
Privacy in encrypted content distribution using

private broadcast encryption

Adam Barth
abarth@cs.stanford.edu

Dan Boneh∗

dabo@cs.stanford.edu

Brent Waters
bwaters@cs.stanford.edu

Abstract

In many content distribution systems it is important to both restrict access of content to au-
thorized users and to protect the identities of these users. We discover that current systems
for encrypting content to set of users are subject to attacks on user privacy. We propose a
new mechanism, private broadcast encryption, to protect the privacy of users of encrypted file
systems and content delivery systems. We construct a private broadcast scheme, with a strong
privacy guarantee against an active attacker, while achieving ciphertext length, encryption time,
and decryption time comparable with the non-private schemes currently used in encrypted file
systems.

1 Introduction

In both large and small scale content distribution systems it is often important to make certain
data available to only a select set of users. In commercial content distribution, for example, a
company may wish for its digital media to be available only to paying users. On a smaller scale,
suppose a department’s faculty need to access the academic transcripts of graduate applicants. If
electronic copies of the transcripts were stored on the department’s fileserver, they should only be
accessible by the faculty and other users (e.g. other students).

It is often equally important to protect the identities of the users who are able to access protected
content. The clientele of a website that distributes adult material likely would wish to keep their
identities private. Commercial sites will often not want to disclose identities of customers because
competitors might use this information for targeted advertising. If an employee is up for promotion,
a company might wish to hide who is on his promotion committee and therefore who is able to
read his performance evaluation file.

The most commonly used method for protecting both electronic content and the privacy of
users who can access it is to employ a trusted server. Whenever a user wishes to access content,
the user contacts the server, authenticates him or herself, and is sent the content over a secure
channel. As long as the server behaves correctly, only authorized users will be able to access the
content and which users are authorized to access which content will not be divulged, even to other
authorized users.

While this simple method of data protection is adequate for some applications, it has some
significant drawbacks. First, both data content and user privacy are subject to attack if the server
is compromised. Additionally, content providers will often not distribute their data directly, but
for economic reasons outsource distribution to third parties or use peer-to-peer networks. In this
case, the content owners will no longer be directly in control of data distribution.

∗Supported by NSF.

1

(a) A : {KF }KA
; B : {KF }KB

; C : {KF }KC
; {F}KF

(b) {KF }KB
; {KF }KC

; {KF }KA
; {F}KF

Figure 1: Simple constructions of broadcast encryption systems. File F is encrypted under the key
KF , which in turn is encrypted under the public keys of users A, B, and C. (a) The scheme typically
used by encrypted file systems reveals the set of users authorized to access F . (b) Modifying this
scheme by removing the labels, using a key-private cryptosystem, and randomly reordering the
users yields a private broadcast scheme resistant to passive attacks on recipient privacy. These
simple schemes are both vulnerable to active attacks, however.

For these reasons we examine the problem of efficiently distributing encrypted content in such
a way that only authorized users can read the content and that the identities of authorized users
is hidden. We study this problem for the case of encrypted file systems. However, our results can
be generalized to larger content distribution systems.

Encrypted File Systems. Encrypted file systems implement read access control by encrypting
the contents of files such that only users with read permission will be able to perform decryption.
Typical encrypted file systems, such as Windows EFS, encrypt each file under its own symmetric key,
KF , and then encrypt the symmetric key separately under the public keys of the users authorized
to access the file (Figure 1(a)).

While these systems protect the content of the file from unauthorized users, they do little to
protect the identities of users allowed to access the file. Who can access a file, however, is often
more sensitive than the contents of the file itself. Suppose, for example, a university provides a
document on its file server concerning a substance abuse program to the students enrolled in the
program. To maintain the privacy of the students, the set of authorized users should be kept
private, not only from outsiders, but from the students in the group as well.

Current implementations expose the identities of authorized users in two different ways. First,
the individual public key encryptions of the symmetric key, KF , are labeled with the identity of
the user as shown in Figure 1(a). This is done so that an authorized user A can quickly locate
the encryption of KF encrypted under A’s public key. Second, even if these labels were removed,
an adversary can examine the actual ciphertexts to learn information about the user’s identity.
For example, suppose an attacker wants to determine whether user A or user B has access to a
particular file. Further, suppose user A has a 1024-bit key while user B has a 2048-bit key. Then, by
examining the encryption of KF , specifically the ciphertext length, an attacker can easily determine
which of the two has access. Thus, the encryptions of KF leak some information about who has
access to the file.

Our goal is to provide recipient privacy—an encrypted file should hide who can access the
content. We approach the problem of recipient privacy by introducing a notion we call private
broadcast encryption. A private broadcast encryption scheme is used to encrypt a message to
several recipients while hiding the identities of the recipients, even from each other.

The most straightforward construction of a private broadcast encryption system is to modify
the scheme currently used in encrypted file systems by removing the identifying labels and using a
public key system that does not reveal the public key associated with a ciphertext, such as ElGamal
or Cramer-Shoup [1] (Figure 1(b)). While this scheme is secure against passive attacks on recipient

2

(a) c1; c2; c3; {F}KF
(b) c1; c2; c3; {F ′}KF

Figure 2: Active attack on recipient privacy. (a) The sensitive document, F , encrypted for three
recipients. If the attacker is a recipient, he or she learns KF . (b) The malicious document created
by an attacker, which can be decrypted by the same users as the original document, contains F ′ of
the attacker’s choice. Recipients of the original document can be discovered by tricking them into
decrypting the malicious document.

privacy, an active attacker can mount a chosen-ciphertext attack and learn whether or not a user
can decrypt a message.

