
Cloaking Malware with the Trusted Platform Module

Alan M. Dunn Owen S. Hofmann Brent Waters Emmett Witchel
The University of Texas at Austin

{adunn,osh,bwaters,witchel}@cs.utexas.edu

Abstract
The Trusted Platform Module (TPM) is commonly
thought of as hardware that can increase platform secu-
rity. However, it can also be used for malicious pur-
poses. The TPM, along with other hardware, can imple-
ment acloaked computation, whose memory state cannot
be observed by any other software, including the operat-
ing system and hypervisor. We show that malware can
use cloaked computations to hide essential secrets (like
the target of an attack) from a malware analyst.

We describe and implement a protocol that establishes
an encryption key under control of the TPM that can only
be used by a specific infection program. An infected host
then proves the legitimacy of this key to a remote mal-
ware distribution platform, and receives and executes an
encrypted payload in a way that prevents software visibil-
ity of the decrypted payload. We detail how malware can
benefit from cloaked computations and discuss defenses
against our protocol. Hardening legitimate uses of the
TPM against attack improves the resilience of our mal-
ware, creating a Catch-22 for secure computing technol-
ogy.

1 Introduction
The Trusted Platform Module (TPM) has become a com-
mon hardware feature, with 350 million deployed com-
puters that have TPM hardware [14]. The purpose of TPM
hardware, and the software that supports it, is to increase
the security of computer systems. However, this paper ex-
amines the question of how a malware author can use the
TPM to build better malware, specifically malware that
cannot be analyzed by white hat researchers.

Trusted computing technology [42] adds computer
hardware to provide security primitives independent from
other system functionality. The hardware provides cer-
tain low-level security guarantees directly. For example,
it guarantees that only it can read and write certain data.
Trusted software uses these low-level, hardware-enforced
properties to build powerful guarantees for programmers.

The TPM, as developed by the Trusted Computing
Group (TCG), is one of the more popular implementations
of trusted computing technology. The TPM has seen sig-
nificant use in industry and government; the TPM is used

in Microsoft’s popular BitLocker drive encryption soft-
ware [7] and the United States Department of Defense has
required the TPM as a solution for securing data on lap-
tops [4]. TPMs are regularly included on desktop, laptop,
and server-class computers from a number of manufac-
turers. The wide dissemination of TPM functionality is
potentially a boon for computer security, but this paper
examines the potential of the TPM for malware authors (a
first to our knowledge).

A malware writer can use the TPM for implementing
cloaked computationswhich, combined with a protocol
described in this paper, impede malware analysis. The
TPM is used with “late launch” processor mechanisms
(Intel’s Trusted Execution Technology [12, 8], abbrevi-
ated TXT, and AMD’s Secure Startup mechanism [10])
that ensure uninterrupted execution of secure binaries.
Late launch is a hardware-enforced secure environment
where code runs without any other concurrently executing
software, including the operating system. We demonstrate
a protocol where a malware author uses cloaked com-
putations to completely prevent certain malware func-
tions from being analyzed and understood by any cur-
rently available methods. TPM functionality ensures that
a cloaked program will remain encrypted until it is run-
ning directly on hardware. Assuming certificates for hard-
ware TPMs identify these TPMs as hardware and cannot
be forged, our malware will refuse to execute in a virtual-
ized environment.

Timely and accurate analysis is critical to the ability
to stop widespread effects of malware. Honeypots are
constantly collecting malware and researchers use cre-
ative combinations of static analysis, dynamic emulation
and virtualization to reverse engineer malware behavior
[47, 30, 19, 24, 35, 36]. This reverse engineering is often
crucial to defeating the malware. For example, once the
domain name generation algorithm used for propagating
the Conficker worm was determined, the Conficker ca-
bal blocked the registration of those DNS names [45, 43],
thereby defeating the worm.

While the idea of using the TPM to cloak malware com-
putation is conceptually straightforward, existing TPM
protocols do not suffice and must be adapted to the task

1

of malware distribution. We clarify the capabilities of
and countermeasures for this threat. Cloaking does not
make malware all-powerful, and engineering malware to
take advantage of a cloaked environment is a design chal-
lenge. A cloaked computation runs without OS support,
so it cannot make a system call or easily use devices like
a NIC for network communication. This paper also dis-
cusses best practices for TPM-enabled systems that can
prevent the class of attacks we present.

This paper makes the following contributions.
• It specifies a protocol that runs on current TPM im-

plementations that allows a malware developer to ex-
ecute code in an environment that is guaranteed to be
not externally observable, e.g., by a malware analyst.
Our protocol adapts TPM-based remote attestation
for use by the malware distribution platform.

• It presents the model of cloaked execution and mea-
sures the implementation of a malware distribution
protocol that uses the TPM to cloak its computation.

• It provides several real-world use cases for TPM-
based malware cloaking, and describes how to adapt
malware to use TPM cloaking for those cases. These
include: worm command and control, selective data
exfiltration, and a DDoS timebomb.

• It discusses various defenses against our attacks and
their tradeoffs with TPM security and usability.

Organization In Section 2 we describe our threat model
and different attack scenarios for TPM cloaked malware.
Then in Section 3 we give TPM background information.
We then describe and analyze a general TPM cloaked mal-
ware attack in Section 4 and follow with a description of
a prototype implementation in Section 5.

We then turn to discussing future defenses against such
attacks in Section 6; describe related work in Section 7
and finally conclude in Section 8.

2 Threat Model and Attack Scenarios
We begin by describing our threat model for an attacker
that wishes to use the TPM for cloaked computations.
Then we describe multiple attack scenarios that can lever-
age TPM cloaked computations.

2.1 Threat model and goals

We consider anattacker who wishes to infect machines
with malware. His goal is to make a portion of this mal-
ware unobservable to anyanalyst(e.g., white-hat security
researcher, or IT professional) except for its input and out-
put behavior.

We assume an attacker will have the following capabil-
ities on the compromised machine.
• Kernel-level compromise. We assume our attack

has full access to the OS address space. Late launch
computation is privileged and can only be started by
code that runs at the OS privilege level. Exploits
that result in kernel-level privileges for commodity

OSes are common enough to be a significant con-
cern. For example, in September and October 2010,
there were 13 remote code execution vulnerabilities
and 2 privilege escalation vulnerabilities that could
provide a kernel-level exploit for Microsoft’s Win-
dows 7 [13]. Kernel-level exploits for Linux are re-
ported more rarely, but do exist, e.g., the recent Xorg
memory management vulnerability [54]. There are
many examples of malware using kernel vulnerabil-
ities [34, 3].

• Authorization for TPM capabilities. We further as-
sume our attack can authorize the TPM commands
in our protocol. TPM commands are authorized us-
ing AuthData, which are 160-bit secrets that will
be described further in Section 3. The difficulty
of obtaining AuthData depends on how TPMs are
used in practice. To our knowledge, the TCG does
not provide concrete practices for protecting Auth-
Data. Most TPM commands do not require Auth-
Data to be sent on wire, even in encrypted form.
However, knowing AuthData is necessary for certain
common TPM operations like using TPM-controlled
encryption keys. We discuss acquiring the AuthData
needed by the attack in Sections 3.6 and 4.

An analyst will see all non-blackbox behavior of the
attacker’s cloaked computation. In our model, the analyst
is allowed full access to systems that run our malware.
We assume that all network traffic is visible, and that the
analyst will attempt to exploit any attack protocol weak-
nesses. In particular, an analyst might run a honeypot that
is intended to be infected so that he can observe and ana-
lyze the malware. A honeypot may use a virtual machine
(including those that use hardware support for virtualiza-
tion like VMWare Workstation and KVM [33]), and may
include any combination of emulated and real hardware,
including software-based TPM emulators [50] and VM
interfaces to hardware TPMs like that of vTPMs [17].

We assume the analyst is neither able to mount phys-
ical attacks on the TPM nor is able to compromise the
TPM public key infrastructure. (We revisit these as-
sumptions when discussing possible defenses in Sec-
tion 6.) While there are known attacks against Intel’s
late launch environment [55] and physical attacks against
the TPM [51, 32], manufacturers are working to eliminate
such attacks. Manufacturers have significant incentive to
defeat these attacks because they compromise the TPM’s
guarantee that is currently its most commercially impor-
tant: preventing data leakage from laptop theft.

Our attack may be detectable because it increases TPM
use. Nonetheless, frequent TPM use might be the norm
for some systems, or users and monitoring tools may sim-
ply be unaware that increased TPM use is a concern.

A cloaked computation is limited to a computational
kernel. It cannot access OS services or make a system

2

call. Any functional malware must have extensive sup-
port code beyond the cloaked computation. The support
code performs tasks like communication over the network
or access to files. The attacker must design malware to
split functionality into cloaked and observable pieces. Ar-
guments can be passed to the computational kernel via
memory, and may be encrypted or signed off-platform for
privacy or integrity.

2.2 Attack Scenarios

We now describe various attack scenarios that leverage
TPM cloaking.

2.2.1 Worm command and control

We consider a modification of the Conficker B worm. The
worm has an infection stage, where a host is exploited and
downloads command and control code. Then the infection
code runs a rendezvous protocol to download and execute
signed binary updates. Engineers halted the propagation
of Conficker B by reverse engineering the rendezvous pro-
tocol and preventing the registration of domain names that
Conficker was going to generate.

Defeating Conficker requires learning in advance the
rendezvous domain names it will generate. The sequence
of domain names can be determined in two ways; first
by directly analyzing the domain name generation imple-
mentation or second by running the algorithm with inputs
that will generate future domain names. Cloaked compu-
tation prevents the static analysis and dynamic emulation
required to reverse engineer binary code, eliminating the
first option of analyzing the implementation.

