
A crash course
in C

CS378H - Spring 2011
Christian Miller

Okay so...

• I have two hours to teach you the basics of C

• You will use it for most of your assignments this
semester

• Also the most useful language to know, if you want
to do pretty much anything

Computer access

• You’ll be doing all your work on the CS machines

• The Painter or ENS Linux machines will work

• You can SSH into them from home

• e.g. ssh bart@mondello.cs.utexas.edu

• list of public hosts here: http://bit.ly/e2IfEV

• use PuTTY if you’re on a Windows machine

mailto:bart@canon.cs.utexas.edu
mailto:bart@canon.cs.utexas.edu
http://bit.ly/e2IfEV
http://bit.ly/e2IfEV

Editors

• You’ll need to get comfortable with a text editor

• Most UNIX editors are arcane and bizarre

• vim and emacs are the usual choices

• Pick one and look online for tutorials

• Be prepared to spend a lot of time learning them

What is C, really?

• It’s a relatively old programming language (1972)

• Much lower-level than Java

• No classes, purely procedural

• Has the ability to manipulate raw bits and memory

• Most systems-level coding is done in C, as well as a
huge amount of application-level stuff

Some basics

C is a compiled language

text file (.c) object file (.o) executable
(.bin / .exe)

compiler (gcc) linker (ld)

Hello world

/*
 hello.c
 A simple hello world program.
*/

#include <stdio.h>

int main(int argc, char **argv)
{
	 printf("Hello, world!\n"); // greetings
	 return 0;
}

comments

• Block comments: /* Several lines here */

• Single line comments: // One line here

• Some older C compilers don’t support these

#include statements

• Use #include <...> to access code libraries

• e.g. #include <stdio.h>

• Put them at the top, before you use them

• Common ones: stdlib.h (standard utilities), stdio.h
(basic I/O), string.h (string functions), time.h (time
functions), math.h (math functions)

Function declarations

• Functions are pretty much the same as Java, except
there are no visibility specifiers (public, private, etc.)

• Functions have one return type (can be void)

• There can be any number of parameters

type fn_name(type param1, type param2)
{
	 // code here
	 return something;
}

Main function

• The main function is the entry point to your
program

• Return value indicates success (0) or failure
(nonzero), though this is usually ignored

• argc and argv hold command line arguments

int main(int argc, char **argv)
{
	 // code goes here
	 return 0;
}

Function caveats

• You can’t use a function before declaring it!

• To use a function before defining it, declare it
first with a function prototype

• Parameters passed to functions are copied, so
changes made to them disappear when the
function ends (use pointers to circumvent this)

int foo(); // function prototype

int main(int argc, char **argv)
{
	 printf("%i\n", foo()); // foo called before it's defined
	 return 0;
}

int foo() // foo defined down here
{
	 return 99;
}

Printf

• printf handles console output, declared in stdio.h

• The first argument is the format string, other
parameters are for substitutions

• Example: printf("Hello, world!\n");

• Example: printf("Login attempt %i:", attempts);

• There are tons of format specifiers, look them up

printf(char *format, type val1, type val2, ...)

Building and running

• By default, gcc will compile and link your program

• The -o flag tells it the name of the output binary

• Use ./name to run something

Variables

• The compiler tries to enforce types, and will
attempt to convert or error out as appropriate

• Explicit typecasts can force conversions

• Variables must be defined at the beginning of a
function, before any other code!

double foo()
{
	 int a = -5;
	 unsigned int b = 3;
	 int c;
	 c = a * (int)b; // cast b to int, just to be sure
	 double q; // illegal, must be at top of function
	 q = c; // implicitly converts c to double
	 return q;
}

Data types

• char: one byte (eight bits) signed integer

• short: two byte signed integer (same as short int)

• int: four byte signed integer (same as long int)

• unsigned: add to the above to make them unsigned

• float: four byte floating point

• double: eight byte floating point

• const: add to a data type to make its value constant

Assignment

• The equals operator copies the right hand side to
the left hand side

• It also returns the value it copied, which enables
some cool tricks

Logical operators

• Logic is supported as usual

• In order of precendence: ! (not), && (and), || (or)

• No boolean type; any integer zero is considered
false, any integer nonzero is true

• !0 = 1, usually

• For example: 1 && !1 || !0 && -999 // true

Math operators

• Math is the same as usual, with normal operator
precendence (use parentheses when unsure)

• Supported operators are: + - * / %

• In-place versions as well: ++, --, +=, *=, etc.

