A CRASH COURSE
IN C

CS378H - SPRING 201 1
CHRISTIAN MILLER

OKAY SO...

* | have two hours to teach you the basics ot G

* You will use 1t for most of your assignments this
semester

* Also the most usetul language to know, 1f you want
to do pretty much anything

COMPUTER ACCESS

* You'll be doing all your work on the GS machines
e The Painter or ENS Linux machines will work
* You can SSH into them from home

* e.g. ssh bart@mondello.cs.utexas.edu

» list of public hosts here: http://bit.ly/e2l{EV

» use Pul'l'Y if you're on a Windows machine

mailto:bart@canon.cs.utexas.edu
mailto:bart@canon.cs.utexas.edu
http://bit.ly/e2IfEV
http://bit.ly/e2IfEV

EDITORS

* You'll need to get comfortable with a text editor
 Most UNIX editors are arcane and bizarre

* vim and emacs are the usual choices

* Pick one and look online for tutorials

* Be prepared to spend a lot of time learning them

WHAT IS C, REALLY?

* It’s a relatively old programming language (1972)

* Much lower-level than Java

* No classes, purely procedural

» Has the ability to manipulate raw bits and memory

* Most systems-level coding 1s done 1n G, as well as a
huge amount of application-level stutt

SOME BASICS

C 15 a compiled language

executable

text file (.c) object file (.o) (bin / .exe)

compiler (gcc) linker (1d)

HELLO WORLD

/*
hello.c

A simple hello world program.
*/

#include <stdio.h>

int main(int argc, char **argv)

{
printf("Hello, world!\n"); // greetings
return Q;

¥

COMMENTS

e Block comments: /* Several lines here */

o Single line comments: // One line here

* Some older C compilers don’t support these

#INCLUDE STATEMENTS

e Use #include <...> to access code libraries
SR #include <stdio.h>

» Put them at the top, betore you use them

» Gommon ones: stdlib.h (standard utilities), stdio.h
(basic 1/0), string.h (string functions), time.h (time
functions), math.h (math functions)

FUNCTION DECLARATIONS

type fn_name(type paraml, type param2)

{
// code here

return something;

}

» Functions are pretty much the same as Java, except
there are no wvisibility specifiers (public, private, etc.)

* Functions have one return type (can be void)

* T'here can be any number of parameters

MAIN FUNCTION

int main(int argc, char **argv)

{

// code goes here
return Q;

}

* I'’he main function 1s the entry point to your
program

» Return value indicates success (0) or tail
(nonzero), though this 1s usually 1gnored

» argc and argv hold command line arguments

FUNCTION CAVEATS

int foo(); // function prototype

int main(int argc, char **argv)

{

return 0;

}

int foo() // foo defined down here
{

}

return 99;

printf("%i\n", foo()); // foo called before it's defined

e You can’t use a function before

e 1o use a function before de:

declaring it!

1ning 1t, declare 1t

first with a function prototy

» Parameters passed to functions
changes made to them disappear when the
function ends (use pointers to circumvent this)

DE

are copied, so

PRINTF

printf(char *format, type vall, type val2, ...)

printf handles console output, declared 1n stdio.h

T'he first argument 1s the format string, other
parameters are for substitutions

Example: printf("Hello, world!\n");
Example: printf("Login attempt %1:", attempts);

T'here are tons of format specifiers, look them up

BUILDING AND RUNNING

horatio-1568:~ ckm$ gcc hello.c -0 hello
horatio-156:~ ckm$./hello

Hello, world!

horatio-158:~ ckm$

* By default, gcc will compile and link your program
* T'he -o flag tells 1t the name ot the output binary

» Use ./name to run something

VARIABLES

double foo()
{

int a = -5;

unsigned int b = 3;

int c;

c =a * (int)b; // cast b to int, just to be sure
double q; // illegal, must be at top of function
q = c; // implicitly converts c to double

return q;

* T'’he compiler tries to enforce types, and waill
attempt to convert or error out as appropriate

» Explicit typecasts can force conversions

 Variables must be defined at the beginning of a
function, betore any other code!

