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Encryption is a method for a user to securely share data over an
insecure network or storage server. Before the advent of public-key
cryptography, a widely held view was that for two users to commu-
nicate data confidentially they would need to first establish a mu-
tually held secret key k. While this might be acceptable for some
small or tightly knit organizations, such a solution was clearly in-
feasible for larger networks such as today’s Internet. Over thirty
years ago, Diffie and Hellman [DH76a, DH76b] put forth the con-
cept of public-key cryptography, where two parties can securely
communicate with each other without having a prior mutual secret,
radically challenging the conventional wisdom of the time.

Today public key encryption is an invaluable tool and its use is
ubiquitous in securing web communication (e.g. HTTPS and SSH),
voice traffic, and storage systems. However, there is an ingrained
view that:

• Access to the encrypted data is “all or nothing” – one either
decrypts the entire plaintext or learns nothing at all about the
plaintext (other than a bound on its length), and

• Encryption is a method to encode data so that a single secret
key can decrypt that data.

For many applications, however, this notion of public-key en-
cryption is insufficient. For example, the encryptor may want to
encrypt data so that anyone who satisfies a certain policy can then
decrypt. Consider encrypting a message to a company so that the
only users who can decrypt are:

employees in the accounting or sales departments whose
office is in the main building.

Realizing this using existing public-key encryption raises several
difficulties:

• How do we discover the public keys of all individuals who
satisfy this policy?

• What if someone joins the system or receives certain creden-
tials well after the data is encrypted and stored?

• What if we want to give someone a partial view of the plain-
text depending on their credentials?

• Should one even be allowed to learn the identities of all indi-
viduals who have certain credentials?
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Functional encryption. We believe that it is time to adopt a new
broad vision of encryption that takes into account situations and
concerns like those outlined above. To this end, we advocate the
concept of functional encryption where a decryption key enables a
user to learn a specific function of the encrypted data and nothing
else. Briefly, in a functional encryption system there is a trusted au-
thority who holds a master secret key known only to this authority.
When the authority is given the description of some function f as
input, it uses its master secret key to generate a derived secret key
sk[f ] associated with f . Now anyone holding sk[f ] can compute
f(x) from an encryption of any x. In symbols, if E(pk, x) is an
encryption of x then decryption accomplishes the following:

given E(pk, x) and sk[f ], decryption outputs f(x).

Note that it is f(x) that is made available to the secret key holder,
even though x was the value that was encrypted. A functional en-
cryption system can support a variety of functions in this fashion.
Intuitively, the security of the functional encryption system should
guarantee that the secret key holder can learn nothing more about
x beyond f(x). In this way, we envision functional encryption as
being analogous to secure computation [Yao82, GMW87], but with
the critical difference that functional encryption is completely non-
interactive once a recipient has obtained her secret key.

Let us consider what could be achieved if we could realize func-
tional encryption for a broad set of functions:

Spam Filtering on Encrypted Mails: A user wishes to leverage
a partially trusted proxy to filter out all encrypted emails that are
identified as spam according to the user’s criteria. We would like to
achieve the seemingly conflicting goals of hiding the email’s con-
tents from the proxy while allowing the proxy to determine if the
email is spam according to some arbitrary criteria. The user can
achieve this by setting up a functional encryption system and then
giving the proxy a key sk[f ] where f is the user specified program
that outputs 1 if the plaintext is spam and 0 otherwise. The proxy
can use sk[f ] to test if an encrypted email is spam without learning
anything more about the plaintext, as shown in Figure 1.

Naturally, one can consider generalizations of this idea. For in-
stance the proxy might selectively send important email (as deemed
by the function f ) to the user’s mobile device. Taking things fur-
ther we could imagine that the destination of a packet is encrypted
and the secret key sk[f ] allows a router to learn the next hop and
nothing more.