Returning to our example, consider an active attacker who is authorized to decrypt the substance
support group document, where the list of authorized users should be private. Now, suppose that
the attacker wishes to determine whether Alice can read the document. Because the attacker is a
legitimate recipient, he or she knows KF and can maliciously prepare a different encrypted file by
replacing the encrypted contents of the original file with content of the attacker’s choice, encrypted
under KF . Alice is able to read this maliciously created file if, and only if, she can read the original
file. For example, a malicious legitimate recipient of the substance abuse document could copy the
document header, but replace the document body with the message “please visit the following URL
for free music,” as illustrated in Figure 2. This will expose the members of the substance support
group because they are the only ones who can read the message and visit the given URL.

While we could avoid this attack by giving separate encryptions for each user of the bulk data,
this would greatly increase the overall storage demands, as the contents of each file would need to
be replicated for each authorized user. We solve this problem by building efficient private broadcast
encryption systems that are secure under chosen-ciphertext attacks. Our construction achieves
storage space, encryption time, and decryption time comparable to schemes currently employed in
encrypted file systems.

The remainder of the paper is organized as follows. We define private broadcast encryption in
Section 2, giving a game definition of recipient privacy under a chosen-ciphertext attack. In Sec-
tion 3, we examine the PGP encryption system and demonstrate attacks against recipient privacy.
We present our private broadcast encryption constructions in Section 4. Finally, we conclude in
Section 5.

1.1 Related work

The notion of key privacy in the public key setting was first formalized by Bellare et. al. [1]. A public
key encryption system is key-private if ciphertexts do not leak information about the public keys for
which they were encrypted. Specifically, an adversary viewing a chosen message encrypted under
one of two public keys is unable to guess (with non-negligible advantage) which public key was used
to produce the ciphertext. The authors formalize these definitions for key privacy under chosen-
plaintext attack (IK-CPA) and chosen-ciphertext attacks (IK-CCA). They show that ElGamal and
Cramer-Shoup are secure under these definitions, respectively, when public keys share a common
prime moduli.

3

Our constructions will use a key-private public key system as a component in building a private
broadcast encryption system. One interesting observation is that the straightforward construction
of a private broadcast encryption scheme using an IK-CCA secure encryption scheme does not
result in a private broadcast encryption system resistant to chosen-ciphertext attacks.

Previous work on broadcast encryption has focused on increasing collusion resistance and re-
ducing the length of the ciphertext [6, 11, 10]. We differ from these works in that we focus on
maintaining the privacy of users, but do not attempt to achieve ciphertext overhead that is sub-
linear in the number of users. Whether private broadcast encryption systems can be realized with
smaller ciphertext overhead is an open problem.

2 Private broadcast encryption

In this section, we define private broadcast encryption in terms of its correctness and security
properties. A private broadcast encryption system consists of four algorithms.

• I ← Setup(λ). Given a security parameter λ, generates global parameters I for the system.

• (pk, sk)← Keygen(I). Given the global parameters I, generates public-secret key pairs.

• C ← Encrypt(S, M). Given a set of public keys S = {pk1, . . . , pkn} generated by Keygen(I)
and a message M , generates a ciphertext C.

• M ← Decrypt(sk, C). Given a ciphertext C and a secret key sk, returns M if the corresponding
public key pk ∈ S, where S is the set used to generate C. Decrypt can also return ⊥ if pk 6∈ S
or if C is malformed.

Note that users can run the Keygen algorithm to generate public-secret key pairs for themselves.
For ElGamal-like systems the global parameters I simply contain the prime p and generator g ∈ Zp.

The definition above departs from the standard definition of broadcast encryption in that the
standard definition explicitly provides S, the set of recipients, to the Decrypt algorithm. Here we
omit this parameter in order to capture systems that hide S. There is no loss of generality, however,
as S can be included in the ciphertext, C, directly. We use the standard definition of semantic
security of a broadcast encryption system (see for example [4]).

Recipient privacy. We define a notion of recipient privacy under a chosen-ciphertext attack for
private broadcast encryption systems using a game between a challenger and an adversary. This
game captures the fact that the adversary cannot distinguish a ciphertext intended for recipient set
S0 from a ciphertext intended for recipient set S1. We require that S0 and S1 have the same size so
that the ciphertext length will not give away the intended set. To model a chosen-ciphertext attack
we allow the adversary to issue decryption queries. More precisely, the game defining privacy of a
private broadcast encryption system is as follows:

Init: The challenger runs I ← Setup(λ) and gives the adversary the global parameters I. The
adversary outputs S0, S1 ⊆ {1, . . . , n} such that |S0| = |S1|.

Setup: The challenger generates keys for each potential recipient, (pki, ski) ← Keygen(I), and
sends to the adversary each pki for i ∈ S0 ∪ S1 as well as each ski for i ∈ S0 ∩ S1.