Conficker uses as input to its domain name generation
algorithm the current day (in UTC). It establishes the cur-
rent day by fetching data from a variety of web sites.
White hat researchers ran Conficker with fake replies to
these http requests, tricking the virus into believing it was
executing in the future.

However, malware can obtain timestamps securely at
day-level granularity. Package repositories for common
Linux distributions provide descriptions of repository
contents that are signed, include the date, and are updated
daily. (Seehttp://us.archive.ubuntu.com/
ubuntu/dists/lucid-updates/Release for
Ubuntu Linux, which has an accompanying “.gpg”
signature file.) This data is mirrored at many locations
worldwide and is critical for the integrity of package
distribution1, so taking it offline or forging timestamps
would be both difficult and a security risk.

Conficker is not alone in its use of domain name gener-
ation for rendezvous points. The Mebroot rootkit [31] and
Kraken botnet [5] both use similar techniques to contact
their command and control servers.

1Although individual packages are signed, without signed release
metadata a user may not know whether there is a pending updatefor
a package.

Using cloaked computations for malware command
and control does notipso factomake malware more dan-
gerous. Cloaked computations must be used as part of a
careful protocol in order to be effective.

2.2.2 Selective data exfiltration

An infection program can exfiltrate private financial data
or corporate secrets. To minimize the probability of detec-
tion, the program rate limits its exfiltrated data. The pro-
gram searches and prioritizes data inside a cloaked com-
putation, perhaps using a set of regular expressions.

Cloaked computation can obscure valuable clues about
the origin and motivation of the infection authors. The
regular expressions might target information about a par-
ticular competitor or project. If white hats can sample the
exfiltrated data, this would also provide clues; however, it
would give less direct evidence than a set of search terms,
and output could be encrypted.

Stuxnet and Aurora are recent high profile attacks that
exfiltrate data [38]. Stuxnet seeks out specific industrial
systems and sends information about the infected OS and
domain information to one of two command servers [26].
A program without cloaked computation could use cryp-
tographic techniques [59, 18, 28] to keep search criteria
secret while being observed in memory, but their perfor-
mance currently makes them impractical.

2.2.3 Distributed denial-of-service timebomb

A common malware objective is to attack a target at a cer-
tain point in time. Keeping the time and target secret until
the attack prevents countermeasures to reduce the attack’s
impact. A cloaked computation can securely check the
day (as above), and only make the target known on the
launch day.

Malware analysis has often been important for stop-
ping distributed denial-of-service (DDoS) attacks. One
prominent example is MyDoom A. MyDoom A was first
identified on January 26, 2004 [2]. The worm caused in-
fected computers to perform a DDoS onwww.sco.com
on February 1, 2004, less than a week after the virus was
first classified. However, the worm was an easy target for
analysts because its target was in the binary obscured only
by ROT-13 [1]. Since the target was identified prior to
when the attack was scheduled, SCO was able to remove
its domain name from DNS before a DDoS occurred [57].

The Storm worm’s targeting of www.
microsoft.com [46], Blaster’s targeting of
windowsupdate.com [34], and Code Red’s tar-
geting of www.whitehouse.gov [22] are other
prominent examples of DDoS timebombs whose effects
were lessened by learning the target in advance of the
attack. If timebomb logic is contained in cloaked code,
then it increases the difficulty of detecting the time and
target of an upcoming attack. Since the target is stored
only in encrypted form locally on infected machines, the

3

infected machines do not have to communicate over the
network to receive the target at the time of the attack.

Not every machine participating in a DDoS coordinated
by cloaked computation must have a TPM. A one-million
machine botnet could be coordinated by one-thousand
machines with TPMs (to pick arbitrary numbers). The
TPM-containing machines would repeatedly execute a
cloaked computation, as above, to determine when to be-
gin an attack. These machines would send the target to
the rest when they detect it is time to begin the DDoS. In
the example, all million machines must receive the DDoS
target, but the topology of communication is specialized
to the DDoS task and therefore is more difficult to filter
and less amenable to traffic analysis than a generic peer-
to-peer system.

3 TPM background
This section describes the TPM hardware and support
software in sufficient detail to understand how it can be
used to make malware more difficult to analyze.

3.1 TPM hardware

TPMs are usually found in x86 PCs as small integrated
circuits on motherboards that connect to the low pin
count (LPC) bus and ultimately the southbridge of the PC
chipset. Each TPM contains an RSA (public-key) cryp-
tography unit and platform configuration registers (PCRs)
that maintain cryptographic hashes (called measurements
by the TCG) of code and data that has run on the platform.

The goal of the TPM is to provide security-critical
functions like secure storage and attestation of platform
state and identity. Each TPM is shipped with a public en-
cryption key pair, called the Endorsement Key (EK), that
is accompanied by a certificate from the manufacturer.
This key is used for critical TPM management tasks, like
“taking ownership” of the TPM, which is a form of ini-
tialization. During initialization the TPM creates a secret,
tpmProof , that is used to protect keypairs it creates.

The TPM 1.2 specification requires PC TPMs to have
at least 24 PCRs. PCRs 0–7 measure core system com-
ponents like BIOS code, PCRs 8–15 are OS defined, and
PCRs 16–23 are used by the TPM’s late launch mecha-
nism, where sensitive software runs in complete hardware
isolation (no other program, including the OS, may run
concurrently unless specifically allowed by the software).
PCRs cannot be set directly, they can only beextended
with new values, which sets a PCR so that it depends on
its previous value and the extending value in a way that is
not easily reversible. PCR state can establish what soft-
ware has been run on the machine since boot, including
the BIOS, hypervisor and operating system.

3.2 Managing and protecting TPM storage

The TPM was designed with very little persistent storage
to reduce cost. The PC TPM specification only mandates

Concatenation ofA andB A ||B

Public/private keypair for
asymmetric encryption
namedname

(PKname, SKname)

≡ (PK, SK)name

Encryption of data with a public
key

Enc(PK, data)

Signing ofdata with a signing key Sign(SK, data)

Symmetric key K (noP or S at front)
Symmetric encryption ofdata EncSym(K, data)

One-way hash (SHA-1) ofdata H(data)

Table 1:Notation for TPM data and computations.

1,280 bytes of non-volatile RAM (NVRAM), so most data
that the TPM uses must be stored elsewhere, like in main
memory or on disk. When we refer to an object asstored
in the TPM , we mean an object stored externally to the
TPM that is encrypted with a key managed by the TPM.
By contrast, data stored in locations physically internal to
the TPM isstored internal to the TPM.

AuthData controls TPM capabilities, which are the
ability to read, write, and use objects stored in the TPM
and execute TPM commands. AuthData is a 160-bit se-
cret, and knowledge of the AuthData for a particular capa-
bility is demonstrated by using it as a key for calculating a
hash-based message authentication code (HMAC) of the
input arguments to the TPM command.2

Public signature and encryption key pairs created by a
TPM are stored askey blobsonly usable with a particular
TPM. The contents of a key blob are shown in Figure 2. A
hash of the public portion of a key blob is stored in the pri-
vate portion, along withtpmProof (mentioned above);
tpmProof is an AuthData value randomly generated by
the TPM and stored internally to the TPM when someone
takes ownership. It protects the key blob from forgery by
adversaries and even the TPM manufacturer.3

In addition, a TPM user can use the PCRs to restrict use
of TPM-generated keypairs to particular pieces of soft-
ware that are identified via a hash of their code and initial
data. For example, the TPM can configure a key blob so
that it can only be used when the PCRs have certain values
(and therefore only when certain software is running).4

2Since AuthData is used as an HMAC key, it does not need to be
present on the same machine as the TPM for it to be used. For exam-
ple, a remote administrator might hold certain AuthData anduse this
to HMAC input arguments and then send these across a network to the
machine containing the TPM. However, AuthData does need to be in
memory (and encrypted) when the secret is first established for a TPM
capability as part of a TPM initialization protocol. We investigate fur-
ther the implications of this nuance in our discussions of defenses in
Section 6.

3Migratable keys are handled somewhat differently, but theyare be-
yond the scope of this paper.

4Restricting a TPM-generated key to use with certain PCR values is
not the same as theTPM Seal command found in related literature. The
two are similar, but the former places restrictions on a key’s use, while
the later places restrictions on the decryption of a piece ofdata (which
could be a key blob).

4

Figure 1:The overall flow of the attack is 1) Infecting a system with local malware capable of kernel-level exploitation to coordinate
the attack 2) Establishing a legitimate TPM-generated key usable only by the Infection Payload Loader in late launch viaa multistep
protocol with a Malware Distribution Platform 3) Delivering a payload that can be decrypted using the TPM-generated key4) Using
a late launch environment to decrypt the payload with the TPM-generated key, and running it with inputs passed into memory by
local malware 5) Retrieving output from payload, potentially repeating step 4 with new inputs. Boxes with “TPM” indicate parts of
the protocol that use the TPM.

Blob((PK, SK)ex) ≡ PubBlob((PK, SK)ex) ||Enc(PKparent, PrivBlob((PK, SK)ex))

PubBlob((PK, SK)ex) ≡ PKex ||PCR values

PrivBlob((PK, SK)ex) ≡ SKex ||H(PubBlob((PK, SK)ex) || tpmProof

Figure 2: Contents of TPM key blob for an example public/private key pair namedex that is stored in the key hierarchy under a key
namedparent. For our purposes the parent key of most key blobs is the SRK. (Note that the PCR values themselves are not really
stored in the key blob. Rather the blob contains a bitmask of the PCRs whose values must be verified and a digest of the PCR values.)