Expressive Access Control: In large organizations one will often
think of sharing data according to some access policy. In addition
to our corporate example, this might occur in other domains such
as health care, insurance companies, government institutions and
universities. Bridging the gap between how one thinks of sharing
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Figure 1: The email recipient, who has a master secret key sk, gives a spam filtering service a key sk[f ] for the functionality f . This f
satisfies f(x) = 1 whenever message x is marked as spam by a specific spam predicate; otherwise f(x) = 0. A sender encrypts an
email x to the recipient, but the spam filter blocks the email if it is spam. The spam filter learns nothing else about the email contents.

data and discovering the public keys of all users who match or will
match this can be difficult and is subject to all the problems stated
above. For example, one might try to encrypt data separately to the
public key of every user that matches a certain policy. However,
as noted above this requires identification of each user as well as
the overhead of encrypting to each one individually. Moreover, this
does not cover users that don’t meet the criteria today, but will in
the future.

Using functional encryption one can directly express how one
wishes to share the data in the encryption process itself. In partic-
ular, one can encrypt x = (P,m) where m is the data one wishes
to share and P is the access policy that describes how they want to
share it. Then a user’s secret key function sk[f ] will check whether
a user’s credentials or attributes match this policy and only reveal
m in this case. Corresponding to the example mentioned earlier,
P could embed the policy (“ACCOUNTING” OR “SALES”) AND
“MAIN BUILDING”. A recipient’s function f would embed the at-
tributes of the particular user and check if these satisfy the formula
and if so return m.

Mining Large datasets: Data mining is used in medical research,
social networks, network security, and financial fraud detection to
name a few. Often we want to give users the ability to mine datasets
for certain types of queries, but not let them learn anything beyond
that. Consider a medical researcher who wants to test if there is a
link between a genotype and a type of cancer in an ethnic group.
If we have data consisting of patient gene sequences and medical
history, we would like to give the researcher the ability to test for
this linkage, without revealing the details of all patients’ medical
conditions to the researcher.

It is also important to note that in practice, we typically will not
know the queries that will be of interest until well after the data
is created and stored. Functional encryption provides an elegant
solution for these types of problems. When data is created it is
simply encrypted in a functional encryption system. Later on, a
user requests to be be able to learn a certain query or function f of
the data. If this is authorized, the user is given sk[f ] and can apply
this to any existing or future encrypted data. Thus, in a functional
encryption system supporting a class of functions F , a user could
be given the capability to compute any function from this class on
the dataset.

These examples motivate the research agenda that we put for-
ward here: to create functional encryption systems supporting the
richest possible families of functions, and understand what limita-
tions are inherent for functional encryption systems.

1. FUNCTIONAL ENCRYPTION
Recall that public key encryption systems, such as RSA or El-

Gamal, comprise of three algorithms:
(1) a setup algorithm that outputs a secret key denoted sk and a
public key pk – anyone can encrypt message using pk, but only the
secret key holder can decrypt,
(2) an encryption algorithmE that takes a public key pk and a mes-
sage as input and outputs a ciphertext, and
(3) a decryption algorithm D that takes a secret key sk and a ci-
phertext as input and outputs a message.

A functional encryption system comprises the same three algo-
rithms, but also contains a fourth algorithm called KeyGen. Here
the secret key output by the Setup algorithm is called the master
key and is denoted by mk. The KeyGen algorithm takes as in-
put mk and the description of some function f . It outputs a key that
is specific to the function f and denoted sk[f ]. More precisely, if c
is the result of encrypting data x with public key pk then

D(sk[f ], c) outputs f(x)

We emphasize that sk[f ] does not fully decrypt c. It only outputs a
function f of the full decryption. To fully decrypt c one can use a
secret key sk[g] where g is the identity function, namely g(x) = x
for all x.

Informally, security of a functional encryption system means that
an attacker who has a set of secret keys sk[f1], . . . , sk[f`] can learn
nothing about the decryption of some ciphertext c other than what
is revealed by the keys at his disposal. We discuss security in more
detail in the next section.

To illustrate the power of functional encryption we show how it
naturally captures many advanced encryption concepts in cryptog-
raphy. First, it should be clear that traditional public-key encryption
is a very special case of functional encryption where the only sup-
ported function is the identity function. The decryptor either learns
the complete decryption or nothing at all.