4

Phase 1: The adversary makes decryption queries of the form (u, C) and the challenger returns
the decryption Decrypt(sku, C). The adversary may repeat this step as desired.

Challenge: The adversary gives the challenger a message M . The challenger picks a random
b ∈ {0, 1}, runs C∗ ← Encrypt({pki | i ∈ Sb},M), and sends ciphertext C∗ to the adversary.

Phase 2: The adversary makes more decryption queries, with the restriction that the query ci-
phertext C 6= C∗. The adversary may repeat this step as desired.

Guess: The adversary outputs its guess b′ ∈ {0, 1}.

We say that the adversary wins the game if b′ = b.

Def. A private broadcast encryption system is (t, q, n, ε)-CCA-Recipient-Private if, for all t-time
adversaries A, the probability A wins the above game using recipient sets of size at most n and
making at most q decryption queries is at most 1/2 + ε.

Def. A private broadcast encryption system is (t, n, ε)-CPA-Recipient-Private if it is (t, 0, n, ε)-
CCA-Recipient-Private.

A standard hybrid argument [2] shows that our definition also implies unlinkability among sets of
ciphertexts. We also observe our definition of recipient privacy allows C to leak the number of
recipients, just as semantic security allows a ciphertext to leak the length of the plaintext. If we
wish to hide the number of recipients we can always pad the recipient set to a given size using
dummy recipients.

Just as public key encryption is a special case of broadcast encryption, key privacy is a special
case of recipient privacy. In key privacy [1] the adversary is restricted to n = 1, that is to using
recipient sets S0 and S1 of size 1, mirroring the restriction on the public key Encrypt algorithm
to encrypting only for a single recipient. Therefore, the IK-CCA definition is equivalent to our
recipient privacy definition with n = 1.

3 Broadcast encryption in practice

In this section, we make our discussion of privacy problems in broadcast encryption systems con-
crete by examining two broadcast encryption systems used in practice. We study the widely used
OpenPGP [13] encryption standard and the GNU Privacy Guard (GPG) [15] implementation.

3.1 The PGP encryption system

While OpenPGP is commonly associated with encrypted email, it can be used as a general encryp-
tion system. When encrypting a message to multiple recipients, OpenPGP functions as a broadcast
encryption system: it encrypts each message under a symmetric key K and then encrypts K to
each user using his or her public key. Either ElGamal or RSA encryption can be used for the public
key encryption.

5

C:\gpg>gpg --verbose -d message.txt
gpg: armor header: Version: GnuPG v1.2.2 (MingW32)
gpg: public key is 3CF61C7B
gpg: public key is 028EAE1C

Figure 3: Transcript of an attempted GPG decryption of a file encrypted for two users. The
identities of the users are completely exposed by their key IDs. These key IDS can then be translated
to real identities by a reverse lookup on a public key directory.

Key IDs and recipient privacy. In standard operation, GPG completely exposes recipient
identities. Figure 3 contains a transcript of an attempted GPG decryption of a message created
with a PGP implementation. The message reveals the key IDs of two BCC recipients. A key’s ID is
essentially its hash. PGP uses key IDs for two purposes. First, public keys in the Web of Trust are
indexed by key ID. For example, the MIT PGP Public Key Server [9], when queried for a specific
name, returns the key ID, date, name, and email address of principals with the specified name.
A principal’s public key can then be retrieved by querying the server by key ID. Second, key IDs
are used in ciphertexts to label encryptions of the message key (Figure 1(a)). These labels speed
decryption because the decryptor knows his or her key ID and is able to locate the encryption of the
message key he or she is able to decrypt. Unfortunately, attackers also know key IDs. Moreover,
after examining a ciphertext, an attack need only query a public key server to learn the full name
and email address of the owner of the associated public key.

Throwing key IDs. The OpenPGP standard allows implementation to omit key IDs from cipher-
texts by replacing them with zeros (ostensibly to foil traffic analysis [5]). This option is available in
GPG using the --throw-keyids command line option, but is disabled by default and thus will not
be used if the command is not given. Omitting key IDs increases the amount of work required to
decrypt a message. A message without key IDs, encrypted to n recipients, contains n unidentified
ciphertexts. To decrypt the message, every recipient must attempt to decrypt each ciphertext, thus
performing, on average, n/2 decryption operations.

Even when omitting key IDs, GPG does not achieve recipient privacy. When GPG generates
an ElGamal public key, it does so in the group of integers modulo a random prime. Thus, different
principals are very likely to have public keys in different groups, making GPG encryptions vulnerable
to passive key privacy attacks. These attacks can be directly translated into attacks on CPA
recipient privacy. GPG could defend against these attacks by using the same prime for every
public key, for example one standardized by NIST [12].

Active attack. While omitting key IDs and standardizing the group used for public keys achieves
CPA recipient privacy, it would not achieve CCA recipient privacy. An active attacker could
determine the recipients as follows. Suppose Charlie, the attacker, received the encrypted message
{K}KA

||{K}KC
||{M}K and wishes to determine whether Alice or Bob was the other recipient. As

Charlie possesses his secret key K−1
C , he can recover K, the message key. He can then encrypt a

new message M ′ for the same recipient as the original message, {K}KA
||{M ′}K , by copying the

first portion of the header and encrypting M ′ under K. When Alice decrypts this message, she will
obtain M ′, whereas when Bob decrypts this message, he will not obtain M ′.