TPM key storage is a key hierarchy: a single-rooted
tree whose root is the Storage Root Key (SRK), and is
created upon the take ownership operation described be-
low. The private part of the SRK is stored internal to
the TPM and never present in main memory, even in en-
crypted form. Since the public part of the SRK encrypts
the private part of descendant keys (and so on), all keys in
the hierarchy are described as “stored in the TPM,” even
though all of them, except the SRK, are stored in main
memory. Using the private part of any key in the hierar-
chy requires using the TPM to access the private SRK to
decrypt private keys while descending the hierarchy.

It is impossible to use private keys for any of the key-
pairs stored in the TPM apart from using TPM capabil-
ities: obtaining the private key for one key would entail
decrypting the private portion of a key blob, which in turn
requires the private key of the parent, and so on, up to the
SRK, which is special in that its private key is never stored
externally to the TPM (even in encrypted form). A TPM
key hierarchy is illustrated in Figure 3.

3.3 Initializing the TPM

To begin using a TPM, the user (or administrator) must
first take ownership of it. Taking ownership of the TPM
establishes three important AuthData values: the owner

AuthData value, which is needed to set TPM policy, the
SRK AuthData value, which is needed to use the SRK,
andtpmProof . tpmProof is generated internal to the
TPM and stored in NVRAM. It is never present in unen-
crypted form outside the TPM.

While it is easy for a professional administrator to
take ownership of a TPM securely, taking ownership of
a TPM is a security critical operation that is exposed in
a very unfriendly way to average users. For example,
Microsoft’s BitLocker full-disk encryption software uses
the TPM. When a user initializes BitLocker, it reboots the
machine into a BIOS-level prompt where the user is pre-
sented cryptic messages about TPM initialization. Bit-
Locker performs the initial ownership of the TPM, and it
acquires privilege to do so with TPM mechanisms for as-
serting physical presence at the platform via the BIOS. An
inexperienced user could probably be convinced to agree
to allow assertion of physical presence by malware similar
to how rogue programs convince users to install malicious
software and input their credit card numbers [44]. The
function of the TPM is complicated and flexible, making
a simple explanation of it for an average user a real chal-
lenge.

Furthermore, malware could also gain use of phys-
ical presence controls in BIOS by attacks that modify

5

Figure 3: The part of the TPM key hierarchy relevant to our
attack. The TPM box illustrates keying material stored inter-
nal to the TPM, which is only the endorsement key (EK) and
storage root key (SRK). Part (a) shows the conceptual key hi-
erarchy, while part (b) shows how the secret keys of children
are encrypted by the public keys of their parents so keys can be
safely stored in memory. More detail on key formats is found in
Figure 2.

the BIOS itself [48]. Recent work has even demon-
strated attacks against BIOS update mechanisms that re-
quire signed updates [56].

3.4 Platform identity

TPMs provide software attestation, a proof of what soft-
ware is running on a platform when the TPM is invoked.
The proof is given by a certificate for the current PCR
values, which contain hashes of the initial state of all soft-
ware run on the machine. This certificate proves to an-
other party that a TPM-including platform is running par-
ticular software. The receiver must be able to verify that
the certificate comes from a legitimate TPM, or the quoted
measurements or other attestations are meaningless.

A user desiring privacy cannot directly use her plat-
form’s EK for attestation. (EKs are linked to specific plat-
forms, and additionally multiple EK uses can be corre-
lated.) Instead, she can generate attestation identity keys
(AIK s) that serve as proxies for the EK. An AIK can sign
PCR contents to attest to platform state. However, some-
thing must associate the AIK with the EK.

A trusted privacy certificate authority (Privacy CA)
provides certificates to third parties that an AIK corre-
sponds to an EK of a legitimate TPM. While prototype
Privacy CA code exists [27], Privacy CAs appear to be
unused in practice. In our attack, the malware distributor
acts as a Privacy CA and only trusts AIKs that it certifies.

We emphasize that our proposed attack does not require
or benefit from the anonymity guarantees provided by a
Privacy CA. However, the TPM does not permit a user to
directly sign an arbitrary TPM-generated public key with
the EK, so our attack must use an intermediate AIK.

3.5 Using the TPM

Typical uses of the TPM are to manipulate the key hier-
archy, to obtain signed certificates of PCR contents or of

authenticity of TPM data, and to modify PCRs to describe
platform state as it changes. Keys are created in the key
hierarchy by “loading” a parent key and commanding the
TPM to generate a key below that parent, resulting in a
new key blob. Loading a key entails passing a key blob to
the TPM to obtain a key handle, which is an integer index
into the currently loaded keys. Only loaded keys can be
used for further TPM commands. Loading a key requires
loading all keys above it in the hierarchy, so loading any
key in the key hierarchy requires loading the SRK.

The TPM can produce signed certificates of key authen-
ticity. To do so, a user specifies a certifying key, and the
TPM produces a hash of the public key for the key to be
certified, along with a hash of a bitmask describing the se-
lected PCRs and those PCR values, and signs both hashes
with the selected key.

PCRs can be modified by the TPM as platform state
changes. They cannot be set directly, and are instead mod-
ified by extension. A PCR with valuePCR extended by
a 160-bit valueval is set to valueExtend(PCR, val) ≡
H(PCR || val). Late launch extends the PCRs with the
hash of the state of the program run in the late launch en-
vironment. Thus the TPM can restrict access to keys to a
particular program. Our malware protocol uses this abil-
ity to prevent analyst use of a payload decryption key.

3.6 TPM functionality evolving and best practices
unknown

Despite the widespread availability of trusted computing
technology as embodied by the TPM, its implications are
not well understood. The specification for the TPM and
supporting software is complicated; version 1.2 of the
TPM specification for the PC/BIOS platform with accom-
panying TCG Software Stack is over 1,500 pages [52].
Additionally, there are few guidelines for proper use of
its extensive feature set. It is quite believable that such
a complicated mechanism has unintended consequences
that undermine its security goals. In this paper, we pro-
pose such a mechanism: that the TPM can be used as a
means to thwart analysis of malware.

Key hierarchy The lack of guidance on the usage of
TPM capabilities makes it difficult to determine what in-
formation an attacker might reasonably acquire. For ex-
ample, the key hierarchy has a single root. Therefore, dif-
ferent users must share at least one key, and every use of
a TPM key requires loading the SRK. Loading the SRK
requires SRK AuthData, and thus the SRK AuthData is
likely well-known, making it possible for users to imper-
sonate the TPM, as others have previously indicated [21].

EK certificates As another example of capabilities in
flux, EK certificates critical to identifying TPMs as legiti-
mate are not always present, and it is not always clear how
to verify those that are. TPM manufacturers are moving
toward certifying TPMs as legitimate by including certifi-

6

cates for EKs in TPM NVRAM. Infineon gives the most
detail on their EK certification policy, in which the cer-
tificate chain extends back to a new VeriSign TPM root
Certificate Authority [11]. ST Microelectronics supplies
TPMs used in many workstations from Dell. They state
that their TPMs from 2010 onward contain certificates [9].
While no certificates were present on our older machines,
we did find certificates for our newer Dell machines and
manually verified the legitimacy of the EK certificate for
one of our TPMs (which we describe further in Section 5).

Protecting AuthData Many uses of the TPM allow Au-
thData to be snooped if not used carefully. For example,
standard use of TPM tools with TrouSerS prompts the
user to enter passwords at the keyboard to use TPM ca-
pabilities. These passwords can be captured by a keylog-
ger if the system is compromised. Thus, despite that TPM
commands may not require AuthData to appear, entry of
this data into the system for usage can be insecure.

4 Malware using cloaked computations
We now describe an architecture and protocol for launch-
ing a TPM-cloaked attack.

Our protocol runs between anInfection Program,
which is malware on the attacked host, and aMalware
Distribution Platform , which is software executed on
hardware that is remote to the attacked host. The goal
of the protocol is for the Infection Program to generate a
key. The Infection Program attests to the Malware Distri-
bution Platform that TPM-based protection ensures only it
can access data encrypted with the key. The Malware Dis-
tribution Platform verifies the attestation, and then sends
an encrypted program to the Infection Program. The In-
fection Program decrypts and executes this payload. This
protocol enables long-lived and pernicious malware, for
example, turning a computer into a botnet member. The
Infection Program can suspend the OS (and all other soft-
ware) through use of processor late launch capabilities to
ensure unobservability when necessary, like when the ma-
licious payload is decrypted and executing.

4.1 Late launch for secure execution

The protocol uses late launch to suspend the OS to allow
decryption and execution of the malicious payload with-
out observation by an analyst. Late launch creates an exe-
cution environment where it is possible to keep code and
data secret from the OS.

Late launch transfers control to a designated block of
user-supplied code in memory and leaves a hash of that
code in TPM PCRs. Specifically, with Intel’s Trusted Ex-
ecution Technology, a user configures data structures to
describe the Measured Launch Environment (MLE), the
program to be run (which resides completely in mem-
ory). She then uses theGETSEC[SENTER] instruction
to transfer control to chipset-specific code, signed by In-
tel, calledSINIT that performs pre-MLE setup such as

Pack(data, extra,PK):

1. Generate symmetric keyK
2. Asymmetric encryptK to formEnc(PK,K || extra)
3. Symmetric encryptdata to formEncSym(K, data)
4. OutputEncSym(K, data) ||Enc(PK,K || extra)

Unpack(EncSym(K, data) ||Enc(PK, K || extra), SK):

1. Asymmetric decryptEnc(PK, K || extra) with SK to
obtainK andextra

2. Symmetric decryptEncSym(K, data) with K to obtain
data

3. Outputdata, extra

Figure 4: Subroutines used in main protocol.extra is needed
for TPM ActivateIdentity, and can be empty (φ). Run-
ningUnpack on the TPM usesTPM Unbind.

ensuring correctness of MLE parameters. The exact func-
tionality ofSINIT is not known, as its source code is not
public.SINIT then passes control to the MLE. When the
MLE runs, no software may run on any other processor
and hardware interrupts and DMA transfers are disabled.
To exit, the MLE uses theGETSEC[SEXIT] instruction.

