A Convenient Method for Securely Managing Passwords

J. Alex Halderman
Princeton University
jhalderm@cs.princeton.edu

ABSTRACT

Computer users are asked to generate, keep secret, and re-
call an increasing number of passwords for uses including
host accounts, email servers, e-commerce sites, and online
financial services. Unfortunately, the password entropy that
users can comfortably memorize seems insufficient to store
unique, secure passwords for all these accounts, and it is
likely to remain constant as the number of passwords (and
the adversary’s computational power) increases into the fu-
ture. In this paper, we propose a technique that uses a
strengthened cryptographic hash function to compute secure
passwords for arbitrarily many accounts while requiring the
user to memorize only a single short password. This mecha-
nism functions entirely on the client; no server-side changes
are needed. Unlike previous approaches, our design is both
highly resistant to brute force attacks and nearly stateless,
allowing users to retrieve their passwords from any location
so long as they can execute our program and remember a
short secret. This combination of security and convenience
will, we believe, entice users to adopt our scheme. We dis-
cuss the construction of our algorithm in detail, compare
its strengths and weaknesses to those of related approaches,
and present Password Multiplier, an implementation in the
form of an extension to the Mozilla Firefox web browser.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; K.4.4
[Computers and Society]: Electronic Commerce—Secu-
rity

General Terms

Design, Security, Human Factors

Keywords

Password security, website user authentication

1. INTRODUCTION

Logging in with usernames and passwords has become one
of the most ubiquitous and most reviled rituals of the In-
ternet age. On the web, passwords are used by publica-
tions (nytimes.com), blogs (slashdot.org), webmail providers

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2005, May 10-14, 2005, Chiba, Japan.

ACM 1-59593-046-9/05/0005.

Brent Waters
Stanford University
bwaters @cs.stanford.edu

Edward W. Felten
Princeton University
felten@cs.princeton.edu

(gmail.com), e-commerce sites (amazon.com, ebay.com), and
financial institutions (etrade.com). Elsewhere, they serve as
authentication for Internet service providers, email servers,
and local and remote host accounts.

Users are asked to generate, memorize, and keep secret
a growing number of passwords as they join new password-
protected sites over time. Since at least 1997 [6], this trend
has been recognized as both a nuisance and a security risk.
Research has shown that typical users can be trained to
select and remember a single secure password [8], but mul-
tiplying this dozens or hundreds of times is sure to push the
physiological limitations of human memory. Users face a
difficult dilemma: they can either stretch their limited men-
tal storage by choosing simpler passwords or reusing them
across sites, or they can resort to memory aids, such as writ-
ing passwords down or using password management soft-
ware. Unfortunately, the inconvenience of available software
has prompted many frustrated users (including, regrettably,
the authors) to resort to the former, insecure strategy.

One common practice we have observed is to choose a
single strong password and use it for many accounts. The
danger, of course, is that an attacker could learn the pass-
word from one account and guess other places where the
user is likely to use the same login information. Since a
small number of web sites are used by a large fraction of
people, sites like Amazon, EBay, Yahoo!, and large finan-
cial institutions would be very likely guesses. There are
many possible avenues for opportunistically stealing pass-
words, including insider attacks, remote exploits of weakly
secured sites, key logging on public terminals, and web site
spoofing. Since sites that don’t store financial or billing in-
formation are likely to have lower security standards (such as
not using SSL for authentication), passwords can be stolen
and reused to compromise sites that guard more sensitive
data. Service providers can enforce policies about password
strength and they can track failed logins, but this insecure
password reuse behavior is very difficult to police.

Our solution avoids password reuse entirely while requir-
ing the user to memorize only a single master password.
Rather than store passwords chosen by the user, our scheme
applies a type of strengthened hash function to determinis-
tically generate high-entropy passwords every time they are
needed. This approach, we will argue, is both convenient
for users and highly secure, a combination not offered by
previous designs.

Convenience. Since we use a deterministic method to cal-
culate account passwords, users can run our software on
different machines to access their passwords from almost



any location. We rely on very little input—the user’s iden-
tity (perhaps an email address), the name of the account
(e.g., the server domain name), and a single master pass-
word chosen and memorized by the user. This means users
can transport in their heads all the inputs needed to regen-
erate their passwords. It also ensures that passwords for
different accounts will appear to be unrelated.

Security. While the idea of hash-based password schemes
is not new [6, 15], previous designs suffered from a poten-
tially serious weakness. An adversary who stole one account
password could conduct an offline brute force attack on the
user’s master password and thereby learn all the user’s other
passwords. The attack is simple; for every potential pass-
word the attacker applies the hashing algorithm for that par-
ticular site and compares it to the known site password. The
rate of an attacker’s search is limited by the time to compute
the hash function, which can be as low as one microsecond in
previous schemes. In this example, a conventional machine
can search a password space of size one million in under one
second. Given the low entropy of typical user passwords,
this kind of attack constitutes a major threat.