6

This type of attack is potentially much more dangerous than the passive attack in practice. If
an attacker wishes to determine a recipient from a large pool of recipients, the passive attack will
likely only eliminate some fraction of them. However, in an active attack the attacker could probe
each of the potential receivers individually and learn exactly which ones were recipients.

4 Constructions

In this section, we present two constructions for private broadcast encryption that achieve CCA
recipient privacy. The first construction is a generic construction from any asymmetric key encryp-
tion scheme that has key indistinguishability from chosen-ciphertext attacks (IK-CCA) [1]. The
disadvantage of this first scheme is that decryption time is linear in the number of recipients because
the decryption algorithm must try each ciphertext component until it successfully decrypts.

Our second construction is a specialized system in which the decryption algorithm performs
one asymmetric key operation and uses the result to find the ciphertext component intended for
it (if one exists). This construction is more efficient for decryptors than the first because no trial
decryptions are required. We describe our two schemes and give intuition for their security. Formal
proofs are given in the appendices.

Both constructions require the underlying public key scheme to be strongly correct. Essentially,
a public key scheme is strongly correct if decrypting a ciphertext encrypted for one key with another
key results in ⊥, the reject symbol, with high probability. While this property is not ensured by
the standard public key definitions, most CCA-secure cryptosystems, such as Cramer-Shoup, are
strongly correct. Before giving a formal definition of strong correctness, we define a function that
generates a random encryption of a given message and then returns the decryption of that ciphertext
with a different random key.

Test(M): I ← Init(λ); (pk0, sk0)← Gen(I); C ← Encpk0
(M); (pk1, sk1)← Gen(I); Return Decsk1(C).

Def. A public key scheme (Init,Gen,Enc,Dec) is ε-strongly-correct if, for all M , the probability
Test(M) 6= ⊥ is at most ε.

4.1 Generic CCA recipient private construction

We realize our first construction by modifying the simple CPA recipient private construction (Fig-
ure 1(b)). First, the encryption algorithm uses a public key encryption scheme that has key-
indistinguishability under CCA attacks (IK-CCA) to encrypt the ciphertext component for each re-
cipient. Second, Encrypt generates a random signature and verification key for a one-time, strongly1

unforgeable signature scheme [8, 14] such as RSA full-domain hash. The encryption algorithm in-
cludes the verification key in each public key encryption and then signs the entire ciphertext with
the signing key.

The decryption algorithm attempts to decrypt each ciphertext component. If the public key
decryption is successful (i.e. returns non-⊥), Decrypt will continue decryption only if the signature
verifies under the extracted verification key. Intuitively, an adversary cannot extract a ciphertext
component from the challenge ciphertext and use it in another ciphertext because it will be unable

1In a strongly unforgeable signature scheme, an adversary cannot output a new signature, even on a previously
signed message.

7

to sign the new ciphertext under the same verification key. We now give a formal description of
our scheme.

Given a strongly-correct, IK-CCA public key scheme (Init,Gen,Enc,Dec), a strongly existentially
unforgeable signature scheme (Sig-Gen,Sig,Ver), and semantically secure symmetric key encryption
and decryption algorithms (E,D), we construct a private broadcast encryption system as follows.

Setup(λ): Return Init(λ).

Keygen(I): For each user i, run (pki, ski)← Gen(I), return (pki, ski) to user i, and publish pki.

Encrypt(S, M):

1. (vk, sk)← Sig-Gen(λ).

2. Choose a random symmetric key K.

3. For each pk ∈ S, cpk ← Encpk(vk||K).

4. Let C1 be the concatenation of the cpk, in random order.

5. C2 ← EK(M).

6. σ ← Sigsk(C1||C2).

7. Return the ciphertext C = σ||C1||C2.

Decrypt(sk, C): Parse C as σ||C1||C2 and C1 = c1|| · · · ||cn. For each i ∈ {1, . . . , n}:

1. p← Dec(sk, ci).

2. If p is ⊥, then continue to the next i.

3. Otherwise, parse p as vk||K.

4. If Vervk(C1||C2, σ), return M = DK(C2).

If none of the ci decrypt and verify, return ⊥.

Notice the time taken by Decrypt to execute could leak information. Recipient privacy relies on
the attacker being unable to determine whether a decryption fails because p = ⊥ or because the
signature did not verify. Implementations must take care to prevent such timing attacks. We state
our main theorem as follows. We prove it in Appendix A.

Theorem 1. If (Init,Gen,Enc,Dec) is both ε1-strongly-correct and (t, q, ε2)-CCA-key-private and
(Sig-Gen,Sig,Ver) is (t, 1, ε3)-strongly-existentially-unforgeable, the above construction is (t, q, n, n(ε1+
ε2 + ε3))-CCA-recipient-private.

The semantic security of our scheme follows in a straightforward manner. Because our scheme
achieves broadcast encryption by concatenating public key encryptions, each user can generate his
or her own public key and have an authority issue a certificate binding it to his or her identity.

