
2D Graphics

Academy for iOS App Development

Dr. William C. Bulko

Vector Graphics

• In vector graphics, a graphical object is defined using
geometric primitives such as points, lines, curves, and shapes
or polygons based on mathematical expressions.

• This means when you want to draw a line, for example, you
define the starting and ending point of that line in a coordinate
space and let the rendering engine draw it.

Core Graphics

Core Graphics is Apple’s drawing framework. It covers:
• declaration of basic geometric shapes, such as points, sizes,

vectors, and rectangles
• functions that render the pixels onto the screen
• everything in between

Example: CGRect: we saw this structure before when we
talked about a view’s frame and bounds. CG stands for “Core
Graphics”.

Core Graphics is a vector drawing framework.
• It was previously known as “Quartz” or “Quartz 2D”.
• It was originally built on top of the open high-level API

OpenGL.
• As of iOS 9, it’s built on top of Apple’s low-level API Metal.

Graphics Context

A graphics context serves as the “canvas” you’re drawing on.
• It identifies the current drawing destination (screen, printer,

file, etc.), the coordinate system, and any graphics
attributes associated with the destination.

• It maintains global information and settings about the
current draw environment:

• current fill and stroke colors
• line width and pattern
• line cap and join (miter) styles
• alpha (transparency)
• antialiasing and blend mode
• shadows
• text attributes (font, size, etc.)

Graphics Context (cont.)

• It acts like a buffer for accumulating subsequent drawing
operations.

In iOS, each UIView has a graphics context, and all drawing
for the view renders into this context before being transferred
to the device’s hardware.

UIView Methods

Two important methods associated with the UIView class:

draw()

• It contains your custom drawing code.

setNeedsDisplay()

• Call this whenever you change something that affects
what’s drawn in draw(), like a view’s frame or
background color.

• It causes draw() to be called.
• The request to draw gets queued in the main queue.

draw()

draw() is automatically called whenever:
• The view is new to the screen.
• Other views on top of it are moved.
• The view’s “hidden” property is changed.
• Your app explicitly calls the setNeedsDisplay()

method on the view.

When a view’s draw() method is executed, it renders the
view into the appropriate context. You can override draw()
for custom rendering.

setNeedsDisplay()

Never call draw() directly.

• If you need to update your view, call
setNeedsDisplay() on the view.

• setNeedsDisplay() does not itself call draw(), but it
flags the view as ‘dirty’, triggering a redraw using draw()
on the next screen update cycle.

• Note that even if you call setNeedsDisplay() five
times in the same method, you’ll only ever actually call
draw() once.

Order of draw() calls

Order matters when drawing
in Core Graphics!

Pixels cannot be changed
once they’re ”painted”

You must draw over
existing pixels with new
draw() commands

UIView

Whenever you want to do some custom drawing, all you have
to do is:
• Create a UIView subclass

• Get the view’s current context:
 let context = UIGraphicsGetCurrentContext()

• Override the draw method and add your Core Graphics
drawing code to paint pixels into context

Bézier Curves

A Bézier curve is a parametric
curve based on Bernstein
polynomials.

In vector graphics, Bézier
curves are used to model
smooth curves that can be
scaled indefinitely.

In iOS, a Bézier path is an object of class UIBezierPath.
• They allow for custom geometric paths and drawing properties

within Core Graphics
• They can be defined as lines, ovals, rectangles, and arbitrary

freeform paths
• They are also used for clipping and intersection testing

UIBezierPath

Line segment:
 path = UIBezierPath()
 path.move(to: CGPoint.myPoint1)
 path.addLine(to: CGPoint.myPoint2)

Arc of a circle:
 let path = UIBezierPath(arcCenter: center,

radius: myRadius,
startAngle: angle1,
endAngle: angle2,
clockwise: true)

Then draw it:
path.stroke()

Transformations

Translate coordinate system origin to (tx, ty):

CGContextTranslateCTM(c:CGContext?,
 tx:CGFloat, ty:CGFloat)

Scale coordinate system by sx and sy:

CGContextScaleCTM(c:CGContext?, sx:CGFloat,
 sy:CGFloat)

Rotate coordinate system by angle (in radians):

CGContextRotateCTM(c:CGContext?
 angle:CGFloat)

Changing Contexts

It’s often beneficial to save the context before performing a
series of graphics operations, and to restore the context
afterwards.

• This isolates any changes in settings you may make
while performing the operations to only those operations.

• In particular, when performing transformations, this
preserves the context’s coordinate system.

CGContextSaveGState(context)
CGContextRestoreGState(context)

These operations behave like a “push” and a “pop”: they
save and restore the context using a stack.

Dynamic changes to Interface Builder

There are two attributes that enable views to be dynamically
updated in Interface Builder:

@IBDesignable: Specifies that objects of a class declaration
 should have their display refreshed
 whenever the object is changed by the
 user.

@IBInspectable: Specifies that there should be an interface
 that allows the user to change values of
 this object in Interface Builder.

The @ character is used in Swift to indicate an attribute:
additional information to be given to the compiler.