To protect against such attacks, we apply techniques for
“strengthening” user passwords to increase the cost of the
hash computation so that it incurs an acceptably small de-
lay for the user while substantially throttling brute force
attacks. In some attack scenarios, this increases the time
required to search a password space by a factor of approxi-
mately 10® compared to other approaches. We cache partial
results on the local system so that passwords can be gener-
ated quickly after an initial computation time of about 100
seconds when our program is first installed.

Browser integration. We implemented our scheme as an
extension to the Mozilla Firefox web browser. Browser inte-
gration of password management is important for multiple
reasons. First, most of a user’s passwords are likely to be
used for web sites. Building our system into the browser al-
lows it to work as conveniently and transparently as possible,
minimizing the burden imposed on the user and increasing
the chances that the system will be used in practice. Second,
browser integration allows our system to offer some protec-
tion against spoofing and phishing attacks, since by default
the password program will use the name of the server that
will actually receive the submitted password, even if an at-
tacker has tricked the user into believing she is connecting
to a different site [15, 5].

Outline In Section 2 we reference prior work related to
password systems and password strengthening. We describe
our novel password computation scheme in Section 3 and
discuss its security. In Section 4 we compare our approach
to related proposals in terms of security and convenience.
Section 5 focuses on a prototype implementation we have
developed, including discussion of the challenges we faced.
Finally, in Section 6 we conclude.

2. RELATED WORK

2.1 Password Systems

Recent years have seen a wide variety of proposed solu-
tions to the management password problem. One approach
is to create centralized, trusted authentication services, such
as Microsoft’s Passport initiative [1]. Users log in to these
services using a single password and are then authenticated

to participating web sites. Such systems have met limited
success for two reasons. First, they require technical changes
on the part of every site that uses them for authentication,
something even Microsoft has lacked the clout to achieve on
a widespread scale. Second, users have been cautious about
placing so much trust and privacy-sensitive information un-
der the control of a centralized system. Passport’s security
is analyzed in [12].

Several other schemes do not rely on server-side changes or
trusted third parties. These proposals operate in two general
ways: either they let users choose their own passwords and
then store them somewhere safe, or they assign fixed pass-
words for each site or service that can be computed when-
ever they are needed. The Password Safe application [16]
takes the former approach. It stores passwords and other
sensitive data in an encrypted database on the user’s ma-
chine, secured with a master password. The Lucent Personal
Web Assistant (LPWA) [6] applies the latter approach. It
operates as an HTTP proxy server that users access with
a master username and password. They can then tag web
site password fields to be automatically filled in with val-
ues derived from a hash-based function of the user’s master
password and the domain name of the web site. PwdHash, a
recently released utility by Ross et al. [15], applies a similar
hash-based technique on the client side. It functions as a
web browser plug-in, seamlessly replacing values submitted
via web site password fields with hashes of those values and
the site’s domain name. PwdHash is primarily intended to
provide a defense against “phishing” or “spoofing” attacks
by linking site passwords to the domain name of the server to
which they are actually sent. In Section 4 we give a detailed
comparison between the above schemes and our approach.

2.2 Strengthening Passwords

Researchers have long recognized that passwords guarded
by one-way functions were vulnerable to brute force attacks,
and that those functions should be made slower as a defense.
The classic example is the Unix crypt function examined in
1979 by Morris and Thompson [14]. However, this early
work was concerned with securing the password verification
procedure. Here we wish to strengthen the passwords them-
selves.

There have been two primary techniques for strengthening
low-entropy keys or passwords for protection against brute
force searching attacks. Both approaches share the com-
mon goal of increasing the (average) amount of computa-
tion needed to confirm or eliminate a guess of a user’s pass-
word. In both techniques the adversary has the output of a
strengthened hash function and wishes to know the master
password put into it.

The first kind of technique, as studied by Kelsey et al. [11],
derives a new password by repeatedly iterating a hash func-
tion on the original master password. Assuming there are no
shortcuts, an adversary’s best attack is to apply the function
to each guess herself. Therefore, if the scheme is parameter-
ized to use k iterations an adversary will need to compute k&
hash functions for each guess.

The second type of technique is due to Abadi et al. [3] and
Manber [13]. In these approaches, the password is concate-
nated with a random value known as a “password supple-
ment” before it is hashed. When checking a password guess
an attacker will need to perform a hash for each possible
supplement until the space is searched. Thus, if the pass-



word supplement space is of size k the attacker will need to
perform k hashes before she can completely eliminate one
guess as a possible password.

The primary drawback of this second approach is that a
regular user also needs to search through the space and needs
a method for determining if the password supplement is cor-
rect. If a strengthened password is integrated into a login
system, some extra data can be stored on the server and the
server can perform the search. However, if we don’t want
the client to carry state and we want to be compatible with
an oblivious web server, then the client will have no way to
test each password supplement short of attempting a login.
For these reasons we choose to build on the deterministic
approach of Kelsey et al., although it is possible that other
techniques could be modified to meet our requirements.