Identity Based Encryption. A more advanced public-key concept
called Identity Based Encryption or IBE for short, is an encryption
system where any string can serve as a public key: a user’s email
address, a date, an IP address, a location, and even the numbers
1, 2, and 3 are all public keys. IBE public keys are often called
identities and denoted by id. To obtain the secret key for a partic-
ular identity the user communicates with an authority who holds
a master key. The authority verifies that the user is authorized to
receive the requested secret key and if so it generates the secret key
using its master key. IBE was first proposed by Adi Shamir [Sha84]
in 1984 and the first implementations of IBE were proposed by



Boneh and Franklin [BF01] and Cocks [Coc01] in 2001. Other no-
table constructions include [BB04, Wat05, Gen06, GPV08, Wat09,
ABB10].

Using the terminology of functional encryption we can recast the
IBE problem as an equality testing functionality. Let pk and mk be
the output of the functional encryption setup algorithm. To encrypt
a message m to identity id the encryptor calls the encryption algo-
rithm as

E(pk, (id,m) )

and obtains a ciphertext c. Note that the data being encrypted is
the pair (id,m).1 A recipient with identity id∗ obtains a secret key
for id∗ by asking the authority for a secret key sk[fid∗ ] where the
function fid∗ is defined as follows2

fid∗( (id,m) ) :=

(
m if id = id∗,
⊥ otherwise

.

The authority generates sk[fid∗ ] using its functional master key mk.
Using this secret key the user can decrypt messages intended for
identity id∗, but learns nothing about messages encrypted for other
identities.

Recall that IBE systems reduce the reliance on certificate direc-
tories needed for traditional public-key encryption: to encrypt to
identity id the encryptor need only have the global public key pk
and the recipient’s identity id. General functional encryption sys-
tems have the same property — they require no online certificate
directory. An encryptor need only have the global public key pk
and the payload x being encrypted. It needs no other information
about the intended recipient(s).

Attribute-based encryption. Another encryption concept called
Attribute-based encryption or ABE for short, lets the encryptor
specify more abstractly who can decrypt a specific ciphertext. ABE
was proposed by Sahai and Waters [SW05] and later refined by
Goyal, Pandey, Sahai and Waters [GPSW06] into two different for-
mulations of ABE: Key Policy ABE and Ciphertext-Policy ABE.

In a Ciphertext-Policy ABE system the encryptor specifies a pol-
icy ϕ on recipient attributes that determines who can decrypt the
ciphertext. For example, the encryptor can encrypt messages to
anyone who is a

(“US citizen” and “female”) or (“over 30”)

which is a boolean formula ϕ on three variables. To encrypt a mes-
sage m with decryption policy ϕ the encryptor calls

E(pk, (ϕ,m) )

and obtains a ciphertext c.
Now, consider a recipient who wants to decrypt the ciphertext.

The recipient has a number of attributes, say:

“US citizen”, “Rhodes Scholar”,“female”, “under 30”.

Let n be the total number of attributes and we represent the set of
user attributes as a boolean vector of length n – the vector is 1 at
positions that correspond to attributes that are true and is 0 every-
where else. With this setup every user has an attribute vector u in
{0, 1}n.

1Using our earlier notation we would have x = (id,m). However,
we will omit x for readability.
2We use the ⊥ symbol as a special symbol to denote failure to
decrypt.

A recipient with attribute vector u obtains a secret key for his
attribute vector by asking the authority for a secret key sk[fu] where
the function fu is defined as follows:

fu( (ϕ,m) ) :=

(
m if ϕ(u) = 1,
⊥ otherwise

(1)

The authority generates sk[fu] using its functional master key mk.
Using this secret key the user can decrypt ciphertexts where his
attributes satisfy the decryption policy, but learns nothing about the
decryption of other ciphertexts.

A related concept called Key-Policy Attribute Based Encryption
places the access policy ϕ in the key and the vector u ∈ {0, 1}n in
the ciphertext. The secret key sk[fϕ] will decrypt all encryptions
E(pk, (u,m) ) for which ϕ(u) = 1.

2. SECURITY
The previous section described the syntax for a functional en-

cryption scheme where we explained that the scheme is defined by
four algorithms: (Setup, KeyGen, E, D). We now turn to con-
structing functional encryption systems, but before we do so we
must first explain what it means for a functional system to be se-
cure. The full definition is a bit technical and here we only give the
high level intuition. We refer the reader to [BSW11] for the details.