• Integers round down after every operation

• No operator for exponent, ^ means something
much different (look for pow() in math.h)

Comparison operators

• Comparisons are also what you’d expect

• == (equals), != (not equals), < (less than), <= (less
than or equals), > (greater than), >= (greater than
or equals)

Bitwise operators

• These treat data as a simple collection of bits

• Useful for low-level code, you’ll use them a bunch

• They are: & (bitwise and), | (bitwise or), ~(bitwise
not), ^ (bitwise xor), << (shift left), >> (shift right)

• Also useful: you can write hex numbers using 0x

• For example: 0x5B == 91

If / else

• Evaluates the given conditions in order, and will
execute the appropriate block

• Can have any number of else ifs

• Else if and else are optional

if (condition)
	 {
	 	 // condition is true
	 }
	 else if (other_condition)
	 {
	 	 // condition not true, but other_condition is
	 }
	 else
	 {
	 	 // none of the above were true
	 }

Switch

• A convenient way of doing lots of equality checks

• The break statements in each case are necessary!

switch (var)
{
	 case 0:
	 	 // if var == 0
	 	 break;
	 case 3:
	 	 // if var == 3
	 	 break;
	 default:
	 	 // if none of the other cases
	 	 break;
}

Loops

• Loops work the same as in Java

• Remember to declare your loop variables at the top
of the function

• Also do / while loops: same as while, but
automatically execute once

for (i = 0; i < n; i++)
{
	 // will execute n times
}

while (i != 0)
{
	 // loop body
}

Arrays

• To declare an array, specify the size in brackets

• Size is fixed once an array is declared

• You can also provide an initializer list in braces

• If you omit the dimension, the compiler will try to
figure it out from the initializer list

• Use brackets to index, starting with zero (not
bounds checked!)

int array[15];
int array2[] = { 3, 4, 99, -123, 400 };

for (i = 0; i < 5; i++)
	 printf("%i\n", array2[i]);

Pointers

• New concept time!

• A pointer is just a number (an unsigned int)
containing the memory address of a particular
chunk of data

• There is special syntax for dealing with pointers
and what they point to

• They are by far the easiest and most effective way
to shoot yourself in the foot

Declaring pointers

• Pointers are created by adding * to a variable
declaration

• In the example above, ip is a pointer to an int,
string and buffer are pointers to chars

• NULL is just zero, and is used to represent an
uninitialized pointer

int *ip = NULL;
char *string, *buffer;

Using pointers
int x = 10, y = 25; // declare two ints
int *p = NULL, *q = NULL; // and two pointers to ints

printf("%i\n", x); // 10
printf("%i\n", y); // 25

// & gets the address of a variable
p = &x; // p now points to x

// p just contains the number of a location in memory,
// so printing it won't mean much to a human
printf("%i\n", p); // some weird number

// use * to dereference (get the contents of) a pointer
printf("%i\n", *p); // 10

// you can change what a pointer points to
p = &y; // p now points to y
printf("%i\n", *p); // 25

// it's possible for two pointers to point to the same thing
q = p; // q now points to the same thing p does
printf("%i\n", *q); // 25

// since they point to the same thing, if you change the
// contents of one, you change the contents of the other!
*q = 9;
printf("%i\n", *p); // 9

Pointers and arrays

• Arrays don’t keep track of their length in C, you
have to do that yourself

• The syntax shown earlier is just for convenience,
arrays are actually just pointers to the first element
of a contiguous block of memory

• Pointers can be interchanged with arrays, and
indexed the same way

int buf[] = { 9, 8, 7, 6, 5 };
int *p = buf;

printf("%i\n", p[2]); // prints 7

Strings

• There’s no special string type in C, strings are just
arrays of characters ending in a null character \0

• You have to keep track of string length yourself

• strlen() in string.h will count up to the null for you

• strcpy() will copy strings

• String literals are of type const char*.

const char *str = "Hi"; // same as const char str[3] = { 'H', 'i', '\0' }

Pointer caveats

• Q: What happens if you try to dereference a
pointer that doesn’t point to anything?