2.3 Password-Authenticated Key Exchange

There has been recent interest in the subject of password-
authenticated key exchange [10, 7, 4]. In these schemes
we have two parties that authenticate each other only by
a shared password and exchange a random session key. (We
contrast this with SSL and SSH connections where one party,
typically the server, has a known public key and the client
authenticates himself with a password over a secure channel
established using the public key.) The common goal of these
schemes is to protect the shared password, which will typi-
cally have low entropy, from being computed by an attacker
in an offline dictionary attack.

Our ideas (as described in Section 3) can be used with
password-authenticated key exchange if the password shared
by a client and server is generated from a hash of the client’s
master password and server name. In this case we will still
want to strengthen the password hashing function. The
properties of password-authenticated key exchange proto-
cols protect against a third party discovering the shared
password. However, the server can still execute a dictionary
search for the master password using the shared password
that it legitimately knows.

3. OUR SCHEME

Master passwords in a hash-based password generation
system can be particularly vulnerable to brute force attacks
due both to the low-entropy of passwords memorable by hu-
mans and to the ability of an adversary to execute a low-cost
offline password guessing attack. While there has been much
effort put into alternate password entry techniques that in-
crease memorable entropy (such as graphical passwords [9]),
common character-based passwords are still by far the dom-
inant mechanism. For this reason, our approach focuses on
making guessing more time-intensive so as to raise the cost
of a brute force attack.

A hash-based system is inherently vulnerable to an off-
line guessing attack of the master password by an adver-
sary who has obtained one or more of the user’s site spe-
cific passwords. This adversary can execute a simple brute
force attack by enumerating the potential master passwords
(possibly trying the most likely ones first) and for each one
executing the hash algorithm for that particular site and
comparing it to a compromised site-specific password. The
amount of time to execute this attack will be the number
of passwords tested multiplied by the execution time for
the hashing algorithm. If the algorithm can be computed
quickly, like SHA-1, this attack can be quite effective.

In our construction we limit the vulnerability to such an
attack by increasing the amount of time needed to compute
the hash function. In particular, we use the technique of
Kelsey et al. [11] of “key-stretching” via repeated applica-
tion of a hash function. The basic concept is that a regular
hash function, f(), is replaced with a new hash function,
f*0), where f*() is computed by repeatedly applying the
hash function k& times. For example, f3(a:) is equivalent to
computing f(f(f(z))). If P is the set of passwords the ad-
versary wants to test and we conjecture that for all p € P
the fastest way for an adversary to compute f(p) is by re-
peated applying the function, f(), k times, then the cost of
a brute force attack will increase by a factor of .

Of course, a regular user will have to perform the same
iterated hash computation when calculating a site-specific
password. If the delay is very long, the system will be too
inconvenient for most users. Thus, we must strike a bal-
ance between usability and security in our system design
and choice of parameters.

3.1 Construction

In our scheme we use two levels of iterated hash compu-
tations. The first level is executed once when a user begins
to use a new machine for the first time. This computation
is parameterized to take a relatively long amount of time
(around 100 seconds in our implementation), but its result
will be cached and for future password computations by the
same user.

The next level of computation is used to calculate site-
specific passwords. It takes as input the calculation pro-
duced from the first level computation as well as the name
of the site or account for which the user is interested in
generating a password.

Let f(x) be a secure hash function, then a site password
is calculated in the following two steps:

1. Set a variable, V, as:
V = f* (username : master_password)

In this function the concatenation of the username and
master_password is iterated k1 times. The concatena-
tion should be performed such that it can be uniquely
parsed into a username and master_password pair.

2. The site_password is then computed as:
site_password = f*2(site_name : master_password : V)

In practice the raw output of the iterated hash func-
tion will be translated into an acceptable password for
web sites and other accounts. As in the first step, the
concatenation is performed such that it parses into a
unique triple.

In the first step the iterated hash function is calculated on
the master_password and username. The username can be
any unique identifier a user chooses such as an email address.
The purpose of the username is to thwart dictionary attacks
where an attacker would compute and store the iterated
hashes on a list of candidate passwords. In our scheme the
username serves as salt and an attacker needs to compute
attacks on a per-username basis.

Since the intermediate value, V, is independent of any
particular website, it can be cached and used for computa-
tions for site specific passwords. In practice the value k1 will



Attack Type Offline | Hashes per Guess | Time per Guess
No Information No N/A N/A
Stolen Site Password Yes k1 + ko 100.1 s
Stolen Cache Yes k1 100 s
Stolen Cache and Password Yes ko 0.1s

Table 1: Difficulty of various brute force attacks against our scheme. The times per guess are for a fast
modern PC and assume the values of k; and k2 used in our implementation.

be set to be much larger than k2. We can set our parameters
such that whenever a user begins using the scheme she will
incur a relatively high delay for the first step to be computed,
but from that point on the value V' can be cached such that
any per-site calculation of step two will take a small amount
of time that is unnoticeable to the user. In practice we set
the parameters such that the first step takes around 100 sec-
onds on a fast modern machine and the second takes around
a tenth of a second. In this manner our scheme strives for
the best balance between security and usability.

