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Control Combinations
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Two special cases can arise on the same clock cycle.

Combination A:

Not-taken branch

ret instruction at branch target

Combination B:

Instruction that reads from memory to %esp

Followed by ret instruction
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Control Combination A
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Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Mispredicted normal bubble bubble normal normal
Branch
Combination stall bubble bubble normal normal

Should handle as mispredicted branch.

Stalls F pipeline register.

But PC selection logic will be using M_valM anyway.
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Control Combination B: First Attempt
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Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall bubble bubble normal normal

+ stall

Would attempt to bubble and stall pipeline register D.

Signalled by processor as pipeline error.
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Control Combination B: Correct Approach
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Combination B

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall stall bubble normal normal

Load / use hazard should get priority.

ret instruction should be held in decode stage for additional
cycle.
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Corrected Pipeline Control Logic

Condition F D E M W

Processing ret stall bubble normal normal normal
Load/Use Hazard stall stall bubble normal normal
Combination stall stall bubble normal normal

Load / use hazard should get priority.

ret instruction should be held in decode stage for additional
cycle.
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Pipeline Summary

Data Hazards

Most handled by forwarding with no performance penalty

Load / use hazard requires one cycle stall

Control Hazards

Cancel instructions when detect mispredicted branch; two
cycles wasted

Stall fetch stage while ret pass through pipeline; three cycles
wasted.

Control Combinations

Must analyze carefully

First version had a subtle bug

Only arises with unusual instruction combination
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Performance Analysis with Pipelining

CPU time =
Seconds

Program
=

Instructions

Program
∗ Cycles

Instruction
∗ Seconds

Cycle

Ideal pipelined machine: CPI = 1

One instruction completed per cycle.
But much faster cycle time than unpipelined machine.

However, hazards work against the ideal

Hazards resolved using forwarding are fine.
Stalling degrades performance and instruction completion rate
is interrupted.

CPI is a measure of the “architectural efficiency” of the
design.
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Computing CPI

CPI is a function of useful instructions and bubbles:

CPI =
Ci + Cb

Ci
= 1.0 +

Cb

Ci

You can reformulate this to account for:

load penalties (lp)

branch misprediction penalties (mp)

return penalties (rp)

CPI = 1.0 + lp + mp + rp
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Computing CPI (2)

So, how do we determine the penalties?

Depends on how often each situation occurs on average.
How often does a load occur and how often does that load
cause a stall?
How often does a branch occur and how often is it
mispredicted?
How often does a return occur?

We can measure these using:

a simulator, or
hardware performance counters.

We can also estimate them through historical averages.

Then use estimates to make early design tradeoffs for the
architecture.
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Computing CPI (3)

Cause Name Instruction Condition Stalls Product
Frequency Frequency

Load/use lp 0.30 0.3 1 0.09
Mispredict mp 0.20 0.4 2 0.16
Return rp 0.02 1.0 3 0.06

Total penalty 0.31

CPI = 1 + 0.31 = 1.31 == 31%

This is not ideal.

This gets worse when:

you also account for non-ideal memory access latency;

deeper pipeline (where stalls per hazard increase).
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