Roughly speaking, a functional encryption system is secure if an
attacker who has a set of secret keys sk[f1], . . . , sk[f`] can learn
nothing about the decryption of some ciphertext c other than what
is revealed by the keys at his disposal. If c is the encryption of
some data x, then the attacker can use his secret keys to learn
f1(x), . . . , f`(x). However, he should be unable to learn anything
else about x. For example, if the attacker has secret keys that reveal
the first three bits of x, then clearly the attacker can learn these bits
given an encryption of x, but he should be unable to learn anything
about remaining bits of x.

To give a bit more detail about the security requirements, let A
be a polynomial time adversary that takes as input three things: the
public key pk, a set of secret keys sk[f1], . . . , sk[f`] for functions
f1, . . . , f` of its choice, and a ciphertext c = E(pk, x). This A
might output some information about the decryption of c, such as
the least significant bit of x. We say that the system is secure if
for every such A there is a another polynomial time algorithm B,
called a simulator, that given pk and f1(x), . . . , f`(x) — but not
given c — is able to output the same information about x that A
output. Since B never got to see c it must have deduced the in-
formation about x strictly from f1(x), . . . , f`(x). Since A and B
output the same information about x, the existence of B means that
the only information A can learn about x from the ciphertext c is
information it can learn from f1(x), . . . , f`(x), but cannot learn
anything else about x. Hence, A can learn from c whatever is re-
vealed by the secret keys at its disposal, but cannot learn anything
else about m. 3

Challenge:Preventing Collusion Attacks.
Attacks on functional encryption that make use of multiple func-

tional secret keys are called collusion attacks. Preventing these at-
tacks is the main obstacle to constructing secure functional sys-
tems. To illustrate the problem consider again the functionality de-
scribed in (1) and suppose the encryptor wishes to encrypt a mes-
sage m to the following policy:

“US citizen” and “over 30”
3Note that our security model does not rely on any assumptions
about trusted hardware or online servers needed during decryption.



A simple implementation is to associate a public key pk1 with the
attribute “US citizen” and a public key pk2 with the attribute “over
30” and double encrypt the message m as

c = E(pk1, E(pk2, m ))

where here E(·, ·) is a regular public key encryption algorithm. To
decrypt c the recipient — let’s call her Alice — must possess both
secret keys corresponding to pk1 and pk2, thus implementing the
conjunction policy specified by the encryptor.

Now, suppose another user, Bob, has attributes

“US citizen” and “male”

where the attribute “male” is associated with a public key pk3. Bob
would be given the secret keys corresponding to pk1 and pk3. This
would let him decrypt messages encrypted for some policies such
as (“US citizen” and “male”). In addition, suppose Alice has the
attribute “over 30”. Then she is only given the secret key corre-
sponding to pk2. Thus, she cannot decrypt the message associated
with the original policy above on her own.

The problem is that Alice and Bob can collude to combine their
secret keys and create new secret keys which neither one should
have. For example, Alice and Bob working together can decrypt
ciphertexts intended for policy

“over 30” and “male”

even though neither could decrypt this ciphertext by themselves. In
this example collusion enabled the users to decrypt a ciphertext that
neither should have access to.

Secure constructions.
Secure constructions for complex functionalities must prevent

collusion attacks. This is done by binding together all secret keys
for a set of attributes so that mixing the keys given to distinct users
does not help. As a metaphor, one can imagine that all the keys
given to Alice are colored blue while all the keys given to Bob are
colored red. Decryption succeeds only when the decryptor uses a
set of keys of the same color. The colors ensure that Alice and Bob
cannot combine their keys to decrypt ciphertexts they should not.

In practical terms, the colors are implemented using randomiza-
tion values. All the keys given to Alice are blinded by the same
random value while all the keys given to Bob are blinded by a dif-
ferent random value. Decryption with keys that are blinded by the
same randomizer produces the correct decrypted message. Decryp-
tion with keys blinded by different randomizers results in a random
value unrelated to the correct decryption.

3. STATE OF THE ART
The current state of the art in functional encryption can be bro-

ken down by considering what information about the plaintext x is
exposed by the ciphertext to all participants. We refer to this in-
formation as the result of the “empty functionality” denoted fε(·).
For example, it is inherent in any encryption scheme that the empty
functionality expose some information about x, such as a bound on
the size of the plaintext. When the exact plaintext length is leaked
by the ciphertext we write fε(x) = |x| to indicate that anyone can
learn the plaintext length from the ciphertext.