3.2 Security Analysis

We will now analyze the effort needed by an attacker to
learn a user’s password for a particular site. We characterize
four different types of attackers by the type of information
they are able to obtain prior to the attack. The first at-
tacker has no information except the user’s username for
the targeted site. The second type of attacker additionally
knows the user’s site password for a site other than the tar-
geted site. The third type of attacker has the result of the
first level of computation by a user, but does not know any
site-specific passwords. The final type of attacker has both
the result of the first level of computation and a site-specific
password. Our analysis follows:

(1) No Information The first type of attacker has es-
sentially no information about a user. This type of
adversary is limited to performing an online attack
against the user’s password at the targeted site. This
adversary will typically be limited by a velocity con-
trol mechanism at the site which will constrain the
number of login attempts allowed per unit time and
might even disable the account if too many unsuccess-
ful attempts are logged. Since the adversary needs to
mount an active attack she faces a high risk of detec-
tion. If successful, she will only gain a site-specific
password, which cannot be directly used to attack the
user’s password for a second site. However, with this
site-specific password she can then become the second
type of attacker.

(2) Stolen Site Password The second type of attacker
we consider has access to the targeted user’s site pass-
word for at least a single site. The adversary might ob-
tain this information by convincing the user to log in to
a malicious website using a generated password, or else
she might compromise an insecure site. The attacker
can then perform an offline attack on the user’s mas-
ter password. She will need to spend p(k1 + k2) > pki1
hash computations to search for the master-password
where p is the number of attempts needed to guess a
password. Since this is an offline attack, the attacker
can execute it undetected.

In practice, we believe, this is the most important ad-
versary to guard against, because an opportunistic at-
tacker can easily learn some site passwords without
being detected. Since our scheme forces the adversary
to spend over a minute of computation time per at-
tempted password, the attack will be rate limited.

(3) Stolen Cache In the third type of attack we assume
that the attacker steals or compromises a user’s ma-
chine that has an intermediate value V stored locally.
The adversary can execute an offline attack where she
searches for the master password by executing the first
step in the algorithm for each possible password and
compares its output to the stolen value. Each guess
will take k1 hash iterations to test. Since k1 >> ko,
this attack should not be significantly more successful
than the previous one. Moreover, if the user is able to
detect that her machine was compromised or stolen,
then she would likely have enough time to change the
passwords on her accounts before the adversary could
break into them.

(4) Stolen Cache and Site Password For the final at-
tack we consider an attacker who obtains the user’s
cached intermediate value and at least one site pass-
word. This could occur if the adversary who stole the
machine also owned a malicious site that the user vis-
ited, or more likely, if the stolen machine also stored
site-specific passwords. The adversary will only need
to compute k2 hashes for each guess. Since k2 will be
set significantly lower than ki, the adversary will need
less time to search through a password space. How-
ever, the iterated hash function will still require much
more adversarial effort than a traditional hash-based
system.

Our scheme provides a high level of protection for Sce-
narios 1-3 and a reasonable amount for the strong attack
of Scenario 4. We note that it is important for users of our
scheme to prevent their site-specific passwords from being
cached locally so that an adversary who steals the machine
has to execute attack Scenario 3 rather than Scenario 4.
Indeed, our scheme replaces much of the utility of locally
stored passwords.

We summarize the results of our analysis in Table 1.

3.3 Iterated Hashing

The security of our scheme rests upon the belief that for
the adversary to search a password space of size n she must
compute n -k hashes. This assumption is heuristic in nature
and is similar to viewing the underlying hash function as a
Random Oracle. There has been some evidence that com-
pressing the iteration of hash functions is difficult. Kelsey



et al. [11] prove that if an adversary can compute a 2™ it-
erated hash with effort 2™ /¢ then the adversary can find a
hash function collision about £/2 times as fast as a naive
birthday attack.

While the result of Kelsey et al. is encouraging, in prac-
tice it must hold that the adversary cannot amortize the
cost of computing k iterations across all n passwords she
is interested in. Unfortunately, if we extend the Kelsey et
al. proof in the natural way, the best we can show is that
if an adversary can compute a set of n iterated hash func-
tions in time 2™ /¢ then that adversary can be used to find
a collision about £/(2n) times as fast as a naive birthday
attack.

In practice this reduction is not very strong (especially
when n approaches the number of iterations). In fact, even
this weak reduction requires the stronger assumption that
the adversary would be able to tell which input hashes corre-
sponded to the output hashes, which would not necessarily
be the case in practice. Therefore, it seems we need to as-
sume that the hash function behaves similarly to a Random
Oracle from the point of view of the adversary. We leave it
as an open problem to explore the difficulty of amortizing
the cost of iterated hashing.