4.2 Malware distribution protocol

The Infection Program first establishes a proof that it is
using a legitimate TPM. It uses the TPM to generate two
keys. One is a “binding key” that the Malware Distribu-
tion Platform will use to encrypt the malicious payload.
The other is an AIK that the TPM will use in the Privacy
CA protocol, where the Malware Distribution Platform
plays the role of the Privacy CA. The Malware Distribu-
tion Platform will accept its own certification that the AIK
is legitimate in a later phase. As stated before, the Privacy
CA protocol enables indirect use of the private EK only
kept by the TPM. A valid private EK cannot be produced
by an analyst; it is generated by a TPM manufacturer and
only accessible to the TPM hardware. This part of the
Infection Program is named “Infection Keygen”.

Our description of the protocol steps will elide lower-
level TPM authorization commands likeTPM OIAP and
TPM OSAP that are used to demonstrate knowledge of au-
thorization data and prevent replay attacks on TPM com-
mands.

We use subroutinesPack(data, extra, PK) and
Unpack(data, PK), which use asymmetric keys with in-
termediate symmetric keys. Symmetric keys increase the
efficiency of encryption, are required for certain TPM
commands, and circumvent the limits (due to packing
mechanisms) on the length of asymmetrically encrypted
messages. These subroutines are shown in Figure 4 and
the main protocol is in Figure 5.

4.3 Analyzing the resilience of the protocol

A malware analyst can attempt to subvert the protocol by
tampering with data or introducing keys under her control.
We now analyze the possibilities for subversion.

7

Infection Keygen: Generate binding key that Malware Distribution Platform will eventually use to encrypt malicious payload, AIK
that certifies it, and request for Malware Distribution Platform to test AIK legitimacy

1. Create binding keypair(PK,SK)bind under the SRK with
TPM CreateWrapKey(SRK,PCR18 = Extend(0160, H(Infection Payload Loader))) (requires SRK AuthData), store in
memory

2. Create identity key(PK, SK)AIK under SRK in memory asBlob((PK, SK)AIK) with TPM MakeIdentity (requires
owner AuthData)

3. Retrieve EK certificateCEK = PKEK ||Sign(SKmanufacturer, H(PKEK)), which certifies that the TPM with that EK is
legitimate (requires owner AuthData to obtain from NVRAM with TPM NV ReadValue from EK index or needs to be on
disk already)

4. SendMreq ≡ PubBlob((PK, SK)AIK) ||CEK to Malware Distribution Platform as a request to link AIK andEK

Malware Distribution Platform Certificate Handler : Give Infected Platform credential only decryptable by legitimate TPM

1. ReceiveMreq

2. Verify Sign(SKmanufacturer, H(PKEK)) with manufacturer CA public key
3. Generate hashHaik cert ≡ H(PubBlob((PK, SK)AIK))
4. SignHaik cert with SKmalware, a private key known only to the Malware Distribution Platform whose corresponding public

key is known to all, to formSign(SKmalware, Haik cert). Sign(SKmalware, Haik cert) is a credential of AIK legitimacy.
5. RunPack(Sign(SKmalware, Haik cert), Haik cert, PKEK) to form

Mreq resp ≡ Enc(PKEK , K2 ||Haik cert) ||EncSym(K2, Sign(SKmalware, Haik cert)). Mreq resp contains the credential
in a way such that it can only be extracted by a TPM with privateEK SKEK when the credential was created for an AIK
stored in that TPM.

6. SendMreq resp to Infected Platform

Infection Proof: Decrypt credential, assemble certificate chain from manufacturer certified EK to binding key (including credential)

1. ReceiveMreq resp

2. Load AIK (PK, SK)AIK and binding key(PK,SK)bind with TPM LoadKey2
3. UseTPM ActivateIdentity, which decryptsEnc(PKEK , K2 ||Haik cert) and retrievesK2 after comparingHaik cert

to that calculated from loaded AIK located in internal TPM RAM. If comparison fails, abort. (requires owner AuthData)
4. Symmetric decryptEncSym(K2, Sign(SKmalware, Haik cert)) to retrieveSign(SKmalware, Haik cert)
5. Certify(PK, SK)bind with TPM CertifyKey to produce

Sign(SKAIK , H(PCRs(PubBlob((PK, SK)bind))) ||H(PKbind)) ≡ Sign(SKAIK , Hbind cert)
6. SendMproof ≡ Sign(SKmalware, Haik cert) ||PubBlob((PK, SK)AIK) ||Sign(SKAIK , Hbind cert) ||

PubBlob((PK, SK)bind), all the evidence needed to verify TPM legitimacy, to Malware Distribution Platform

Malware Distribution Platform Payload Delivery : Verify certificate chain, respond with encrypted malicious payload if successful

1. ReceiveMproof

2. Verify signatures ofHaik cert by SKmalware usingPKmalware, of Hbind cert usingPKAIK . Check thatHbind cert

corresponds to the binding key by comparing hash of public key, PCRs toPubBlob((PK,SK)bind). Use
PubBlob((PK, SK)bind) to determine if binding key has a proper constraint forPCR18. Abort if verification fails or
binding key improperly locked.

3. Hash and sign the payload withSKmalware to formSign(SKmalware, H(payload)) (only needs to be done once per
payload)

4. RunPack(payload ||Sign(SKmalware, H(payload)), φ, PKbind) to form
Mpayload ≡ EncSym(K3, payload || Sign(SKmalware, H(payload))) ||Enc(PKbind, K3)

5. SendMpayload to Infected Platform

Infection Payload Execute: Use late launch to set PCRs to allow use of binding key for decryption and to prevent OS from
accessing this key during use

1. ReceiveMpayload

2. Late launch with MLE≡ Infection Payload Loader

Infection Hidden Execute: Infection Payload Loader decrypts and executes the payload in the late launch environment.

1. Load(PK, SK)bind with TPM LoadKey2
2. RunUnpack(Mpayload, SKbind). This operation can succeed (and only in this program) because inInfection Hidden

Execute, PCR18 = Extend(0160, H(Infection Payload Loader)). Obtainpayload || Sign(SKmalware, H(payload)).
3. Verify signatureSign(SKmalware, H(payload)) with PKmalware. Abort if verification fails.
4. Executepayload

5. If return to OS execution is desired, scrub payload from memory and extend random value into PCR18, then exit late launch

Figure 5: The cloaked malware protocol.

8

key blob =TPM CreateWrapKey(parent key, PCR constraints) Generate new key with PCR constraints under the par-
ent key in hierarchy. The resultant key may be used for
encryption and decryption, but not signing.

key handle =TPM LoadKey2(key blob) Load a key for further use.
key blob =TPM MakeIdentity() Generate an identity key under SRK that may be used

for signing, but not encryption and decryption.
sym key =
TPM ActivateIdentity(identity key handle, CA response)

Verify that asymmetric CA response part corresponds
to identity key. If agreement, decrypt response and re-
trieve enclosed symmetric key.

(certificate, signature) =
TPM CertifyKey(certifying key handle, key handle)

Produce certificate of key contents. Sign certificate with
certifying key.

value =TPM NV ReadValue(index) Retrieve data from TPM NVRAM.

Table 2: Additional functions in the main protocol. Keywords that are in fixed-width font that begin withTPM are TPM commands
defined in the TPM 1.2 specification.

The analyst’s goal is to cause the malicious payload to
be encrypted with a key under her control, or to observe a
decrypted payload. She could try to create a binding key
blob duringInfection Proof, and certify it with a legiti-
mate TPM. However, the analyst does not know the value
of tpmProof for any TPM because it is randomly gen-
erated within the TPM and is never present (even in en-
crypted form) outside the TPM. WithouttpmProof , the
analyst cannot generate a key blob that the TPM will cer-
tify, even under a legitimate AIK. This argument relies on
the fact that the encryption system is non-malleable [25]
and chosen ciphertext secure. Otherwise, an attacker
might be able to take a legitimately created ciphertext with
tpmProof in it and modify it to an illegitimate ciphertext
with tpmProof in it, without knowingtpmProof .

The analyst could attempt to modify PCR constraints
on the binding key by tampering with the the public part
of the key. However, the TPM will not load the key in the
modified blob because a digest of the public portion of the
blob will not match the hash stored in the private portion.
Thus, storing the binding key in the public part of the blob
where it is accessible to the analyst does not compromise
the security of the protocol. If the binding key is a legiti-
mate TPM key with PCR constraints that do not lock it to
being observed only duringInfection Hidden Execute,
the Malware Distribution Platform will detect it during
Malware Distribution Platform Payload Delivery , and
the platform will not encrypt the payload with that key.