8

4.2 CCA recipient privacy with efficient decryption

To decrypt a ciphertext in the CCA recipient private scheme above, a recipient must attempt to
decrypt n/2 components of the ciphertext, on average, where n is the number of recipients. Non-
private schemes improve performance by labeling ciphertext components with recipient identities,
directing the attention of decryptors to appropriate ciphertext components. However, these labels
reveal the identities of the recipients.

In this section, we construct a private broadcast encryption system that requires only a constant
number of cryptographic operations in order to decrypt, regardless of the number of recipients. To
achieve this we use a group G where the computational Diffie-Hellman problem is believed to be
hard, but there exists an efficient algorithm for testing Diffie-Hellman tuples. For example, we
could use groups with efficiently computable bilinear maps [7, 3].

Our scheme is similar to the previous one with small modifications. First, each user i in this
scheme has a public key value gai , for which he or she knows the exponent ai, in addition to the
public key for the encryption scheme. The encryption algorithm first chooses a random exponent r
and labels the ciphertext component for user i with H(grai), where the hash function H is viewed
as a random oracle. When decrypting, user i first calculates H(grai) and then uses the result to
locate the ciphertext component encrypted for him or her. User i need only perform one public
key decryption to recover the message.

Let G be a group, with generator g, where the computational Diffie-Hellman problem (CDH)
is hard and the decisional Diffie-Hellman problem (DDH) is easy and let H : G → {0, 1}λ be
a hash function that is modeled as a random oracle (for some security parameter λ). Given a
strongly correct, CCA-key-private public key scheme (Init,Gen,Enc,Dec), a strongly existentially
unforgeable signature scheme (Sig-Gen,Sig,Ver), and semantically secure symmetric key encryption
and decryption algorithms (E,D), we construct a private broadcast encryption system as follows.

Setup(λ): Return Init(λ).

Keygen(I): For each user i, run (pki, ski) ← Gen(I) and choose a random exponent ai. Let pk′i =
(pki, g

ai) and sk′i = (ski, ai). Return (pk′i, sk
′
i) to user i and publish pk′i.

Encrypt(S, M):

1. (vk, sk)← Sig-Gen(λ).

2. Choose a random symmetric key K.

3. Choose a random exponent r and set T = gr.

4. For each (pk, ga) ∈ S, cpk ← H(gra)||Encpk(vk||gra||K).

5. Let C1 be the concatenation of the cpk, ordered by their values of H(gra).

6. C2 ← EK(M)

7. σ ← Sigsk(T ||C1||C2).

8. Return the ciphertext C = σ||T ||C1||C2.

Decrypt((sk, a), C): Parse C as σ||T ||C1||C2 and C1 = c1|| · · · ||cn.

1. Calculate l = H(T a) = H(gra).

2. Find cj such that cj = l||c. If no such j exists, return ⊥ and stop.

9

3. Calculate p← Dec(sk, c).

4. If p is ⊥, return ⊥ and stop.

5. Otherwise, parse p as vk||x||K.

6. If x 6= T a, return ⊥ and stop.

7. If Vervk(T ||C1||C2, σ), return M = DK(C2); otherwise, return ⊥.

Observe that the DDH algorithm is not used in either the encryption or decryption algorithms. It
is needed only by the simulator in our proof, given in Appendix B.

Theorem 2. If (Init,Gen,Enc,Dec) is ε1-strongly-correct, (t, q, ε2)-CCA-semantically-secure and
(t, q, ε3)-CCA-key-private, (Sig-Gen,Sig,Ver) is (t, 1, ε4)-strongly-existentially-unforgeable, CDH is
(t, ε5)-hard in G, and DDH is efficiently computable in G, then the above construction is (t, q, n, n(ε1+
2ε2 + ε3 + ε4 + 2ε5))-CCA-recipient-private.

5 Conclusions

In many content distribution applications it is important to protect both the content being dis-
tributed and the identities of users allowed to access content. Currently, encrypted file systems fail
to protect the privacy of users. User privacy is compromised because the underlying encryption
methods disclose the identities of a ciphertext’s recipients. Many such systems simply give away the
identities of the users in the form of labels attached to the ciphertext. Additionally, those systems
that attempt to avoid disclosing the recipient’s identity, such as GnuPG, are vulnerable to having
their user’s privacy compromised by a new chosen-ciphertext attack that we introduced.

Our proposed mechanism, private broadcast encryption, enables the efficient encryption of a
message to multiple recipients without revealing the identities of the recipients of the message, even
to other recipients. We presented two constructions of private broadcast encryption systems. Both
of these satisfy a strong definition of recipient privacy in the face of active attacks. The second
additionally achieves decryption in a constant number of cryptographic operations, performing
comparably to current systems that do not provide user privacy.

References

[1] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption.
In ASIACRYPT ’01: Proceedings of the 7th International Conference on the Theory and
Application of Cryptology and Information Security, pages 566–582. Springer-Verlag, 2001.

[2] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security
proofs and improvements. In Proceedings of Eurocrypt 2000, volume 1807 of LNCS, page 259,
2000.

[3] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO
’01: Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryp-
tology, pages 213–229, London, UK, 2001. Springer-Verlag.

[4] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In CRYPTO ’05, 2005.

10

[5] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. RFC 2440: OpenPGP message format,
1998. http://www.ietf.org/rfc/rfc2440.txt.

