
1

New Constructions and Practical Applications for
Private Stream Searching

(Extended Abstract)

John Bethencourt
CMU

Dawn Song
CMU

Brent Waters
SRI

?? ?

?



2

Searching for Information

● Too much on-line info to download
– WWW pages
– Message boards
– Web email, USENET

● Search
– User specifies search criteria

● Textual keywords
– Server returns relevant content

I'm looking for ...

Here it is ...



3

Motivation for Private Searches

● What if keywords are secret?
– Personal privacy

(example query: “lice removal”)
– Commercial interests

(“takeover bid”)
– Intelligence gathering

(“Al Qaeda”)

● We want private searches
– Client gives server encrypted query
– Server runs search algorithm, returns data
– Client recovers matching content
– Server does not know what client searched for

They'll know what
I'm looking for!



4

Practical Example:
Google News Alerts

● Google News
– Google continuously crawls 4,500 news sources
– Estimated 135,000 news articles each day
– Alerts service

● User registers search keywords
● Matching articles emailed as they are discovered



5

Private Google News Alerts

● What about a private alerts service?
– User registers encrypted search keywords
– Periodically receives matching articles
– Google remains oblivious!

● Our techniques enable private alerts service
– Previous schemes not practical for this scenario
– Our results later in talk

Google doesn't
know what I want, but

they can still give
it to me!



6

Contributions

● New scheme for private stream searching

● Several novel constructions
– Reconstructing matching documents by solving linear 

systems
– Encrypted Bloom filters

● Practical analysis demonstrating feasibility
– Orders of magnitude more efficient than previous work 

[Ostrovsky-Skeith CRYPTO 2005]



7

See
 spot
 run.

Basic Architecture:
Overview

?? ?
rover,  
spot  

See
 spot
 run.

Foo
bar
who.

Zim
blip
fop.

See
 spot
 run.

Oops
that
is.

The
red
fox.

?

client

server



8

Basic Architecture
Step 1: Query Construction

● Client runs QueryConstruction algorithm to 
produce encrypted query
– Queries are disjunctions of textual keywords 

(simplest case)
– Variations and extensions possible

● Sends encrypted query to server

rover,  
spot  

raw keyword list encrypted query

QueryConstruction



9

Basic Architecture
Step 2: Executing the Search

● Server gets encrypted query
● Server runs StreamSearch algorithm

– Processes documents to produce encrypted buffers
– Server remains unaware of search keywords

?

See
spot
run.

StreamSearch

opaque, encrypted results

documents
(not encrypted)

encrypted query



10

Basic Architecture
Step 3: Recovering the documents

● Client gets encrypted results
● Runs FileReconstruction algorithm

– Uses private key
– Recovers original matching documents

?
See
spot
run.

FileReconstruction

encrypted results

client's private key

matching document



11

Scheme Highlights:
Homomorphic Encryption

● How is this accomplished?
– Scheme in full paper
– Just highlights, general flavor here

● Homomorphic encryption
– Paillier cryptosystem
– Public key system
– Additive homomorphism:

E a ⋅E b = E ab
– Allows rudimentary computations on encrypted data
– Lets server meaningfully use encrypted query



12

rover,  
spot  

● Queries are encrypted hash table
– Each cell is encryption of zero or one
– Probabilistic encryption
– Homomorphic encryption

E(1)

E(0)

E(0)

E(0)

E(1)

E(0)

E(0)

h(“rover”)

h(“spot”)

Scheme Highlights:
Encrypted Queries

raw keyword list hash function

encrypted query



13

See
spot
run.

Scheme Highlights:
Conducting the Search

E(1)

E(0)

E(0)

E(0)

E(1)

E(0)

E(0)

● Server can then obtain encryption of number 
of keyword matches
– Used to bootstrap rest of algorithm

E(0 + 1 + 0) = E(c)

Document doesn't match:
Get an encryption of 0.

Document matches:
Get an encryption of the number

matching keywords, c.

encrypted query

document



14

Singular with exponentially low
probability with respect to size!
[Komlós, Tao-Vu STOC 2005]

Scheme Highlights:
Recovering the Documents

● Client decrypts returned 
data with private key

● Can construct linear system 
in the matching documents
– Special metadata returned 

from server
– Encrypted Bloom filter

● Solves linear system for 
documents
– System solveable if random 

0,1 matrix is non-singular
– Almost always the case d 1

d 2

d 3

d 4
=1 0 1 1

0 1 1 0
1 0 0 1
1 1 0 1


−1

⋅a1

a2

a3

a4


contents of
decrypted bufferrandom

(0,1) matrix



15

Communication Complexity

● Performance / robustness tradeoffs in size of 
queries and results

● New scheme
– O(n) in the size of the returned content for the bulk 

content of the matching files
– Some metadata is O(n log(t/n)) or O(n log n)

● Previous scheme
– O(n log n) for bulk content
– Much higher multiplicative constants



16

Practical Analysis:
Private News Alerts

● Private news alerts scenario
– 135,000 news articles searched each day
– Retrieve results four times per day
– 5KB article size (text only, compressed)
– Up to 2000 matching articles per day

● Performance of our scheme
– Query size: 4-30MB
– Server processing time:  500ms per article
– Communication size: 500KB – 7MB per time period
– Client reconstruction time: 0 – 15min 



17

Communication Overhead:
Our Scheme

● Low overhead
– Factor of 1.2 before inflation due to Paillier
– 2.4 after



18

Communication Overhead:
Previous Scheme

● Previous scheme impractical
– Communication overhead: 40 times
– Reconstruction time: 4.7 hours



19

Conclusion

● Efficient system for private stream searching 
– Low communication overhead

● Factor of 2.4 over actual matching documents
● Previous system up to factor of 40

– Extensions also developed
● Arbitrary length documents
● More complex queries
● Other stuff

● For more info see full version of paper
– http://www.cs.cmu.edu/~bethenco/search.ps
– Includes details of actual scheme!
– Also security proofs, etc.

http://www.cs.cmu.edu/~bethenco/search.ps