3.1 Public Index: ABE
In general, we can consider the problem of functional encryption

where the data to be encrypted is decomposed into two parts x =
(ind,m), where ind denotes a public index that the encryptor does
not mind revealing to all participants in the system. In other words,
we define the empty functionality as fε(ind,m) = (ind, |m|).

Let us specifically consider the case of ABE, where the access
policy ϕ is now considered a public index. In this setting where
the access policy does not require protection, we have fairly broad
and efficient constructions of secure ABE schemes. Namely, se-
cure ABE schemes exist that support any access policy ϕ that can
be expressed as a boolean formula over the attributes (as in the
examples above) [GPSW06, BSW07, OSW07, LSW10, LOS+10,
OT10, Wat11]. Going beyond policies expressible as boolean for-
mulas remains a vexing open problem, with the ultimate goal of
supporting policies expressible as arbitrary boolean circuits or Tur-
ing Machines.

3.2 Non-Public Index
A much more challenging setting arises where we insist that the

empty functionality reveals as little as possible, namely fε(x) =
|x|. Here, our current understanding of functional encryption is ex-
tremely limited. The state-of-the-art in this setting is limited to the
inner-product functionality over prime fields [KSW08, LOS+10,
OT10, AFV11]. Because this functionality is somewhat technical,
before we describe this functionality more formally, let us briefly
discuss some applications: Consider the question of searching on
encrypted data, where the data is encrypted based on a public key
and stored on a public server [BCOP04]. The security challenge in
this setting is to hide the specific nature of the search query from the
public sever, while still allowing the public server to send back only
data entries that match the search query. The inner-product func-
tionality we describe below allows one to perform such searches
based on disjunction queries, and more generally searches defined
by CNF and DNF formulae, or by checking whether a univariate
search polynomial evaluates to zero on a particular input value.

The functionality we consider will be defined over a prime field
Fp, where p is a large prime chosen randomly during the setup of
the functional encryption scheme. Both messages and keys will
correspond to vectors of a fixed arbitrary dimension n over Fp. Let
us denote the message by the vector v and the vector underlying a
secret key by u. Then we have:

fu( v ) :=

(
1 if

P
i=1,...,n ui · vi = 0,

⊥ otherwise
(2)

To see how the above functionality can be applied, consider again
the example of disjunction queries: Suppose that a ciphertext is
meant to encrypt a single keyword, which we hash down to a value
a in our finite field Fp. Then to encrypt this value a, we actually
encrypt the vector v = (1, a, a2, . . . , an−1). Now suppose that
we need to create a key corresponding to a disjunction query “a1

OR a2 OR a3”. We will do so by first considering the polynomial
p(x) = (x − a1)(x − a2)(x − a3) and writing it out in standard
form as p(x) = c0 + c1x + c2x

2 + c3x
3, where the ci are the

appropriate coefficients. Then we will issue a key for the vector
u = (c0, c1, c2, c3, 0, . . . , 0). Glancing at the functionality, we see
that indeed our key will match the ciphertext for value a if and only
if p(a) = 0. In other words, if the value a is a root of our poly-
nomial p(x), which was designed to only have roots at the three
values a1, a2, a3 in our desired disjunction. Other special cases of
inner-products including conjunctions and range testing function-
alities are considered in [BW07].

Unfortunately the exact cryptographic mechanisms by which the
[KSW08, LOS+10, OT10] results work are too technically involved
to describe here. We encourage the interested reader to look at these
works for further technical details.

3.3 Current Limitations



As detailed above, current functional encryption schemes, espe-
cially in the non-public index setting, are limited. From a technical
standpoint, current techniques for building functional encryption
schemes are all based on elliptic curve groups that are equipped
with efficiently computable bilinear pairings (that map into the mul-
tiplicative structure of a finite field). At a very high level a pairing
operation allows for a single multiplication between the exponents
of two “source” group elements. The result of a pairing operation,
however, is a “target” group for which the operation cannot be re-
peated.