[6] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO ’93: Proceedings of the 13th Annual
International Cryptology Conference on Advances in Cryptology, pages 480–491, New York,
NY, USA, 1994. Springer-Verlag New York, Inc.

[7] A. Joux and K. Nguyen. Separating Decision Diffie-Hellman from Diffie-Hellman in crypto-
graphic groups. Technical Report eprint.iacr.org/2001/003, 2001.

[8] L. Lamport. Constructing digital signatures from a one way function. Technical report, SRI
International, 1979.

[9] MIT. MIT PGP public key server, 2005. http://pgpkeys.mit.edu/.

[10] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers.
In Proceedings of Crypto ’01, volume 2139 of LNCS, pages 41–62, 2001.

[11] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial cryptography 2000,
volume 1962 of LNCS, pages 1–20. Springer-Verlag, 2000.

[12] National Institute of Standards and Technology. Digital signature standard (DSS), 2000.
http://www.csrc.nist.gov/publications/fips/.

[13] OpenPGP. The OpenPGP alliance home page, 2005. http://www.openpgp.org/.

[14] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC ’90:
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pages
387–394, New York, NY, USA, 1990. ACM Press.

[15] Werner Koch. The gnu privacy guard, 2005. http://www.gnupg.org/.

A Proof of first construction

Assume (Init,Gen,Enc,Dec) is both ε1-strongly-correct and (t, q, ε2)-CCA-key-private. Assume
(Sig-Gen,Sig,Ver) is (t, 1, ε3)-strongly-existentially-unforgeable. We first prove a lemma that the
scheme is CCA-recipient-private when the adversary selects recipient sets that differ by only one
recipient. The general case then follows by a hybrid argument.

Claim 3. For all t-time adversaries A, the probability A, in the recipient privacy game using the
construction from Section 4.1, makes a decryption query containing a signature that verifies with
vk from the challenge ciphertext is at most ε3.

Proof. Given an adversary A that makes a decryption query with a forged signature with probability
greater than ε3, we construct a machine B that breaks the (t, 1, ε3)-strong-existential-unforgeability
of the signature scheme as follows.

The algorithm B first receives a forgeability challenge vk. Next, B exactly simulates Init and
Setup, generating all public-secret key pairs itself. If any signature in Phase 1 is a forgery under
vk then B can immediately output a forgery. Notice that B is able to decrypt each message to
search for forgeries because it has all the secret keys. In the Challenge phase, B runs the Encrypt

11

algorithm, choosing a symmetric key itself and using vk as the signature key. It uses the oracle in
the game it is playing to compute the signature, σ, for the ciphertext. If, in Phase 2, the adversary
produces a decryption query that contains a signature σ′ 6= σ that verifies with vk, B presents σ′

as a forgery.

B will win the strong unforgeability game with at least the probability that A presents a
ciphertext that has a forged signature. Therefore, by our assumption about the signature scheme,
A must present this with probability less than ε3.

Lemma 4. For all t-time adversaries A, the probability A wins the n-recipient privacy game is
at most ε2, given that A does not output a forged signature, the simulation does not output a
ciphertext component that violates strong correctness, and that A outputs recipient sets S0 and S1

with |S0 ∩ S1| = n− 1.

Proof. Given an adversary A that wins the n-recipient privacy game with probability greater than
ε2 without forging signatures, we construct a machine B that breaks the (t, q, ε2)-CCA-key-privacy
of the public key scheme as follows.

Init: The algorithm B receives I, pk0, and pk1 from the key privacy challenger, and gives I to A.

Setup: B runs Keygen for each recipient in S0 ∩ S1 and gives the public keys to A, keeping the
secret keys for itself. Additionally, B gives the public keys pk0 and pk1 to A.

Phase 1: Given a decryption oracle query (u, C), B runs Decrypt directly for u ∈ S0∩S1 using the
secret keys it has. Otherwise, if the adversary requests decryption from the user corresponding
to pk0 or pk1, B uses the decryption oracle to simulate decryption.

Challenge: Given message M from A, B runs Encrypt until the call to Enc for either pk0 or pk1.
B simulates this encryption by asking the key privacy challenger for a challenge ciphertext c∗

on the appropriate message. B then continues running Encrypt, producing an entire challenge
ciphertext C∗. Notice B does not know the value of b it is simulating. It is the key privacy
challenger who selects b.

Phase 2: Given an oracle query (u, C), with C 6= C∗, B must simulate the decryption algorithm
in order to respond. If u ∈ S0 ∩ S1, then B possesses sku and can run Decrypt directly using
its knowledge of the secret keys.

Otherwise B must decrypt for the user corresponding to pk0 or pk1. To do this B first parses
the ciphertext as σ||C1||C2 and C1 = c1|| · · · ||cn. It then simulates the Decrypt routine. For
each ci 6= c∗ it encounters, B makes a decryption request to the key privacy challenger. If
ci = c∗ for some i, the simulation ignores c∗. To see why this is a correct simulation, we
consider two cases.

1. If the key privacy challenger selected b = 1 and u ∈ S0, then the key privacy challenger
encrypted c∗ for pk1 and B is attempting to decrypt c∗ with pk0. In this case, the actual
attempted decryption would output ⊥ because c∗ is encrypted for another user and this
experiment is conditioned on the challenger not outputting a challenge ciphertext that
violates strong correctness. (Symmetrically, if b = 0 and u ∈ S1, then c∗ was encrypted
for pk0 and B is attempting to decrypt with pk1.) Thus, Decrypt should ignore c∗.

