pixels into context

;o . . /‘:—_-‘-u-__'—“---A_‘_ P
A Bezier curve is a parametric ' "y

curve based on Bernstein
polynomials.

In vector graphics, Bézier P,
curves are used to model
smooth curves that can be
scaled indefinitely.

Ps

Cubic Bézier curve with four control =~
points

In iIOS, a Bézier path is an object of class UIRezierPath.

* They allow for custom geometric paths and drawing properties
within Core Graphics

« They can be defined as lines, ovals, rectangles, and arbitrary
freeform paths

« They are also used for clipping and intersection testing

Line segment:
path = UIBezierPath ()
path.move (to: CGPolnt.myPointl)
path.addLine (to: CGPolnt.myPoint?2)

Arc of a circle:
let path = UlIBezierPath (arcCenter: center,
radius: myRadius,
startAngle: anglel,
endAngle: angle2,
clockwise: true)

Then draw it:
path.stroke ()

Translate coordinate system origin to (tx, ty):

CGContextTranslateCTM(c:CGContext?,
tx:CGFloat, ty:CGFloat)

Scale coordinate system by sx and sy:

CGContextScaleCTM (c:CGContext?, sx:CGFloat,
sy:CGFloat)

Rotate coordinate system by angle (in radians):

CGContextRotateCTM (c:CGContext?
angle:CGFloat)

It's often beneficial to save the context before performing a
series of graphics operations, and to restore the context
afterwards.

« This isolates any changes in settings you may make
while performing the operations to only those operations.

 In particular, when performing transformations, this
preserves the context’'s coordinate system.

CGContextSaveGState (context)
CGContextRestoreGState (context)

These operations behave like a “push” and a “pop”. they
save and restore the context using a stack.

There are two attributes that enable views to be dynamically
updated in Interface Builder:

@QIBDesignable: Specifies that objects of a class declaration

should have their display refreshed
whenever the object is changed by the
user.

@IBInspectable: Specifies thatthere should be an interface

that allows the user to change values of
this object in Interface Builder.

The @ character is used in Swift to indicate an aftribute:
additional information to be given to the compiler.