The analyst could attempt to forge keys at other points
in the hierarchy: she could attempt to certify a binding
key she creates with an AIK that she creates. The Mal-
ware Distribution Platform only obtains the public por-
tions of these key blobs, and so cannot check directly in
Malware Distribution Certificate Handler that the AIK
is legitimate. The Malware Distribution Platform could
not verify the legitimacy of key blobs even with their pri-
vate portions as the Platform can neither decrypt the pri-
vate portions, nor know the value oftpmProof for the
Infected Platform. However, it encrypts with the EK a

credential that is a signed hash of the AIK it is sent byIn-
fection Keygenrunning on an infected platform. The EK
is proven legitimate by a certificate of authenticity signed
by the TPM manufacturer’s private key and verified by the
Malware Distribution Platform. The private EK is only
stored internal to the TPM, and only usable under con-
trolled circumstances likeTPM ActivateIdentity;
to our knowledge, there is no way to compel the
TPM to decrypt arbitrary data with the private EK.
TPM ActivateIdentity will only decrypt a public
EK-encrypted blob of the form(K ||Haik cert) where
Haik cert is the hash of the public portion of an AIK key
blob where the AIK has been loaded into the TPM (and
thus has not been tampered with). Therefore,K cannot
be recovered for an illegitimate AIK, and the credential
Sign(SKmalware, Haik cert) cannot be recovered. With-
out this credential, the protocol will abort inMalware
Distribution Platform Payload Delivery (step 2). The
credential cannot be forged as it contains a signature with
a private key known only by the Malware Distribution
Platform.

The analyst could try to execute forged payloads with
Infection Hidden Execute because the public binding
key is visible. However, becauseInfection Hidden Exe-
cutewill only execute payloads signed by a key unknown
to the analyst, this will not work. No program other than
Infection Hidden Executeand the programs it executes
can access the binding key.

The analyst could try to set the PCR values to those
specified in (PK, SK)bind, but run a program other
than Infection Payload Loader. This would allow her
to decrypt the payload (step 2 in Infection Hidden Ex-
ecute). The values of PCRs are affected by processor
events and theSINIT code module. The CPU instruction
GETSEC[SENTER] sends an LPC bus signal to initial-
ize the dynamically resettable TPM PCRs (PCRs 16-23)
to 160 bits of 0s. No other TPM capability can reset these
PCRs to all 0s; a hardware reset sets them to all 1s. So an
analyst can only set PCR 18 to all 0s with a late launch

9

executable.SINIT extends PCR 18 with a hash of the
MLE. Therefore, to set PCR 18, the analyst must run an
MLE with the correct hash. Assuming the hash function is
collision resistant, only the Infection Payload Loader will
hash to the correct value, so the analyst cannot run an al-
ternate program that passes the PCR check. The payload
loader terminates at payload end by extending a random
value into PCR 18, so the analyst cannot use the key after
the late launch returns.

4.4 Prevention of malware analysis

Having described our protocol for cloaked malware ex-
ecution, we review how it defeats conventional malware
analysis. While our list of malware analysis techniques
may not be exhaustive, to our knowledge, TPM cloaking
can be defeated only by TPM manufacturer intervention,
or by physical attacks, like direct monitoring of hardware
events or tampering with the TPM or system buses. Both
of these are discussed in more detail in Section 6.

Static analysis. Cloaked computations are encrypted
and are only decrypted once the TPM has verified that the
PCRs match those in the key blob. The malware author
specifies PCR values that match only the Infection Pay-
load Loader, so no analyst program can decrypt the code
for a cloaked computation.

Honeypots. Honeypots are open systems that collect
and observe malware, possibly using some combination
of emulation, virtualization and instrumented software.
Purely software-based honeypots can try to follow our
protocol without using a legitimate hardware TPM, but
will fail to convince a malware distributing machine of
their authenticity. This failure is due to their inability to
decryptEnc(PKEK , K2 ||Haik cert), which is encrypted
with the public EK that is certified by a TPM manufac-
turer inCEK , and the private part of which is not present
outside of a TPM. Thus these honeypots will never re-
ceive the malicious payload. If a honeypot uses a legit-
imate hardware TPM, it will obtain a malicious payload.
However, it can only execute the payload with late launch,
which prevents software monitoring of the unencrypted
payload.

Virtualization. Software-based TPMs, virtualized
TPMs, and virtual machine monitors communicating with
hardware TPMs cannot defeat cloaking. Hardware TPMs
have certificates of authenticity that are verified in our
malware distribution protocol. A software-based TPM ei-
ther will not have a certificate, or will have a certificate
that is distinguishable from a hardware TPM. Either way,
it will fail to convince a malware distribution platform of
its authenticity. An analyst cannot use a virtual machine
to defeat cloaking.

Hardware TPM manufacturers should not certify
software-based TPMs as authentic hardware TPMs.
Software-based TPMs cannot provide the same secu-
rity guarantees as hardware-based TPMs. The PCRs of

software-based TPMs might not correspond to platform
state in any way, as they can be modified by sufficiently
privileged software. A software TPM cannot attest to a
particular software environment, because it does not know
the true software environment—it could be executing in a
virtual environment. Any certificate for a software-based
TPM must identify the TPM as software otherwise the
chain of trust is broken, defeating remote attestation (a
major purpose of TPMs). No TPM manufacturer cur-
rently signs software TPM EKs, nor (to our knowledge)
do any plan to do so. Prior work on virtualizing TPMs
emphasizes that virtual TPMs and their certificates must
be distinguishable from hardware TPMs, as the two do
not provide the same security guarantees [17]. A malware
distribution platform can avoid software and virtual TPM
certificates by using a whitelist of known-secure hardware
TPM certificate distributors compiled into the malware.

Software, such as a virtual machine monitor, cannot
communicate with a legitimate hardware TPM to obtain
and decrypt the malicious payload without running the
payload in late launch. The only way that the mali-
cious payload can be decrypted is through use of a private
key stored in the TPM that can only be used when the
TPM PCRs are in a certain state. This state can only be
achieved through late launch, which is anon-virtualizable
function, and it prevents software monitoring of the unen-
crypted payload. TPM late-launch is designed to be non-
virtualizable, so that TPM hardware can provide a com-
plete and reliable description of platform state.

4.5 Attack assumptions

Like any attack, ours has particular assumptions. As dis-
cussed in Section 2.1, our protocol requires late launch
instructions, which are privileged, soInfection Hidden
Executemust run at kernel privilege levels.

More importantly, our attack requires knowledge of
SRK and owner AuthData values. There are two main
possibilities for acquiring this AuthData previously men-
tioned in Section 3: snooping and overriding with physi-
cal presence.

AuthData can be snooped from kernel or application
(e.g. TrouSerS) memory or from logged keystrokes,
which are converted into AuthData by a hash. The like-
lihood of successful AuthData snooping depends on the
particular AuthData being gathered. The SRK must be
loaded to load any other key stored in the TPM, so there
will be regularly occurring chances to snoop the SRK Au-
thData. Owner AuthData, on the other hand, is required
for fewer, and generally more powerful, operations. It is
then liable to be more difficult to acquire.

One could enter all AuthData remotely to a platform
that contains a TPM, but we consider it unlikely that this
is done in practice. TPM arguments could be HMACed
by a trusted server, but such a server can become a perfor-
mance or availability bottleneck. Use of a trusted server

10

is also problematic for use of laptops that may not always
have network connectivity. For these cases, it may be pos-
sible to enter AuthData into a separate trusted device that
then can assist in authorizing TPM commands. However,
such devices are currently not deployed. It is currently
more likely that AuthData would be presented through a
USB key or entered at the keyboard, and in both cases it
can be snooped. In addition, applications and OS services
used to provide AuthData to the TPM may not sufficiently
scrub sensitive data from memory.

To demonstrate the possibility of acquiring AuthData
from the OS, we virtualized a Windows 7 instance, and
used OS-provided control panels to interact with the
TPM. When AuthData was read from a removable drive,
it remained in memory for long periods of time on an idle
system, even after the relevant control panels were closed.
The entire contents of the file containing the AuthData
were present in memory for up to 4 hours after the Auth-
Data was read, and the removable drive ejected from the
system. The AuthData itself remained in memory for sev-
eral days, before the system was eventually shut down.

If malware can use mechanisms for asserting physical
presence at the platform, it can clear the current TPM
owner and install a new owner, preventing the need to
snoop any AuthData. While physical presence mecha-
nisms should be tightly controlled, their implementation
is left up to TPM and BIOS manufacturers. Our experi-
ence setting up BitLocker (see Section 3.3) indicates that
the process can be confusing, and that it may be possible
to convince a user to enable malware to obtain the neces-
sary authorization to use TPM commands.

4.6 Distributing the malware distribution platform

As written, the malware distribution platform consists of a
host (or small number of hosts) controlled by the attacker
and trusted with the attacker’s secret key (SKmalware).
This design creates a single point of failure.

The Malware Distribution Platform computation con-
sists of arithmetic and cryptographic work (with no OS
involvement) with an embedded secret. It is a perfect can-
didate to run as a cloaked computation. An attacker can
distribute work done on the Malware Distribution Plat-
form to compromised hosts using cloaked computations.

5 Implementation and Evaluation
We implemented a prototype of our attack, which con-
tains implementations of the establishment of a TPM-
controlled binding key, the decryption and execution of
payloads in late launch, and sample attack payloads. In
this section, we describe each of these pieces in turn.

The prototype implementation consists of five pro-
grams for the key establishment protocol (described in
Table 3), the Infection Payload Loader PAL and ported
TrouSerS TPM utility code, payload programs, and sup-
porting code to connect the pieces. The key establish-

ment programs are about 3,600 lines of C, the Infection
Payload Loader is another 400 lines of C, with another
150 lines of C added to provide TPM commands through
selections of TrouSerS TPM code which themselves re-
quired minor modifications. The payloads were about 50
lines apiece with an extra 75 line supporting DSA rou-
tine, which was necessary for verifying Ubuntu’s reposi-
tory manifests. All code size measurements are as mea-
sured by SLOCCount [53].

5.1 Binding key establishment

We implemented a prototype of the protocol described in
Figure 5 using the TrouSerS [6] (v0.3.6) implementation
of the TCG software stack (TSS) to ease development.