The reason why we can handle inner products of two vectors is
because this operation only requires one parallel call to the multi-
plication operation, which is what bilinear maps provide. A tan-
talizing question is whether techniques from lattices, which have
been so useful in the context of fully homomorphic encryption [Gen09],
can be applied to achieve greater functionality for functional en-
cryption.

3.4 Efficiency
The efficiency of functional encryption systems will vary signif-

icantly with the functionality offered and the specific realization.
However, we can offer a rough sense of the efficiency of the ABE
where the ciphertext is associated with a any access policy ϕ that
can be expressed as a boolean formula over attributes. In current
systems, the size of the ciphertext will scale with the size of the
boolean formula ϕ. For example, in [Wat11] a ciphertext con-
sists of two group elements for every leaf node of φ and encryption
takes three exponentiations for every leaf node. Decryption will
require two of the aforementioned pairing operations for each used
attribute in the formula. While it is hard to predict how future func-
tional encryption systems may evolve, one might expect at a high
level that the number of public key operations required will scale
with the complexity of the functionality.

4. FUNCTIONAL ENCRYPTION VS. FULLY
HOMOMORPHIC ENCRYPTION

Fully homomorphic encryption (FHE) is arguably the most im-
pressive development in cryptography over the past few years. FHE
enables one to compute on ciphertexts in the following sense: given
a public key pk, encryptions of messages x1, . . . , x` under pk, and
the description of a function f as input, anyone can construct an
encryption of the message f(x1, . . . , xk). We refer the reader to
Gentry [Gen10] for a detailed discussion. A more restricted ver-
sion of FHE, called univariate FHE, allows anyone to construct an
encryption of f(x) from an encryption of m for for all univariate
functions f .

While both FHE and functional encryption support some form
of computation on ciphertexts, it is not known how to construct
functional encryption from FHE. In fact, FHE does not even seem
to imply basic functionalities such as Identity Based Encryption.
The reason is that the output of an FHE computation on encrypted
data is an encrypted result. In contrast, the output of a functional
encryption computation is available in the clear.

To further illustrate this difference between the two concepts
consider once again the spam filtering example from the introduc-
tion. In that example the spam filter is given a secret key sk = sk[f ]
where f is a function that outputs 1 if an email is spam and 0 oth-
erwise. The key sk lets the spam filter run the spam predicate f on
encrypted emails and block encrypted spam. With FHE the spam
filter can similarly run the spam predicate f on encrypted email,
but the filter only learns the encrypted output of the predicate – it
does not and cannot learn whether an encrypted email is spam or

not. In particular, with FHE the filter can only tag an encrypted
email with an encrypted tag indicating “spam” or “not spam,” but
cannot block spam email for the end user. This example illustrates
the potential power of functional encryption over FHE. Of course,
constructing a fully general functional encryption scheme is still an
open problem, whereas FHE is already known to exist.

5. GENERALIZATIONS
We conclude with a few generalizations, variants, and extensions

of functional encryption which are motivated in practice.

Delegating Keys. There are several instances where a user might
want to delegate a limited set of their capabilities to another user
or device. For instance a medical researcher with a secret key that
can decrypt raw medical records, might want to distribute to a grad
student a key that can only output certain statistics such as averages
over the data. As another example, suppose a user is planning to
travel with their mobile device, but is concerned that the device
might become lost or stolen. Then they might want to copy a key
to the device that only decrypts data that was encrypted during the
travel time or restrict the key to capabilities related to the business
of the trip.

A simple approach is for a user with a key sk[f ] to query the
authority for a more restrictive key sk[f ′] anytime he wishes to
delegate a key for a more restrictive function f ′. However, involv-
ing the authority in every delegation is cumbersome, exposes an
online authority to more risk and won’t work if the authority is un-
reachable. Therefore, we would like the delegation operation to be
autonomous. Roughly, a user with sk[f ] can create sk[f ′] if f ′ is
more limited than the function f — whatever we can learn from f ′

we can learn from f .
The concept of delegation arose in Identity-Based Encryption [HL02,

GS02] and can be realized in Attribute-Based encryption [GPSW06].

Functionality Over Multiple Authorities.
In a standard functional encryption system there is one authority

who is responsible for issuing private keys. However, some sys-
tems might require more flexibility. Returning to the example of
(Ciphertext-Policy) Attribute-Based Encryption, in a standard sys-
tem one authority will be responsible both for determining which
attributes/credentials to issue to each user and for creating the keys.