12

2. If the key privacy challenger selected b = 0 and u ∈ S0 (symmetrically, b = 1 and u ∈ S1),
then the decryption of c∗ will contain the same vk used in the challenge ciphertext C∗.
By the condition that A does not forge signatures, the σ contained in C does not verify
with vk because C 6= C∗. Thus Decrypt should ignore c∗.

In either case, B’s simulation of Decrypt correctly ignores c∗. Thus, B can simulate decryption.

Guess: B forwards the adversary’s guess b′ to the key privacy challenger.

In this experiment B will perfectly simulate the game for A, where the coin flip in the recipient
privacy game will be the same as the coin flip, b, in the IK-CCA game that B plays. Therefore, B
will win the IK-CCA game if and only if A wins its game.

Lemma 5. No adversary who outputs recipient sets S0 and S1 with |S0 ∩S1| = n− 1 can break the
(t, q, n, ε1 + ε2 + ε3)-CCA-recipient-privacy of the construction in Section 4.1.

Proof. The probability that A wins the recipient privacy game (with |S0 ∩ S1| = n − 1) at most
the probability A wins the recipient privacy game when it outputs no forgeries and correctness is
not violated plus the probability A outputs a forgery plus the probability that strong correctness
is violated. By our assumptions, Claim 3, and Lemma 4, we have that A does not break the
(t, q, n, ε1 + ε2 + ε3)-CCA-recipient-privacy of the construction in Section 4.1.

Theorem 6. The construction in Section 4.1 is (t, q, n, n(ε1 + ε2 + ε3))-CCA-recipient-private.

Proof. Given an adversary A, we show that A cannot break (t, q, n, n(ε1 + ε2 + ε3))-CCA-recipient-
privacy by a hybrid reduction argument. Suppose A outputs recipient sets S0 and S1. For each
i = 0, . . . ,m = n−|S0∩S1|, define Li to be S0 with the first i elements (that are not in S1) replaced
with the first i elements of S1 (that are not in S0). Thus L0 = S0, Lm = S1, and Li∩Li−1 = n− 1.

Suppose A successfully breaks recipient privacy with advantage greater than n(ε1 + ε2 + ε3).
Then, there exists an i, with 1 ≤ i ≤ m ≤ n, such that A distinguishes the game Li−1 from Li

with probability greater than (ε1 + ε2 + ε3). However, we could then use A to break a recipient
privacy game with two sets S′

0 and S′
1 that differ by only one element. We define S′

0 to consist of
the elements of S0 ∩ S1, the first i− 1 elements of S0 that are not in S1, and the last m− (i− 1)
elements from S1 that are not in S0. Similarly, we define S′

1 to consist of the elements of S0 ∩ S1,
the first i elements in S0 that are not in S1, and the last m − i elements from S1 that are not in
S0. We can then use A to break this game with advantage greater than (ε1 + ε2 + ε3) by simulating
the game in which it distinguishes Li−1 from Li (i.e. by withholding the extra secret keys from A).

However, by Lemma 5, no adversary can distinguish S′
0 from S′

1 with such advantage. Therefore,
A cannot distinguish S0 from S1 with advantage greater than n(ε1 + ε2 + ε3).

B Proof of second construction

Assume (Init,Gen,Enc,Dec) is ε1-strongly-correct, (t, q, ε2)-CCA-semantically-secure, and (t, q, ε3)-
CCA-key-private. Assume (Sig-Gen,Sig,Ver) is (t, 1, ε4)-strongly-existentially-unforgeable. Assume
CDH in G is (t, ε5)-hard and algorithm D decides DDH in G. We follow the hybrid reduction strat-
egy from the previous section, but the case in which the recipient sets differ by only one recipient
is more involved. Observe that the proof of Claim 3 applies to the construction in Section 4.2.

13

Lemma 7. For all t-time adversaries A, the probability A wins the n-recipient privacy game is
at most 2ε2 + ε3 + 2ε5, given that A does not output a forged signature, the simulation does not
output a ciphertext component that violates strong correctness, and A outputs recipient sets S0 and
S1 with |S0 ∩ S1| = n− 1.

Proof. Given a t-time adversary A that wins the n-recipient privacy game with probability greater
than 2ε2 + ε3 + 2ε5 without forging signatures, we proceed by a sequence of hybrid experiments.
Let v be the unique element of S0 − S1, let w be the unique element of S1 − S0, and let c be the
ciphertext component that corresponds to either v or w. The hybrids are as follows:

L0: The challenge ciphertext C∗ is correctly encrypted for recipient set S0.

L1: c is replaced with H(grav)||Encpkv
(R), where R is a random string of the same length as

vk||grav ||K.

L2: c is replaced with R′||Encpkv
(R), where R′ is a random string of length λ.

L3: c is replaced with R′||Encpkw
(R). Notice the component is now encrypted for w instead of v.

L4: c is replaced with H(graw)||Encpkw
(R).