4. COMPARISON WITH OTHER
APPROACHES

In this section we compare our approach to the client-side
password manager schemes described in Section 2: Password
Safe, LPWA, and PwdHash. We focus on their ease of use
and their security against various kinds of attacks.

4.1 Usability

To be widely adopted, a password manager system needs
to impose a minimal burden on end users, both when creat-
ing and retrieving passwords (the typical usage case) and in
less common, but potentially trickier situations, like chang-
ing passwords and migrating from unmanaged passwords.

Typical Usage PwdHash is the easiest scheme to use in
the typical case. Its operation is so seamless that were it in-
stalled in every browser since the foundation of the web,
users would notice virtually no difference aside from im-
proved security. The other approaches require a bit more
user interaction for each password operation. In our scheme
and Password Safe a user must explicitly interact with an
application, and users in LPWA must type in a special char-
acter string in a password field to signal the scheme to fill in
the password. The applications also have slightly different
usable scopes. LPWA and PwdHash are limited to web site
passwords, our approach protects user-selectable passwords
in general, and Password Safe additionally secures arbitrary
secrets like credit card numbers and PINs.

Password Changes and Migration All the hash-based
schemes (LPWA, PwdHash, and our scheme) have difficulty
with the transition from unmanaged passwords. Since these
schemes generate rather than store passwords, users need to
manually execute a password change for each password that
will be managed.

PwdHash, LPWA, and our scheme face similar challenges
dealing with password changes. In these techniques, web
passwords are deterministically computed from the site’s do-
main name and information provided by the user (such as

a master password) that is global across every site the user
visits. If this password is compromised or is required to be
changed periodically as a matter of policy, the user must
take additional steps to generate an alternate password. We
describe how we mitigate this problem in Section 5.

Password Safe most successfully copes with these situa-
tions. Since it stores encrypted passwords, it can accept
existing passwords rather than forcing the user to change
them, and it can handle future password changes in a simi-
larly straightforward manner.

Transportability To take the place of memorized pass-
words, password manager software needs to be easy to use
not only in the sense of simplicity but also that of availabil-
ity. The people most likely to need such a program—active
Internet users with accounts on many web sites—are par-
ticularly likely to demand access to their passwords from
multiple locations, such as from desktops at home and at
work, from laptops while traveling, and from public termi-
nals. The ease and reliability with which passwords can be
transported and accessed from remote locations is an im-
portant criterion for these applications.

Password Safe is not designed to be particularly trans-
portable; it can only be used where its encrypted password
store is accessible. The user is forced to carry this data
with her in a storage device (which can be inconvenient and
raises synchronization issues) or else to access it over a net-
work (which introduces a host of other security risks).

In contrast, the hash-based mechanisms were designed
with transportability as a central concern. Since they com-
pute passwords on demand rather than storing them, users
can shift from one machine to another by moving only a very
small amount of state—typically a single secret small enough
for the user to carry in her head. The hashing schemes are
distinguished by the means of accessing each software appli-
cation. LPWA, a web-based service, might be expected to be
the most accessible, but in fact it has been totally unavail-
able since 2000, when the service was taken offline. Since the
technology is proprietary, the scheme is effectively no longer
available to the public. This incident highlights the need
for temporal as well as spatial availability. PwdHash and
our scheme are distributed with complete source code, and
they are based on simple algorithms that can be expected to
outlast any particular implementation. Both these schemes
require the software to be distributed securely using trusted
servers, verified hashes, or cryptographic signatures. Unlike
the other schemes, our design imposes an initial delay of
about 100 seconds when a user runs it for the first time on
a new machine. While this may hinder availability in some
instances, we believe it is a worthwhile trade off for greatly
increased security.

PwdHash also supports a secondary “password” that can
be stored locally on the user’s machine and used for all web
sites. Users can trade transportability for security by setting
this value to a long secret string. While this would make
attacks on the master password much more difficult, the
value would need to be explicitly stored and transfered when
moving to another machine.

4.2 Security

Since these password management schemes are intended
to solve a security problem, perhaps the most important
single criterion by which to evaluate them is their resistance
to attacks. At the very least, they should be more successful



Scheme Stolen Password | Stolen Data | Stolen Data and Password
Password Safe N/A 35.2 (7.5) > 35.2 (7.5)

LPWA 43.5 (9.3) N/A 43.5 (9.3)
PwdHash < 45.8(9.7) 45.8 (9.7) 45.8 (9.7)

Our Scheme 19.2 (4.1) 19.2 (4.1) 25.9 (5.5)

Table 2: Bits of password entropy (or number of random lower case letters) needed to resist attack for an
average of one year under three attack scenarios.

Scheme Stolen Password | Stolen Data | Stolen Data and Password
Password Safe N/A 74.6 secs < 74.6 secs

LPWA 0.5 secs N/A N/A

PwdHash 0.1 secs 0.1 secs 0.1 secs

Our Scheme 116 days 116 days 2.8 hours

Table 3: Resistance to a dictionary attack under three attack scenarios—Times to test 100,000 password

guesses using a fast modern PC.

than a naive user who selects the same password for every
account, while the best we can hope for is to approach the
security of a user who memorizes and keeps secret a unique
random password for each account.