DATA TYPES

char: one byte (eight bits) signed integer

short: two byte signed integer (same as short int)
int: four byte signed integer (same as long int)
unsigned: add to the above to make them unsigned
float: four byte floating point

double: eight byte floating point

const: add to a data type to make 1ts value constant

ASSIGNMENT

* T'he equals operator copies the right hand side to
the left hand side

* It also returns the value 1t copied, which enables
some cool tricks

LOGICAL OPERATORS

* Logic 1s supported as usual
* In order of precendence: ! (not), && (and), | | (or)

* No boolean type; any integer zero 1s considered
false, any integer nonzero 1s true

* 10 = 1, usually

» For example: 1 8& 11 11 10 8& -999 // true

MATH OPERATORS

» Math 1s the same as usual, with normal operator
precendence (use parentheses when unsure)

* Supported operators are: + - * / %
* In-place versions as well: ++, --, +=_*=_etc.
* Integers round down after every operation

* No operator for exponent, means something
much different (look for pow() in math.h)

COMPARISON OPERATORS

» Comparisons are also what you’d expect

» == (equals), != (not equals), < (less than), <= (I
than or equals), > (greater than), >= (greater tl
or equals)

BITWISE OPERATORS

* These treat data as a sitmple collection of bits
» Usetul for low-level code, you’ll use them a bunch

* They are: & (bitwise and), | (bitwise or), ~(bitwise
not), ™ (bitwise xor), << (shift left), >> (shift right)

* Also usetul: you can write hex numbers using 0x

 For example: ox58 == 91

IF / ELSE

1f (condition)

{
}

else 1f (other_condition)

{

// condition 1is true

// condition not true, but other_condition 1is

// none of the above were true

 Kvaluates the given conditions in order, and will
execute the appropriate block

» Can have any number of else ifs

* Else it and else are optional

SWITCH

switch (var)
{
case 0:
// 1if var ==
break;
case 3:
// 1if var ==
break;
default:

// 1f none of the other cases
break;

* A convenilent way of doing lots ot equality checks

» The break statements in each case are necessary!

LOOPS

for (1 = 0; 1 < n; i++)

1
¥

// will execute n times

while (1 !'= 0)
{

}

// loop body

» Loops work the same as 1n Java

» Remember to declare your loop variables at the top
of the tunction

* Also do / while loops: same as while, but
automatically execute once

ARRAYS

int array[15];
int array2[] = { 3, 4, 99, -123, 400 };

for (1 =0; 1 <5; i++)
printf("%i\n", array2[i]);

lo declare an array, specity the size in brackets

Size 15 fixed once an array 1s declared

You can also provide an mitializer list in braces

It you omit the dimension, the compiler will try to
figure 1t out from the mitializer list

Use brackets to index, starting with zero (not
bounds checked!)

POINTERS

* New concept time!

» A pointer 1s just a number (an unsigned 1nt)
containing the memory address of a particular
chunk of data

* There 1s special syntax for dealing with pointers
and what they point to

* They are by far the easiest and most ettective way
to shoot yourselt 1n the foot

DECLARING POINTERS

int *ip = NULL;
char *string, *buffer;

» Pointers are created by adding * to a variable
declaration

* In the example above, 1p 1s a pointer to an int,
string and buffer are pointers to chars

» NULL 15 just zero, and 1s used to represent an
uninitialized pointer

USING POINTERS

int x = 10, y = 25; // declare two 1ints
int *p = NULL, *q = NULL; // and two pointers to ints

printf("%i\n", x); // 10
printf("%i\n", y); // 25

// & gets the address of a variable
p =8&x; // p now points to X

// p just contains the number of a location in memory,
// so printing it won't mean much to a human

printf("%i\n", p); // some weird number

// use * to dereference (get the contents of) a pointer
printf("%i\n", *p); // 10

// you can change what a pointer points to
p = &y; // p now points to y
printf("%i\n", *p); // 25

// 1t's possible for two pointers to point to the same thing

q = p; // q now points to the same thing p does
printf("%i\n", *q); // 25

// since they point to the same thing, if you change the
// contents of one, you change the contents of the other!
£ 3 o

q=9,

printf("%i\n", *p); // 9

POINTERS

AND ARRAYS

int buf[] = {9, 8, 7, 6, 5 };
int *p = buf;

printf("%i\n", p[2]); // prints 7

» Arrays don’t keep track of their length in G, you

have to do that yoursel

f&

» T'he syntax shown earlier 1s just for convenience,
arrays are actually just pointers to the first element
of a contiguous block of memory

 Pointers can be interchanged with arrays, and

indexed the same way

STRINGS

const char *str = "Hi"; // same as const char str[3] = { 'H', '"1', '"\@'

* T'here’s no special string type in (, strings are just
arrays ot characters ending 1n a null character \0

You have to keep track ot string length yourselt
strlen() 1n string.h will count up to the null for you
strepy() will copy strings

String literals are of type const char®.

POINTER CAVEATS

* QQ: What happens 1t you try to dereference a
pointer that doesn’t point to anything?

* A: CRASH! (Usually politely called an access

violation or a segtault.)

» Actually, that’s the easy case. It may
accidentally seem to work fine some of the
time, only to break something else.