Our implementation follows the protocol, except
steps 2 to 3 in Infection Keygen which use TSS
API call Tspi CollateIdentityRequest. This
call does not produceMreq (step 4), but instead
producesEncSym(K, PubBlob((PK, SK)AIK)) and
Enc(PKmalware, K) that must be decrypted in the Mal-
ware Distribution Platform Certificate Handler. While the
protocol specifies network communication, the prototype
communicates via files on one machine. TrouSerS is not
necessary for malware cloaking; TPM commands made
by TrouSerS could be made directly by malware.

5.1.1 EK certificate verification

We verified the authenticity of our ST Microelectronics
TPM endorsement key (EK). However, we had to over-
come obstacles along the way, and there may be obstacles
with other TPM manufacturers as well. For example, we
needed to work around unexpected errors in reading the
EK certificate from TPM NVRAM. Reads greater than or
equal to 863 bytes in length return errors, even though the
reads seem compatible with the TPM specification, and
the EK certificate is 1129 bytes long. We read the certifi-
cate with multiple reads, each smaller than 863 bytes.

The intermediate certificates in the chain linking the
TPM to a trusted certificate authority were not available
online, and we obtained them from ST Microelectronics
directly. However, some manufacturers (e.g. Infineon)
make the certificates in their chains available online [11].
To deploy TPM-based cloaking on a large scale, the veri-
fication process for a variety of TPMs should be tested.

For the TPM we tested, the certificate chain was of
length four including the TPM EK certificate and rooted
at the GlobalSign Trusted Computing Certificate Author-
ity. There were two levels of certificates within ST Mi-
croelectronics: Intermediate EK CA 01 (indicating there
are likely more intermediate CAs) and a Root EK CA.

5.2 Late launch environment establishment

We modified code from the Flicker [40] (v0.2) distribution
to implement our late launch capabilities. Flicker pro-
vides a kernel module that allows a small self-contained

11

program, known as a Piece of Application Logic orPAL ,
to be started in late launch with a desired set of parameters
as inputs in physical memory. The kernel module accepts
a PAL and parameters through asysfs filesystem in-
terface in Linux, then saves processor context before per-
forming a late launch, running the PAL in late launch, and
then restoring the processor context after the PAL com-
pletes. Output from PALs is available through the filesys-
tem interface when processor context is restored.

We implemented the Infection Payload Loader as a
PAL, which takes the encrypted and signed payload, the
symmetric key used to encrypt the payload encrypted with
the binding key, and the binding key blob as parameters.
We used the PolarSSL [15] embedded cryptographic li-
brary for all our cryptographic primitives (AES encryp-
tion, RSA encryption and signing, SHA-1 hashing and
SHA-1 HMACs).

We ported code from TrouSerS to handle use of
TPM capabilities that were not implemented by the
Flicker TPM library (TPM OIAP, TPM LoadKey2,
TPM Unbind). We replaced the TrouSerS code depen-
dence on OpenSSL with PolarSSL. We fixed two small
bugs in Flicker’s TPM driver that seem to be absent from
the recent 0.5 release due to use of an alternate driver.

5.3 Payloads

We implemented payloads for the three examples from
Section 2.2. Here we describe the payloads in detail.

Domain generation The domain generation payload
provides key functionality for a secure command and con-
trol scheme, in which malware generates time-based do-
main names unpredictable to an analyst. As input, the
payload takes the contents of a package release manifest
for the Ubuntu distribution, and its associated signature.
The payload verifies the signature against a public key
within itself. If the signature verifies correctly, the pay-
load extracts the date contained in the manifest. The pay-
load outputs an HMAC of the date with a secret key con-
tained in the encrypted payload.

Assuming an analyst is unable to provide correctly
signed package manifests for future dates, this payload
provides a secure random value unpredictable to an ana-
lyst, but generatable in advance by the payload’s author
(because the author knows the secret HMAC key). Such
a random value can be used as a seed in a domain genera-
tion scheme similar to that of the Conficker worm.

Data exfiltration The data exfiltration payload searches
for sensitive data (we looked for credit card numbers), and
returns results in encrypted form. To avoid analysis by
correlating input with the presence or absence of output,
the payload generates some output regardless of whether
sensitive data is present in the file.

Timebomb This payload implements key cloaked func-
tionality necessary for a timed DDoS attack that keeps the

target and time secret until the attack begins. Like the do-
main generation payload, it uses signed package release
manifests to establish an authenticated current timestamp.
Once the payload has verified the signature on the mani-
fest, it extracts the date. If the resultant date is later than
a value encoded in the encrypted payload, it releases the
time-sensitive information as output. This payload out-
puts a secret AES key contained in the encrypted payload.
The key can be used to decode a file providing further in-
structions, such as the DDoS target, or a list of commands.

5.4 Evaluation

We tested our implementation on a Dell Optiplex 780 with
a quad-core 2.66 Ghz Intel Core 2 CPU with 4 GB of
RAM running Linux 2.6.30.5. We used a ST Microelec-
tronics ST19NP18 TPM, which is TCG v1.2 compliant.
Elapsed wallclock times for protocol phases are indicated
in Table 4. We used 2048-bit RSA encryption and 128-bit
AES encryption. The malicious payloads varied in size
from 2.5 KB for the command and control to 0.5 KB for
the text search.

Costs for infecting a machine
Action Time (s)
Infected Platform generates binding key 19.4 ± 11.2

Infected Platform generates AIK and credential
request

31.6 ± 17.9

Malware Distribution Platform processes re-
quest

0.07 ± 0

Infected Platform certifies key 5.9 ± 0.012

Infected Platform decrypts credential 6.0 ± 0.010

Malware Distribution Platform verifies proof 0.04 ± 0

Total 63.1 ± 22.2

Per-payload execution statistics Time (s)
MLE setup 1.05 ± 0.01

Time to decrypt payload 3.07 ± 0.01

Command and Control 0.008 ± 0

DDoS Timebomb 0.008 ± 0

Text Search 0.004 ± 0

Time system appears frozen 3.22

Total MLE execution time 4.27

Table 4: Performance of different phases. Error bars are stan-
dard deviations of sample sets. A standard deviation of “0” indi-
cates less than 1 ms. Statistics for the protocol up to late launch
were calculated from 10 protocol cycles run one immediatelyaf-
ter the other, while late launch payload statistics were calculated
from 10 other runs per payload, one immediately after the other.

The main performance bottleneck is TPM operations,
especially key generation. We verified that the significant
and variable duration of key generation was directly due
to underlying TPM operations. The current performance,
one minute per machine infection, allows rapid propaga-

12

Program Purpose Correspondence to Protocol
tpm genkey Generates the binding key and output key blob to a file.Infection Keygen step 1
aik gen Generates an AIK and accompanying certification re-

quest. Outputs key blob and request to files.
Infection Keygen steps 2– 4

tpm certify Certifies the binding key under the AIK. Infection Proof step 5
infected Two modes:proofwhich generates a proof of authen-

ticity to convince the Malware Distribution Platform to
distribute an encrypted payload andpayload which
loads the binding key and decrypts the payload.

proof: Infection Proof steps 1–4 and
6, payload: Infection Hidden Exe-
cutesteps 1–3

platform Two modes:req which handles a request from the In-
fected Platform and returns an encrypted credential and
proofwhich validates a proof of authenticity from the
Infected Platform

req: Malware Distribution Platform
Certificate Handler, proof: Mal-
ware Distribution Platform Payload
Delivery

Table 3: Programs that comprise the key establishment part of the implementation and their functions.

tion of malware (hosts can be compromised concurrently).
Performance is most important for operations on the

Malware Distribution Platform, which may have to ser-
vice many clients in rapid succession, and in the final
payload decryption, as it occurs in late launch with the op-
erating system suspended. The payload decryption must
occur per payload execution, which in our motivating sce-
narios will be at least daily. The slowest operation on the
Malware Distribution Platform can handle tens of clients
per second with no optimization whatsoever.

We provide several numbers that characterize late
launch payload performance. The MLE setup phase of
the Flicker kernel module involves allocation of memory
to hold an MLE and configures MLE-related structures
like page tables used bySINIT to measure the MLE. The
Flicker module then launches the MLE, which in our case
contains the Infection Payload Loader PAL. This PAL first
decrypts the payload, which occupies most MLE execu-
tion time for our experiments. The payload runs, the MLE
exits, and the kernel module restores prior system state.

The late launch environment execution can be as long
as 3.2 s, which is long enough that an alert user might no-
tice the system freeze (since the late launch environment
suspends the OS) and become suspicious. Then again,
performance variability is a hallmark of best-effort operat-
ing systems like Linux and Windows. The rootkit control
program can use heuristics to launch the payload when
the platform is idle or the user is not physically present.

Payload decryption performance is largely based on the
speed of asymmetric decryption operations performed by
the TPM. The use of TPM key blobs here involves two
asymmetric decryption operations, one to allow use of
the private portion of the key blob (which is stored in
encrypted form), and one to use this private key for de-
crypting an encrypted symmetric key. Symmetric AES
decryption took less than 1% of total payload decryption
time in all cases, and is unlikely to become more costly
even with significant increases in payload size: We found
that a 90 KB AES decryption with OpenSSL (36× larger

than our largest payload), took only 650 microseconds.

6 Defenses

We now examine defenses against the threat of using
TPMs to cloak malware. We present multiple potential
directions for combating this threat. In general, we find
that there is no clear “silver bullet” and many of the pro-
posed solutions require tradeoffs in terms of the security
or usability of the TPM system.