We compare the schemes under the three offline attack
scenarios described in Section 3. These are: (2) the ad-
versary has access to a stolen site password; (3) she has
access to stolen data from the user’s machine; and (4) she
has stolen both local data and a site password. In each case
the adversary wants to learn the target user’s password for
an additional site. To quantitatively compare the schemes,
we consider an example in which the adversary is willing to
devote one year of computation (on a typical fast PC) to
the attack, and we determine how many bits of password
entropy are required to fend her off at least half the time.

This might seem like a lot of power to devote to attacking
one user, but we believe it is a realistic worst-case assump-
tion. An intelligent adversary would choose her targets care-
fully, perhaps by stealing demographic information such as
income level from a compromised web site. She might also
determine ahead of time whether the potential target had
accounts on the most desirable sites, such as banks. To
speed things up, she could parallelize the attack using a dis-
tributed network of compromised machines. Breaking the
password manager’s security would hand the adversary the
keys to a user’s entire digital identity, so costly and sophis-
ticated attacks should be expected.

Password Safe, which stores an independent password for
every site, is not vulnerable in Scenario 2. Attacks are pos-
sible in Scenarios 3 and 4, when the adversary has access
to the encrypted password database. Existing software [17]
attempts to discover the master password by performing a
dictionary attack against a password verification code stored
at the beginning of the database. The code is computed by
repeated applications of the Blowfish cipher to a hash of the
password. This attack can be executed at a rate of about
1340 tests per second on a modern PC. To thwart an adver-
sary using this software for an average of a year, the user
would need to select a password with 35.2 bits of entropy,
equivalent to a randomly selected password of 7.5 lower case
letters. Even faster attacks may be possible in Scenario 4
using one or more site passwords.

LPWA computes passwords using a hash-based function
and does not store any data to disk, so it is equally vulner-
able in Scenarios 2 and 4, and Scenario 3 is not applicable.
Since we do not have access to the LPWA software, it is
more difficult to estimate the cost of a brute force search.
However, if we assume the authors implement the pseudo-
random functions in the LPWA algorithm as HMACs instan-
tiated with the SHA-1 function, then we can find a simple
attack that takes five applications of the SHA-1 function
per guess (or roughly 5 microseconds per guess on a modern
computer). At this rate, an attacker could test 3.6 x 10'2
guesses in a year, and users would need an average of 43.5
bits of entropy to remain secure. This is equivalent to a 9.3
character password of random lower case letters.

We need to consider the security of PwdHash in two dif-
ferent situations. The first is if the user does not use a long
random string stored locally. Then the scheme will be vul-
nerable to an offline brute force attack in Scenarios 2, 3,
and 4. PwdHash uses an MD5-based HMAC computation
to generate site passwords. This takes approximately one
microsecond to compute on modern machines, so the adver-
sary could test 3.15 x 10'® passwords a year, and an average
of 45.8 bits of entropy (or 9.7 randomly selected lower case
letters) would be needed to thwart her attack.

If a long, random local string is used, then the scheme
can be very secure against an attacker of Scenario 2 (but
at the expense of the transportability problems mentioned
above). However, since this second “password” is stored on
disk, an attacker in Scenario 3 or 4 can execute the brute
force attack discussed in the previous paragraph as if no
secondary password were present.

Finally, for our system, in Scenario 2 the adversary would
need to run a brute force attack against the entire strength-
ened hash function, which takes approximately 100.1 sec-
onds to compute on a modern PC. That means that a brute
force attacker could try at most about 316,000 passwords
in a year. To ensure that an average attack takes more
than a year, a user would need to select a password with
19.2 bits of entropy, equivalent to a randomly selected pass-
word of 4.1 lower case letters. In Scenario 3, the attacker
could steal the cached intermediate value and use it to check
the results of a brute force attack on the master password.



This would reduce the time for a single guess to 100 sec-
onds, requiring about the same entropy as in Scenario 2. In
Scenario 4, the adversary could use the stolen intermediate
value to make guesses much more quickly and could check
the results against the stolen site password. This attacker
could test a password in about 100 milliseconds on a typical
machine, so it would take about 25.9 bits of password en-
tropy to fend off her attack for an average of a year. This is
equivalent to a random password of 5.5 lower case letters.

Based on this analysis (as summarized in Tables 2 and 3),
we see that users under our scheme need to memorize up to
approximately 45% fewer bits of password data than Pass-
word Safe, 58% fewer bits than PwdHash users and perhaps
56% fewer bits than LPWA users for a comparable resis-
tance to brute force attacks. Since passwords chosen by
typical users usually have fewer bits of entropy than ran-
dom passwords of the same length, this reduction is likely to
be a significant security benefit in practice. With minimal
training, users can easily create and remember passwords
with entropy equivalent to 4-6 random characters [8], but
it would be a substantial burden to handle as many as 10
random characters, as required for security in some other
schemes.