* Also happens if you index an array out of
bounds

POINTER ARITHMETIC

void strcpy(char *dst, const char *src)

{
¥

while(*dst++ = *src++);

* You can mncrement and decrement pointers using
the ++ and -- operators

 ['his will automatically move to the next or
previous entry in an array

* Nothing will stop you when you hit the end ot the
array, so be careful!

DYNAMIC MEMORY

int len = 97;
int *data = NULL;

// try to grab some memory
data = (int*)malloc(len * sizeof(int));

1f (data)
{

// alloc successful, work with data
free(data); // release when done

}

» Allows you to create arrays of any size at runtime

* Include <stdlib.h> to get malloc() and tree()

» malloc() gives you memory;, free() releases it

DYNAMIC MEMORY

* The argument to malloc 1s the size ot the requested
memory block, in bytes

» sizeol() will g1ve you the size of a datatype in bytes

* You have to cast the result of malloc to the pointer
type you are using

» malloc() will return NULL 1t unsuccesstul

* free() memory when you’re done with it!

POINTER CAVEATS

*): What happens 1t you don’t free memory once
you're done with 1t?

* A: You never get 1t back! 'That’s called a memory
leak. It you leak enough memory, you’ll eventually
run out, then crash.

POINTER CAVEATS

*); What happens 1t you accidentally free memory
twice?

 A: You crash.

POINTER HYGIENE

* It you’re not using a pointer, set 1t to NULL

 'T'his includes when the pointer 1s declared,
otherwise 1t will in1tialize with random garbage

» Before dereferencing or using a pointer, check to

see 1t 1t’s NULL first

 Caretully track your memory usage, and free things
when you’re done with them

STRUCTURES

struct name

{
type varl;

type vare;
// ...

+s

name sl, s2;

* Structs allow you to group together several
variables and treat them as one chunk of data

* Once defined, you can then instantiate a struct by
using 1ts name as a type

USING STRUCTURES

struct point

{
float x, vy;

printf("%f\n", p->x); // -4.00000
printf("%f\n", p->y); // 10.00000

» Use the dot operator to extract elements from a
struct

» Use the arrow operator to pull out elements from a
pointer to a struct

STRUCTURE CAVEATS

* When you pass a struct to a function, you get a
copy ot the whole thing

 'This 1sn’t bad for small structs, but copying
larger ones can impact performance

 Pass pointers to structs instead, then use the
arrow operator to manipulate its contents

* Don’t forget the semicolon at the end of a structure
definition

TYPEDEF

typedef oldtype newtype;

 lypedet allows you to rename types

e For example: typedef unsigned short uintlo;

» Really handy for complicated pointer and struct
types

* Most UNIX projects are made of a ton ot source
files, which all need to be compiled and linked
together

* Doing this all by hand would be annoying

» There’s a program called make that does 1t for you

MAKEFILES

CC = gce

CFLAGS = -0 -Wall -m32
LIBS = -Ilm

all: btest fshow ishow

btest: btest.c bits.c decl.c tests.c btest.h bits.h
$(CC) $(CFLAGS) $(LIBS) -0 btest bits.c btest.c decl.c tests.c

fshow: fshow.c
$(CC) $(CFLAGS) -0 fshow fshow.c

» Make knows what to build by looking in makefiles

* These are specially formatted rulesets that tell
make how to build everything

* You don’t normally need to know how they work

* It’s good to know, but we won’t teach you here

INVOKING MAKE

horatio-156:datalab ckm$ Ls

Makefile README grade writeup

horatio-156:datalab ckm$ make

Build the btest test harness sources

{cd src; make clean; make)

rm -f *¥.,0 *~ btest fshow ishow bits-handout.c bits-middle.c bits.c bits.p.c decl.c tests.c bits.h *.exe

gcc -01 -g -Wall -m32 -c btest.c
cpp -P -C -DTEST selections.c -Ipuzzles = tests-middle.c

* 'lyping ‘make’ on the command line will
automatically try to build the project described by
‘Makefile’ 1in the current directory

* Lots of stutt will happen, and make will report
success or tailure of the build

* You can also specity project-specific targets, like
‘make clean’

THERE’S MORE...

» But that’s 1t for now
* Some topics not covered:
» (i preprocessor
* Multidimensional arrays
* Unions
* lernary operator

e KEtc. etc. etc.

THESE SLIDES ARE ONLINE

e Get them here:

* http://www.cs.utexas.edu/~ckm/crashcourse.pdt

http://www.cs.utexas.edu/~ckm/intro_c.pdf
http://www.cs.utexas.edu/~ckm/intro_c.pdf