6.1 Restricting late launch code

One possibility would be to restrict the code that can be
used in late launch. For example, a system could im-
plement a security layer to trap onSENTER instructions.
With recent Intel hardware, a hypervisor could provide
admission control, gaining control wheneverSENTER is
issued and protecting its memory via Extended Page Ta-
ble protections. The hypervisor could enforce a range of
policies with its access to OS and user state. For example,
the TrustVisor [39] hypervisor likely enforces a policy to
deny all MLEs since its goal is to implement an indepen-
dent software-based trusted computing mechanism.

Restricting access to the hardware TPM is one of the
best approaches to defending against our attack, but such
a defense is not trivial. Setup and maintenance of this
approach may be difficult for a home or small business
user. Use of a security layer is more plausible in an enter-
prise or cloud computing environment. In that setting, the
complexity centers on policy to check whether an MLE is
permitted to execute in late launch. The most straightfor-
ward methods are whitelisting or signing MLEs. These
raise additional policy issues about what software state to
hash or sign, how to revoke hashes or keys, and how to
handle software updates. Any such system must also log
failed attempts and delay or ban abusive users.

It is possible to use other system software to control ad-
mission to MLEs.SINIT, which itself is signed by Intel,
could restrict admission to MLEs since all late launches
first transfer control toSINIT. However, this would re-

13

quireSINIT, which is low-level system software, to en-
force access control policy. It would most likely do this by
only allowing signed MLEs to run. There are then two op-
tions: either MLEs must be signed by a key that is known
to be trusted, orSINIT must also contain code for key
management operations like retrieving, parsing, and vali-
dating certificates. In the former case, the signing key is
most likely to be from Intel; Intel chipsets can already ver-
ify Intel-signed data [12]. However, this makes third party
development more difficult; code signing is most effective
when updates are infrequent and the signing party is the
code developer. For late launch MLEs, it is quite possi-
ble that neither will be the case. The latter case, having
SINIT manage keys, is likely to be difficult to imple-
ment, especially sinceSINIT cannot use OS services.

6.2 TPM Manufacturer Cooperation

A malware analyst could defeat our attack with the co-
operation of TPM manufacturers. Our attack uses keys
certified to be TPM-controlled to distinguish communi-
cation with a legitimate TPM from an analyst forging re-
sponses from a TPM. A TPM manufacturer cooperating
with analysts and certifying illegitimate EKs would defeat
our attack, by allowing the analyst to create a software-
controlled late-launch environment. However, any leak of
a certificate for a non-hardware EK would undermine the
security of all TPMs (or at least all TPMs of a given man-
ufacturer). Malware analysis often occurs with the coop-
eration of government, academic, and commercial institu-
tions, which raises the probability of a leak.

Alternately, a manufacturer might selectively decrypt
data encrypted with a TPM’s public EK on-line upon re-
quest. Such a service would compromise the Privacy CA
protocol at the point where the Privacy CA encrypts a
credential with the EK for a target TPM-containing plat-
form. The EK decryption service would allow an analyst
to obtain a credential for a forged (non-TPM-generated)
AIK. This is less dangerous than the previous situation,
as now only parties that trust the Privacy CA (in our case
the Malware Distribution Platform) could be mislead by
the forged AIK. However, this approach also places ad-
ditional requirements on the manufacturer, in that it must
respond to requests for decryption once per Malware Dis-
tribution Platform, rather than once per analyst. Addition-
ally, the EK decryption service has potential for abuse by
an analyst if legitimate Privacy CAs are deployed.

6.3 Attacks on TPM security

Cloaking malware with the TPM relies on the security of
TPM primitives. A compromise of one or more of these
primitives could lead to the ability to decrypt or read an
encrypted payload. For instance, the exclusive access of
late launch code to system DRAM is what prevents ac-
cess to decrypted malicious payloads. A vulnerability in
the signed code module that implements the late launch

mechanism (and enables this exclusive access) could al-
low an analyst to read a decrypted payload [55].

Physical access to a TPM permits other attacks. Some
TPM uses are vulnerable to a reset of the TPM without re-
setting the entire system, by grounding a pin on the LPC
bus [32]. Late launch, as used by our malware, is not vul-
nerable to this attack. LPC bus messages can be eaves-
dropped or modified [37], revealing sensitive TPM infor-
mation. In addition, sophisticated physical deconstruc-
tion of a TPM can expose protected secrets [51]. While
TPMs are not specified to be resistant to physical attack,
the tamper-resistant nature of TPM chips indicates that
physical attacks are taken seriously. It is likely that phys-
ical attacks will be mitigated in future TPM revisions.

One potential analysis tool is a cold boot attack [29]
in which memory is extracted from the machine during
operation and read on a different machine. In practice
the effectiveness of cold boot attacks will be tempered by
keeping malicious computations short in duration, as it
is only necessary to have malicious payloads decrypted
while they are executing. Additionally, it may be possible
to decrypt payloads in multiple stages , so only part of the
payload is decrypted in memory at any one time. Mem-
ory capture is a serious concern for data privacy in legit-
imate TPM-based secure computations as well. It is im-
portant for future trusted computing solutions to address
this issue, and the addition of mechanisms that defend
against cold boot attacks would increase the difficulty of
avoiding our attack.

6.4 Restricting deployment and use of TPMs

Our attack requires that the malware platform knows SRK
and owner AuthData values for the TPM. The danger of
malware using TPM functionality could be mitigated by
careful control of AuthData. Existing software that uses
the TPM takes some care to manage these values. For
instance, management software used in Microsoft Win-
dows prevents the user from storing owner AuthData on
the same machine as the TPM. Instead, it can be saved to
a USB key or printed in hard copy. Administrators who
need TPM functionality would ideally understand these
restrictions and manage these values appropriately. Aver-
age users will be more difficult to educate.

The malware platform could initialize a previously
uninitialized TPM, thereby generating the initial Auth-
Data. For our test machines, TPM initialization is pro-
tected by a single BIOS prompt that can be presented on
reboot at the request of system software. To prevent an in-
experienced user from initializing a TPM at the behest of
malicious software, manufacturers could require a more
involved initialization process. The BIOS could require
the user to manually enter settings to enable system soft-
ware to assert physical presence, rather than presenting a
single prompt. More drastically, a user could be required
to perform some out-of-band authentication (such as call-

14

ing a computer manufacturer) to initialize the TPM. How-
ever, all of these security features inhibit TPM usability.

6.5 Detection of malware that uses TPMs

Traffic analysis is a common malware detection tech-
nique. Malware that uses the TPM will cause usage pat-
terns that might be anomalous and therefore could come
to the attention of alert administrators. Of course detect-
ing anomalous usage patterns is a generally difficult prob-
lem, especially if TPM use becomes more common.

7 Related Work
Malware Analysis. TPM cloaking is a new method for
frustrating static and dynamic analysis that is more pow-
erful than previous methods because it uses hardware to
prevent monitoring software from observing unencrypted
code. The most effective analysis technique would be a
variant on the cold boot attack [29], where the infected
machine’s DRAM chips were removed during the late
launch session. Note that a late launch session generally
only lasts seconds. If the DRAM chips are pulled out too
early, the payload will still be encrypted; too late and the
payload is scrubbed out of memory. The analyst could
also snoop the memory bus or the LPC bus. Note that
both of these are hardware techniques, and they are both
effective attacks against legitimate TPM use.

Our protocol does run substantial malware outside the
cloaked computation. All such malware is susceptible to
static analysis [30, 47, 23], dynamic analysis [19, 58, 36],
hybrids [24, 35] , network filtering [16, 49], and network
traffic analysis [20]. To effectively use the TPM the mal-
ware must only decrypt its important secrets within the
cloaked computation.

Polymorphic malware changes details of its encryption
for each payload instance to avoid network filtering. Our
system falls partially into the polymorphic group as we
encrypt our payload. However dynamic analysis tech-
niques [36] are effective against polymorphic encryption
because such schemes must decrypt their payload during
execution. Conficker as well as other modern malware use
public key cryptography to validate or encrypt a malicious
payload [43], as our cloaking protocol does.
Trusted Computing. The TPM can be used in a vari-
ety of contexts to provide security guarantees beyond that
of most general-purpose processors. For instance, it can
be used to protect encryption keys from unauthorized ac-
cess, as in Microsoft’s BitLocker software [7], or to attest
that the computer platform was initialized in some known
state, as in the OSLO boot loader [32]. Flicker [40] uses
TPM late launch functionality to provide code attestation
for pieces of code that are instantiated by, and return to, a
potentially untrusted operating system. Bumpy [41] uses
late launch to protect sensitive input from potentially un-
trusted system software. Our prototype malware platform
uses the same functionality, adding encryption to conceal

the code payload.
Cryptography. Using cryptography for data exfiltration
was suggested by Young and Yung [59]. Bethencourt,
Song, and Waters [18] showed how using singly homo-
morphic encryption one could do cryptographic exfiltra-
tion. However, the techniques were limited to a single
keyword search from a list ofknownkeywords and the use
of cryptography significantly slowed down the exfiltration
process. Using fully homomorphic encryption [28] we
could achieve expressive exfiltration, however, the pro-
cess would be too slow to be viable in practice.

8 Conclusions

Malware can use the Trusted Platform Module to make its
computation significantly more difficult to analyze. Even
though the TPM was intended to increase the security of
computer systems, it can undermine computer security
when used by malware.

We explain several ways that TPM-enabled malware
can be defeated using good engineering practice. TPMs
will continue to be widely distributed only if they demon-
strate value and do not bring harm. Establishing and dis-
seminating good engineering practice for TPM manage-
ment to both IT professionals and home users is an essen-
tial part of the TPM’s future.

Acknowledgments

We thank the anonymous reviewers for their comments on
an earlier version of this paper, and Jonathan McCune for
access to the Flicker source code. This research is sup-
ported by NSF CNS-0905602, a Google research award,
and the NSF Graduate Research Fellowship Program.