As an additional security benefit, our scheme can be ad-
justed in the future to increase the amount of strengthening
in the hash function to compensate for advances in com-
putational power. If the adversary’s computational power
doubles about every 1.5 years, users will need to add 6%
bits of password entropy every decade to maintain the same
level of security. Our scheme could be recalibrated every few
years to keep the required password entropy within a fixed
range (at the cost of requiring users to change all their site
passwords).

As we have seen, our approach offers a very high degree
of security while remaining easy to use and conveniently
portable. We believe that this low cost, high benefit combi-
nation will be appealing to users.

S. IMPLEMENTATION

To test our system, we implemented the construction de-
scribed in Section 3 as an extension to the Mozilla Firefox
web browser. Our program, called Password Multiplier, is
available online at:

Wwww.cs.princeton.edu/~ jhalderm/projects/password/.

Password Multiplier uses Mozilla’s cross-platform script-
ing tools and user interface language (XUL), which allow it
to integrate neatly into the browser and to match its look
and feel on each operating system. We support Firefox’s
three primary platforms—Windows, Linux, and Mac OS X.

One of the principal challenges we faced was achieving
the proper balance between attack resistance and user con-
venience. A brute force attacker would choose the fastest
available hash implementation. To make the attacker’s job
more difficult, we also need to choose a fast implementa-
tion so that we can perform as many hash iterations as
possible within the longest delay we deem acceptable—100
seconds for the one-time initialization and 100 milliseconds
for each subsequent password generation. Mozilla’s inter-
preted scripting language is not efficient enough to meet
these performance requirements, so we implemented the it-
erated hash functions in compiled platform-specific XPCOM
objects. These employ the highly-optimized SHA-1 hash

Authorize Password Multiplier x|

Password Multiplier creates unique site passwords based on information you
provide: your email address and master password. If you've used Password
Multiplier before, you must re-enter your email address and master password
exactly, or else the wrong passwords will be generated.

Your email address: |jha|derrn Bcs.princeton. edu

Master password:

Ixxxxxxxx

Retype master password: |““““““““

Verification code: Y]

Choosing a good password

To choose a strong password, think of a phrase that you can easily
remember and take the first or last letter from each word. You should put
some letters in upper case and insert at least one number or special
character. Use this method to select a password of at least 8 characters,

OK Cancel

Figure 1: Before using Password Multiplier for the
first time on a new system, the user needs to “au-
thorize” it. This involves a one-time computation on
the user’s email address and master password that
takes around 100 seconds. The result is cached for
future use.

function code from the OpenSSL [2] library. After testing
performance on various modern machines, we parameter-
ized the system to use 10® iterations during the initialization
phase (k1) and 10° during password generation (kz).

Here is how a typical user experiences Password Multi-
plier. Before using the program for the first time on a new
machine, the user needs to “authorize” it using the interface
depicted in Figure 1. This dialog box prompts the user for
her email address (which serves as a unique identity) and
her master password, which must be at least eight charac-
ters in length and is entered twice to guard against errors.
The program gives advice on picking a strong password to
encourage users to follow good security practices. Users who
have used the application before on a different machine are
instructed to enter the same address and password to ensure
that the correct passwords are computed.

With this information, the program performs the initial-
ization process, in which it computes the hard part of the
strengthened hash function as described in Section 3. The
result is cached to disk so that this process only has to be
performed once per user per system.

After it has been initialized, Password Multiplier can be
invoked by double-clicking on any web site password field,
or by highlighting a password field and pressing Alt+P. It
presents the Multiply Password window (shown in Figure 2),
which asks the user to re-enter her master password and con-
firm the domain name of the web site for which the pass-
word is used (we automatically fill in the name of the server
that will receive the HTML form submission). The gener-
ated site-specific password is copied into the site’s password
field.

Password Multiplier supports both HTML form password
inputs and standard HTTP authentication prompts. In both
cases, it interacts correctly with the browser’s internal saved-
password manager. The passwords computed by our pro-



File Edit View Go Bookmarks Tools Help
<:3| - - @ I http: ffwww . amazon. com/

What is your e-mail address?

My e-mail address is |jha|derm@princeton.edu

Do you have an Amazon.com password?

Authorized for jhalderm@cs. princeton.edu

Master password: Iw

Verification code: Y]

c No, I am a new customer.

@ yes, I have a password: I;;;;;;;;

Sign in using our secure server

X

- Forgot your password? Click here

- Has your e-mail address changed since your v Remember password for this session

The secure server will encrypt your information. If y

you tried to use our secure server, sign in using our S NEME: |amazon.com

o]

Cancel

Figure 2: Double-clicking a password field (or highlighting it and pressing Alt+P) invokes the Multiply
Password window shown here. The site name is filled in automatically. After the user enters her master
password, the program pastes her site-specific password into the site’s password field.

gram consist of eight case-sensitive alpha-numeric charac-
ters derived by treating the output of the hash function as
a 160-bit little endian number, converting it to base 62, and
mapping it to the character set [0-9A-Za-z]. Passwords of
this form contain about 47 bits of entropy (or about 41 bits
if the case is ignored), so they will normally be at least as
hard to guess as the master password itself.

