
CS429: Computer Organization and Architecture
Pipeline IV

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: November 5, 2014 at 11:25

CS429 Slideset 16: 1 Pipeline IV



Control Combinations

LoadE

UseD

M

Load/use

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

Two special cases can arise on the same clock cycle.

Combination A:

Not-taken branch

ret instruction at branch target

Combination B:

Instruction that reads from memory to %esp

Followed by ret instruction

CS429 Slideset 16: 2 Pipeline IV



Control Combination A

LoadE

UseD

M

Load/use

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Mispredicted normal bubble bubble normal normal
Branch
Combination stall bubble bubble normal normal

Should handle as mispredicted branch.

Stalls F pipeline register.

But PC selection logic will be using M_valM anyway.

CS429 Slideset 16: 3 Pipeline IV



Control Combination B: First Attempt

LoadE

UseD

M

Load/use

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall bubble bubble normal normal

+ stall

Would attempt to bubble and stall pipeline register D.

Signalled by processor as pipeline error.

CS429 Slideset 16: 4 Pipeline IV



Control Combination B: Correct Approach

LoadE

UseD

M

Load/use

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall stall bubble normal normal

Load / use hazard should get priority.

ret instruction should be held in decode stage for additional
cycle.

CS429 Slideset 16: 5 Pipeline IV



Corrected Pipeline Control Logic

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall stall bubble normal normal

Load / use hazard should get priority.

ret instruction should be held in decode stage for additional
cycle.

CS429 Slideset 16: 6 Pipeline IV



Pipeline Summary

Data Hazards

Most handled by forwarding with no performance penalty

Load / use hazard requires one cycle stall

Control Hazards

Cancel instructions when detect mispredicted branch; two
cycles wasted

Stall fetch stage while ret pass through pipeline; three cycles
wasted.

Control Combinations

Must analyze carefully

First version had a subtle bug

Only arises with unusual instruction combination

CS429 Slideset 16: 7 Pipeline IV



Performance Analysis with Pipelining

CPU time =
Seconds

Program
=

Instructions

Program
∗ Cycles

Instruction
∗ Seconds

Cycle

Ideal pipelined machine: CPI = 1

One instruction completed per cycle.
But much faster cycle time than unpipelined machine.

However, hazards work against the ideal

Hazards resolved using forwarding are fine.
Stalling degrades performance and instruction completion rate
is interrupted.

CPI is a measure of the “architectural efficiency” of the
design.

CS429 Slideset 16: 8 Pipeline IV



Computing CPI

CPI is a function of useful instructions and bubbles:

CPI =
Ci + Cb

Ci
= 1.0 +

Cb

Ci

You can reformulate this to account for:

load penalties (lp)

branch misprediction penalties (mp)

return penalties (rp)

CPI = 1.0 + lp + mp + rp

CS429 Slideset 16: 9 Pipeline IV



Computing CPI (2)

So, how do we determine the penalties?

Depends on how often each situation occurs on average.
How often does a load occur and how often does that load
cause a stall?
How often does a branch occur and how often is it
mispredicted?
How often does a return occur?

We can measure these using:

a simulator, or
hardware performance counters.

We can also estimate them through historical averages.

Then use estimates to make early design tradeoffs for the
architecture.

CS429 Slideset 16: 10 Pipeline IV



Computing CPI (3)

Cause Name Instruction Condition Stalls Product
Frequency Frequency

Load/use lp 0.30 0.3 1 0.09
Mispredict mp 0.20 0.4 2 0.16
Return rp 0.02 1.0 3 0.06

Total penalty 0.31

CPI = 1 + 0.31 = 1.31 == 31%

This is not ideal.

This gets worse when:

you also account for non-ideal memory access latency;

deeper pipeline (where stalls per hazard increase).

CS429 Slideset 16: 11 Pipeline IV