• A: CRASH! (Usually politely called an access
violation or a segfault.)

• Actually, that’s the easy case. It may
accidentally seem to work fine some of the
time, only to break something else.

• Also happens if you index an array out of
bounds

Pointer arithmetic

• You can increment and decrement pointers using
the ++ and -- operators

• This will automatically move to the next or
previous entry in an array

• Nothing will stop you when you hit the end of the
array, so be careful!

void strcpy(char *dst, const char *src)
{
	 while(*dst++ = *src++);
}

Dynamic memory

• Allows you to create arrays of any size at runtime

• Include <stdlib.h> to get malloc() and free()

• malloc() gives you memory, free() releases it

int len = 97;
int *data = NULL;

// try to grab some memory
data = (int*)malloc(len * sizeof(int));

if (data)
{
	 // alloc successful, work with data
	 free(data); // release when done
}

Dynamic memory

• The argument to malloc is the size of the requested
memory block, in bytes

• sizeof() will give you the size of a datatype in bytes

• You have to cast the result of malloc to the pointer
type you are using

• malloc() will return NULL if unsuccessful

• free() memory when you’re done with it!

Pointer caveats

• Q: What happens if you don’t free memory once
you’re done with it?

• A: You never get it back! That’s called a memory
leak. If you leak enough memory, you’ll eventually
run out, then crash.

Pointer caveats

• Q: What happens if you accidentally free memory
twice?

• A: You crash.

Pointer hygiene

• If you’re not using a pointer, set it to NULL

• This includes when the pointer is declared,
otherwise it will initialize with random garbage

• Before dereferencing or using a pointer, check to
see if it’s NULL first

• Carefully track your memory usage, and free things
when you’re done with them

Structures

• Structs allow you to group together several
variables and treat them as one chunk of data

• Once defined, you can then instantiate a struct by
using its name as a type

struct name
{
	 type var1;
	 type var2;
	 // ...
};

name s1, s2;

Using structures

• Use the dot operator to extract elements from a
struct

• Use the arrow operator to pull out elements from a
pointer to a struct

struct point
{
	 float x, y;
};

point a, *p;

a.x = -4.0f;
a.y = 10.0f;

p = &a;

printf("%f\n", p->x); // -4.00000
printf("%f\n", p->y); // 10.00000

Structure caveats

• When you pass a struct to a function, you get a
copy of the whole thing

• This isn’t bad for small structs, but copying
larger ones can impact performance

• Pass pointers to structs instead, then use the
arrow operator to manipulate its contents

• Don’t forget the semicolon at the end of a structure
definition

Typedef

• Typedef allows you to rename types

• For example: typedef unsigned short uint16;

• Really handy for complicated pointer and struct
types

typedef oldtype newtype;

Make

• Most UNIX projects are made of a ton of source
files, which all need to be compiled and linked
together

• Doing this all by hand would be annoying

• There’s a program called make that does it for you

Makefiles

• Make knows what to build by looking in makefiles

• These are specially formatted rulesets that tell
make how to build everything

• You don’t normally need to know how they work

• It’s good to know, but we won’t teach you here

Invoking make

• Typing ‘make’ on the command line will
automatically try to build the project described by
‘Makefile’ in the current directory

• Lots of stuff will happen, and make will report
success or failure of the build

• You can also specify project-specific targets, like
‘make clean’

There’s more...

• But that’s it for now

• Some topics not covered:

• C preprocessor

• Multidimensional arrays

• Unions

• Ternary operator

• Etc. etc. etc.

These slides are online

• Get them here:

• http://www.cs.utexas.edu/~ckm/crashcourse.pdf

http://www.cs.utexas.edu/~ckm/intro_c.pdf
http://www.cs.utexas.edu/~ckm/intro_c.pdf