5.1 Handling Password Changes

A challenge faced by all generator-style password man-
agers is the need to support account password changes. A
new password may be needed if the existing password was
compromised, or system administrators may require users
to change their passwords regularly as a matter of policy.
While we believe these situations are uncommon for typical
usage with web site accounts, it would be helpful for imple-
mentations to provide a mechanism for handling them.

Generating an alternate password requires extra inputs
in addition to the user’s identity, her master secret, and
the identity of the target account. This means users must
carry additional “state” when moving between machines,
but implementations can be designed to minimize this in-
convenience. Users could indicate a password change by
incrementing a password index presented along side the ac-
count name. The index value could be stored with the name
of the account on the local system, so there would be no need
to set it again unless the user moved to a different machine.
The index would be appended to the account name in the
generation algorithm to produce a completely different pass-
word. Upon switching machines, the user would need only
remember how many times she had changed her password
for a particular account, rather than what her new password
was. Unlike the password itself, this information would not

need to be kept secret, so the user would be free to write it
down, post it online, or use other reminders.

If a particular password was required to be changed reg-
ularly, the name of the period for which the password was
valid could be used instead of a numerical index. For ex-
ample, a password changed monthly might use the string
2005-Jan, appended to the domain name, as the input to
the generation algorithm. The password program could use
an internal calendar to track when password changes were
required and remind the user automatically.

The password change features in this section have not yet
been added to our implementation but are planned for an
upcoming release.

6. CONCLUSION

Many users (including those who should know better) fail
to take adequate steps to protect their passwords. Often the
cause is not a failure to understand that strong passwords
are important, but rather frustration with the difficulty of
doing the right thing. In our study we attempted to make
strong password management more convenient. Whereas
previous schemes were lacking in either transportability for
mobile users or security against brute force attacks, our
design achieves a balance of the two by using password
strengthening techniques. Our implementation, Password
Multiplier, is available on the web. We encourage novices
and experts alike to try it.

Acknowledgment

This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.



REFERENCES

Microsoft Passport service. http://www.passport.net.
OpenSSL: The open source toolkit for SSL/TLS.
http://www.openssl.org.

Martin Abadi, T. Mark A. Lomas, and Roger
Needham. Strengthening passwords. Technical Report
1997 - 033, 1997.

Mihir Bellare, David Pointcheval, and Phillip
Rogaway. Authenticated key exchange secure against
dictionary attacks. In EUROCRYPT, pages 139-155,
2000.

E. Felten, D. Balfanz, D. Dean, and D. Wallach. Web
spoofing: An Internet con game. Proc. 20th National
Information Systems Security Conference, 1997.
Eran Gabber, Phillip B. Gibbons, Yossi Matias, and
Alain J. Mayer. How to make personalized web
browsing simple, secure, and anonymous. In Financial
Cryptography, pages 17-32, 1997.

Rosario Gennaro and Yehuda Lindell. A framework
for password-based authenticated key exchange. In
EUROCRYPT, pages 524-543, 2003.

J. Jeff, Y. Alan, B. Ross, and A. Alasdair. The
memorability and security of passwords — some
empirical results, 2000.

Tan Jermyn, Alain Mayer, Fabian Monrose, Michael K.

Reiter, and Aviel D. Rubin. The design and analysis
of graphical passwords. 1999.

(10]

(16]

(17]

Jonathan Katz, Rafail Ostrovsky, and Moti Yung.
Efficient password-authenticated key exchange using
human-memorable passwords. In EUROCRYPT ’01:
Proceedings of the International Conference on the
Theory and Application of Cryptographic Techniques,
pages 475-494. Springer-Verlag, 2001.

J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure
applications of low-entropy keys. Lecture Notes in
Computer Science, 1396:121-134, 1998.

David P. Kormann and Aviel D. Rubin. Risks of the
Passport single signon protocol. In Proc. 9th
international World Wide Web conference on
computer networks, pages 51-58. North-Holland
Publishing Co., 2000.

U. Manber. A simple scheme to make passwords based
on one-way functions much harder to crack, 1996.
Robert Morris and Ken Thompson. Password security:
A case history. CACM, 22(11):594-597, 1979.

Blake Ross, Collin Jackson, Nicholas Miyake, Dan
Boneh, and John C. Mitchell. A browser plug-in
solution to the unique password problem, 2005.
Technical report, Stanford-SecLab-TR-2005-1.

Bruce Schneier et al. Password Safe application.
http://www.schneier.com/passsafe.html.

Joe Smith. Password Safe cracker utility.
http://members.aol.com/jpeschel3/recovery.htm.