While this is likely workable for a small to medium scale organi-
zation, in many applications we might wish to create policies that
span over many trust domains. For instance suppose I wish to en-
crypt a document for all military personnel who are also members
of the ACM. Who should manage this? Using a central author-
ity creates several problems. For one, there will often not be one
party who can speak authoritatively for multiple trust domains or
organizations. Indeed, one might wish to create a policy that spans
organizations that are not even aware of each other. Another core
limitation is that a central authority creates a central performance
bottleneck and a consolidates trust in one entity. Will two different
organizations be able to agree who should be trusted in this role?

Recent work in Decentralized Attribute-Based Encryption [Cha07,
LW11] has sought to overcome these limitations. In these systems
a user can encrypt according to an ABE policy issued as a formula
over attributes issued from different authorities. An interesting di-
rection is to see what other functionalities beyond ABE can arise
from the use of multiple authorities in functional encryption sys-
tems.

Functional encryption with Public-Key Infrastructure.
Finally, we consider how ideas from functional encryption can be

applied to other scenarios. Specifically, consider a scenario where:



• There exists a per-user public key infrastructure, where every
user u obtains a secret key sku[f ] for some function fu ap-
propriately chosen by the user, and also establishes a public
key pku unique to the user. This public key should also not
leak any information about the function fu. Such a private
and public key is established through an interaction between
an authority (CA) and the user.

• Encryptions are always targeted at a specific user’s public
key pku. However, the encryptor does not know the function
fu corresponding to the user, which is hidden by the public
key pku. At the same time, if a user u obtains an encryption
of x under the user’s public key pku, then decryption allows
the user to learn fu(x), and nothing more. Users should also
not be able to obtain additional capabilities by combining
secret keys corresponding to different public keys.

• A misbehaving central authority should not be able to de-
crypt encryptions intended for honest users in the system.

We stress that this scenario is quite different from the functional
encryption scenario considered here. One of the key properties of
functional encryption is that it does not require public-key directo-
ries, thus enabling a variety of applications such as secure storage
in the cloud and secure searching on encrypted data. At the same
time, this comes at the cost of needing to trust a key generation au-
thority (or a set of such authorities) that is capable of breaking the
security of ciphertexts.

This scenario outlined here was considered in recent work [SS10].
There, it is shown that in this setting, called “Worry-Free Encryp-
tion,” one can support functions (in the non-public index setting)
specified by any arbitrary polynomial-size circuit, which is signifi-
cantly beyond what is possible with general functional encryption.
It must be stressed, however, that this setting does not cover moti-
vating applications of functional encryption such as secure storage
in the cloud and searching on encrypted data. We refer the reader
to [SS10] for more details on this setting.

6. THE FUTURE OF FUNCTIONAL
ENCRYPTION

What will functional encryption look like in 10 years? While
existing functional encryption systems are already remarkably ex-
pressive, the central challenge is to construct a functional encryp-
tion system that supports the creation of keys for any function f
in both public and non-public index settings. If we could create
such systems we could imagine embedding anything from arbitrar-
ily complex spam filters to image recognition algorithms into en-
cryption systems. Imagine an encryption system that only lets you
view an image if a facial recognition algorithm matches a picture
of you to a face in the encrypted image. Moreover, the output of
the decryption could show the area immediately surrounding the
identified user and blur out the rest of the image.

Current progress on building functional encryption systems has
been driven and dominated by the aforementioned tool of groups
with bilinear maps. However, as mentioned earlier there are some
reasons to suspect that there might be fundamental barriers in real-
izing more advanced functional encryption systems from this tool.
It seems likely that to move forward we will need to search further
out. One reason for optimism has been the recent dramatic leap in
what we could achieve in homomorphic encryption systems. Hope-
fully, such a leap will be seen in the not too distant future (perhaps
using related techniques) in the realm of functional encryption.

Finally, more applied research is needed to build functional en-
cryption into real-world systems as well as to specify formats for at-

tribute spaces and languages for expressing access policies. Thanks
to the expressive power of these systems we hope to see real-world
deployments of functional encryption over the next decade. The
end result is far greater flexibility in specifying who can and cannot
access protected data.
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