L5: c is replaced with H(graw)||Encpkw
(vk||graw ||K). Notice the challenge ciphertext is now cor-

rectly encrypted for recipient set S1.

A t-time adversary can distinguish L0 from L1 with advantage at most ε2 as follows. Given a
t-time adversary A1, we construct a machine B1 that simulates either L0 or L1. We use B2 to
break CCA-semantic-security.

Init: B1 receives I and pk from the CCA semantic security challenger, and gives I to A1.

Setup: B1 runs Keygen, but replaces the public key for user v with pk.

Phase 1: B1 simulates Decrypt using the challenger’s decryption oracle for pk.

Challenge: B1 uses the challenger to encrypt a challenge c∗ containing either vk||grav ||K or R.
B1 uses this ciphertext in its simulation of Encrypt.

Phase 2: B1 simulates Decrypt using the challenger’s decryption oracle for pk. If B1 would need
to query the challenger on c∗, it instead assumes the decryption is vk||grav ||K.

Guess: B1 forwards the adversary’s guess b′ to the challenger.

If the challenger encrypts vk||grav ||K, then B2 is simulating L1. Otherwise, the challenger encrypts
R, and B2 is simulating L2. Therefore, by our assumption about CCA-semantic-security, A2 can
distinguish L1 from L2 with advantage at most ε2.

A t-time adversary can distinguish L1 from L2 with advantage at most ε5 as follows. Given a
t-time adversary A2, we construct a machine B2 that simulates the recipient privacy game with A2,
except it uses a CDH challenger to generate ga and gb. If A2 or B2 ever makes an oracle query x
for which D, the DDH algorithm, accepts (g, ga, gb, x), B2 suspends the simulation and reports the
computed CDH value x. B2 picks a random b ∈ {0, 1}. If b = 0, then B runs an exact simulation
of L1. Otherwise, it runs the following simulation of L2.

14

Init: B2 exactly simulates Init.

Setup: B2 exactly simulates Setup, except that instead of choosing gav at random, it uses the
value ga supplied by the CDH challenger.

Phase 1: Given a decryption query (u, C), if u 6= v, B2 exactly simulates decryption (using infor-
mation from Setup). Otherwise, B2 processes each cj = l||c in turn, as follows:

1. Calculate p← Dec(skv, c).

2. If p is ⊥, continue to the next j.

3. Otherwise, parse p as vk||x||K.

4. If D accepts (g, gr, ga, x) and l = H(x), then

(a) if the signature verifies with vk, then return the decryption of message using K,
(b) else output ⊥.

Challenge: Instead of choosing gr at random, B2 uses gb as gr. B2 is able to simulate Encrypt on
users u 6= v because it knows au from the Setup step. To prepare the ciphertext component
for v, B2 proceeds as follows:

1. Pick a random R of the same length as vk||g||K.

2. c∗ ← Encpkv
(R).

3. Pick a random R′ ∈ {0, 1}λ.

4. c← R′||c∗.

Phase 2: Given a decryption query (u, C), B2 simulates decryption in the same manner as it
simulates Phase 1, except if u = v and some cj = l||c∗. If that cj is processed, then return
the decryption of the message using K if l = R′. Otherwise, continue to the next j.

Guess: B2 records A2’s guess.

A2 can distinguish the simulation of L0 from L1 only if it queries the random oracle on gab or
queries the decryption oracle on a ciphertext containing gab. Either query, however, causes B2 to
suspend the simulation and win the CDH game (notice the query to H in step 4 of the decryption
simulation). Thus, A2 can distinguish L0 from L1 with advantage at most ε5.

A t-time adversary can distinguish L2 from L3 with advantage at most ε3 as follows. Given
a t-time adversary A3, we construct a machine B3 that simulates either L1 or L2. Machine B3

functions in a manner analogous to machine B from Lemma 4, with the following exceptions.

1. B3 uses the construction from Section 4.2 (modified to use R and R′ as appropriate).

2. In the Phase 1 and 2 steps, B3 examines only correctly labeled ciphertexts.

Notice B3 can prepare a ciphertext component for either v or w because the label and the plaintext
are independent of the recipient. If the key privacy challenger encrypts for v, then B3 is simulating
L2. Otherwise, the challenger encrypts for w and B3 is simulating L3. Therefore, by our assumption
about CCA-key-privacy, A3 can distinguish L2 from L3 with advantage at most ε3.

The case for distinguishing L3 from L4 is symmetric with the case for distinguishing L1 from
L2. The case for distinguishing L4 from L5 is symmetric with the case for distinguishing case L0

15

from L1. If A can distinguish S0 = L0 from S1 = L5 with probability greater than 2ε2 + ε3 + 2ε5,
then A can distinguish L0 from L1 with probability greater than ε2, or L1 from L2 with probability
greater than ε5, or L2 from L3 with probability greater than ε3, or L3 from L4 with probability
greater than ε5, or L4 from L5 with probability greater than ε2. However, none of these cases can
hold. Therefore, A cannot distinguish S0 from S1 with advantage greater than 2ε2 + ε3 + 2ε5.

Theorem 8. The scheme in Section 4.2 is (t, q, n, n(ε1+2ε2+ε3+ε4+2ε5))-CCA-recipient-private.

Proof. This theorem follows from the same argument as Theorem 6.

16