Waters is supported by NSF CNS-0915361 and
CNS-0952692, AFOSR Grant No: FA9550-08-1-0352,
DARPA PROCEED, DARPA N11AP20006, Google Fac-
ulty Research award, the Alfred P. Sloan Fellowship, and
Microsoft Faculty Fellowship.

References
[1] MyDoom.C Analysis, 2004. http://www.secureworks.

com/research/threats/mydoom-c/.
[2] W32/MyDoom@MM, 2005. http://vil.nai.com/vil/

content/v_100983.htm.
[3] W32/AutoRun.GM. F-Secure, 2006. http://http:

//www.f-secure.com/v-descs/worm_w32_
autorun_gm.shtml.

[4] Encryption of Sensitive Unclassified Data at Rest on Mo-
bile Computing Devices and Removable Storage Media,
2007. http://iase.disa.mil/policy-guidance/
dod-dar-tpm-decree07-03-07.pdf.

[5] Owning Kraken Zombies, a Detailed Discussion, 2008.
http://dvlabs.tippingpoint.com/blog/2008/
04/28/owning-kraken-zombies.

[6] TrouSerS - The open-source TCG Software Stack, 2008.http:
//trousers.sourceforge.net.

[7] BitLocker Drive Encryption Step-by-Step Guide for Windows
7, 2009. http://technet.microsoft.com/en-us/
library/dd835565(WS.10).aspx.

15

[8] Intel Trusted Execution Technology (Intel TXT) MLE Developer’s
Guide, 2009.

[9] ST Microelectronics, 2010. Private communication.
[10] AMD64 Architecture Programmer’s Manual, Volume 2: System

Programming, 2010.
[11] Embedded security. Infineon Technologies, 2010.http://

www.infineon.com/tpm.
[12] Intel 64 and IA-32 Architectures Software Developer’sManual,

Volume 2B, 2010.
[13] Microsoft Security Bulletin Search, 2010. http://www.

microsoft.com/technet/security/current.aspx.
[14] Trusted Computing Whitepaper. Wave Systems Corporation,

2010. http://www.wave.com/collateral/Trusted_
Computing_White_Paper.pdf.

[15] PolarSSL Open Source embedded SSL/TLS cryptographic library,
2011.http://polarssl.org.

[16] AH K IM , H., AND KARP, B. Autograph: Toward Automated, Dis-
tributed Worm Signature Detection. InUSENIX Security(2004).

[17] BERGER, S., CACERES, R., GOLDMAN , K. A., PEREZ, R.,
SAILER , R., AND VAN DOORN, L. vTPM: Virtualizing the
Trusted Platform Module. InUSENIX Security(2006).

[18] BETHENCOURT, J., SONG, D., AND WATERS, B. Analysis-
Resistant Malware. InNDSS(2008).

[19] BRUMLEY, D., HARTWIG, C., LIANG , Z., NEWSOME, J.,
SONG, D., AND Y IN , H. Automatically Identifying Trigger-based
Behavior in Malware. InBotnet Detection. Springer, 2008.

[20] CABALLERO , J., POOSANKAM, P., KREIBICH, C., AND SONG,
D. Dispatcher: Enabling Active Botnet Infiltration Using Auto-
matic Protocol Reverse-engineering. InCCS(2009).

[21] CHEN, L., AND RYAN , M. Attack, Solution, and Verification for
Shared Authorisation Data in TCG TPM. vol. 5983 ofLecture
Notes in Computer Science. Springer, 2010.

[22] CHIEN, E. CodeRed Worm, 2007.http://www.symantec.
com/security_response/writeup.jsp?docid=
2001-071911% -5755-99.

[23] CHRISTODORESCU, M., AND JHA , S. Static Analysis of Executa-
bles to Detect Malicious Patterns. InUSENIX Security(2003).

[24] COMPARETTI, P. M., SALVANESCHI , G., KIRDA , E., KOL-
BITSCH, C., KRUEGEL, C., AND ZANERO, S. Identifying Dor-
mant Functionality in Malware Programs. InIEEE S&P(2010).

[25] DOLEV, D., DWORK, C., AND NAOR, M. Nonmalleable cryp-
tography.SIAM J. Comput. 30, 2 (2000), 391–437.

[26] FALLIERE , N., MURCHU, L. O., AND CHIEN, E. W32.Stuxnet
Dossier, 2010. Version 1.3 (November 2010).

[27] FINNEY, H. PrivacyCA, 2009. http://www.privacyca.
com.

[28] GENTRY, C. Fully homomorphic encryption using ideal lattices.
In STOC(2009), pp. 169–178.

[29] HALDERMAN , J. A., SCHOEN, S. D., HENINGER, N., CLARK -
SON, W., PAUL , W., CAL , J. A., FELDMAN , A. J.,AND FELTEN,
E. W. Lest we remember: Cold boot attacks on encryption keys.
In USENIX Security(2008).

[30] HU, X., CKER CHIUEH, T., AND SHIN , K. G. Large-scale Mal-
ware Indexing Using Function-call Graphs. InCCS(2009).

[31] KASSLIN, K., AND FLORIO, E. Your Computer is Now
Stoned (...Again!). The Rise of the MBR Rootkits, 2008.
http://www.f-secure.com/weblog/archives/
Kasslin-Florio-VB2008.pdf.

[32] KAUER, B. OSLO: Improving the security of trusted computing.
In USENIX Security(2007).

[33] K IVITY , A. kvm: The Linux Virtual Machine Monitor. InOttawa
Linux Symposium(2007).

[34] KNOWLES, D., AND PERRIOTT, F. W32.Blaster.Worm, 2003.
http://www.symantec.com/security_response/
writeup.jsp?docid=2003-081113% -0229-99.

[35] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA ,
E., ZHOU, X., AND WANG, X. Effective and Efficient Malware
Detection at the End Host. InUSENIX Security(2009).

[36] KOLBITSCH, C., HOLZ, T., KRUEGEL, C., AND K IRDA , E.

Inspector Gadget: Automated Extraction of Proprietary Gadgets
from Malware Binaries. InIEEE S&P(2010).

[37] KURSAWE, K., SCHELLEKENS, D., AND PRENEEL, B. Ana-
lyzing Trusted Platform Communication. InECRYPT Workshop,
CRASH CRyptographic Advances in Secure Hardware(2005).

[38] MATROSOV, A., RODIONOV, E., HARLEY, D., AND MALCHO,
J. Stuxnet Under the Microscope, 2010. Revision 1.2.

[39] MCCUNE, J. M., LI , Y., QU, N., ZHOU, Z., DATTA , A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB Re-
duction and Attestation. InIEEE S&P(2010).

[40] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K., AND

ISOZAKI, H. Flicker: An Execution Infrastructure for TCB Mini-
mization. InEuroSys(2008).

[41] MCCUNE, J. M., PERRIG, A., AND REITER, M. K. Safe passage
for passwords and other sensitive data. InNDSS(2009).

[42] M ITCHELL , C. J., Ed.Trusted Computing. Institution of Electrical
Engineers, 2005.

[43] NAZARIO , J. The Conficker Cabal Announced, 2009.
http://asert.arbornetworks.com/2009/02/
the-conficker-cabal-announced/.

[44] O’DEA, H. The Modern Rogue - Malware with a Face. InVirus
Bulletin Conference(2009).

[45] PORRAS, P., SAIDI , H., AND YEGNESWARAN, V. An Analysis
of Conficker’s Logic and Rendezvous Points, 2009.http://
mtc.sri.com/Conficker/.

[46] POST, A. W32.Storm.Worm, 2007.http://www.symantec.
com/security_response/writeup.jsp?docid=
2001-060615% -1534-99.

[47] PREDA, M. D., CHRISTODORESCU, M., JHA , S.,AND DEBRAY,
S. A Semantics-based Approach to Malware Detection. InPOPL
(2007).

[48] SACCO, A. L., AND ORTEGA, A. A. Persistent BIOS
Infection. In CanSecWest Applied Security Conference
(2009). http://www.coresecurity.com/content/
Persistent-Bios-Infection.

[49] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE , S. Auto-
mated Worm fingerprinting. InOSDI (2004).

[50] STRASSER, M., STAMER, H., AND MOLINA , J. TPM Emulator,
2010.http://tpm-emulator.berlios.de/.

[51] TARNOVSKY, C. Hacking the Smartcard Chip. InBlack Hat
(2010).

[52] TRUSTEDCOMPUTING GROUP. TPM Main Specification, 2007.
[53] WHEELER, D. A. SLOCCount. http://www.dwheeler.

com/sloccount/, 2001.
[54] WOJTCZUK, R. Exploiting large memory management vulnera-

bilities in Xorg server running on Linux. Invisible Things Lab,
2010.

[55] WOJTCZUK, R., RUTKOWSKA, J., AND TERESHKIN, A. An-
other Way to Circumvent Intel Trusted Execution Technology. In-
visible Things Lab, 2009.

[56] WOJTCZUK, R., AND TERESHKIN, A. Attacking Intel BIOS.
Invisible Things Lab, 2010.

[57] WONG, C., BIELSKI , S., MCCUNE, J. M., AND WANG, C. A
Study of Mass-mailing Worms. InACM Workshop On Rapid Mal-
code(2004).

[58] Y IN , H., SONG, D., EGELE, M., KRUEGEL, C.,AND K IRDA , E.
Panorama: Capturing System-wide Information Flow for Malware
Detection and Analysis. InCCS(2007).

[59] YOUNG, A., AND YUNG, M. Malicious Cryptography: Exposing
Cryptovirology. Wiley, 2004.

16

