CS429: Computer Organization and Architecture

Pipeline IV

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: November 5, 2014 at 11:25

(CS429 Slideset 16: 1 Pipeline IV

Control Combinations

Load/use Mispredict ret 1 ret 2 ret 3
M M M M M| ret
E| Load E| JXX E E| ret E| bubble
D| Use D D| ret D | bubble | D| bubble

Combination A

Combination B

Two special cases can arise on the same clock cycle.

Combination A:
@ Not-taken branch

@ ret instruction at branch target

Combination B:
@ Instruction that reads from memory to %esp

o Followed by ret instruction

(CS429 Slideset 16: 2 Pipeline IV

Control Combination A

Load/use Mispredict ret 1

M M M M

E| Load E| JXX E E

D| Use D D| ret D

T Combination A 171
Combination B

Conditon | F | D | E | M | W
Processing ret stall bubble | normal | normal | normal
Mispredicted normal | bubble | bubble | normal | normal
Branch
Combination stall ‘ bubble ‘ bubble ‘ normal ‘ normal

@ Should handle as mispredicted branch.
o Stalls F pipeline register.

o But PC selection logic will be using M_valM anyway.

(CS429 Slideset 16: 3 Pipeline IV

Control Combination B: First Attempt

Load/use Mispredict ret 1
M M M M
E| Load E| JXX E E
D| Use D D| ret D
T Combination A | |
Combination B
Condition H F ‘ D ‘ E ‘ M ‘ W
Processing ret stall | bubble | normal | normal | normal
Load/Use Hazard || stall | stall | bubble | normal | normal
Combination stall | bubble | bubble | normal | normal

+ stall
o Would attempt to bubble and stall pipeline register D.

@ Signalled by processor as pipeline error.

(CS429 Slideset 16: 4 Pipeline IV

Control Combination B: Correct Approach

Load/use Mispredict ret 1
M M M M
E| Load El JIxx E E
D| Use D D| ret D
T Combination A ||
Combination B
Condition H F ‘ D ‘ E ‘ M ‘ W
Processing ret stall | bubble | normal | normal | normal
Load/Use Hazard || stall | stall | bubble | normal | normal
Combination stall stall bubble | normal | normal

@ Load / use hazard should get priority.

@ ret instruction should be held in decode stage for additional
cycle.

(CS429 Slideset 16: 5 Pipeline IV

Corrected Pipeline Control Logic

Condition H F ‘ D ‘ E ‘ M W

Processing ret stall | bubble | normal | normal | normal
Load/Use Hazard || stall | stall | bubble | normal | normal
Combination stall | stall | bubble | normal | normal

o Load / use hazard should get priority.

@ ret instruction should be held in decode stage for additional
cycle.

(CS429 Slideset 16: 6 Pipeline IV

Pipeline Summary

Data Hazards
o Most handled by forwarding with no performance penalty

o Load / use hazard requires one cycle stall

Control Hazards

o Cancel instructions when detect mispredicted branch; two
cycles wasted

o Stall fetch stage while ret pass through pipeline; three cycles
wasted.

Control Combinations
o Must analyze carefully
o First version had a subtle bug

@ Only arises with unusual instruction combination

(CS429 Slideset 16: 7 Pipeline IV

Performance Analysis with Pipelining

Seconds Instructions Cycles Seconds
= * —
Program Program Instruction Cycle

CPU time =

o lIdeal pipelined machine: CPI =1

o One instruction completed per cycle.
o But much faster cycle time than unpipelined machine.

o However, hazards work against the ideal

o Hazards resolved using forwarding are fine.
o Stalling degrades performance and instruction completion rate
is interrupted.

o CPl is a measure of the “architectural efficiency” of the
design.

(CS429 Slideset 16: 8 Pipeline IV

Computing CPI

CPl is a function of useful instructions and bubbles:

G+ G Cp
cPl=""T"b_104 22
G G
You can reformulate this to account for:
o load penalties (Ip)
@ branch misprediction penalties (mp)
@ return penalties (rp)

CPI=10+Ip+mp+rp

(CS429 Slideset 16: 9 Pipeline IV

Computing CPI (2)

@ So, how do we determine the penalties?
o Depends on how often each situation occurs on average.
o How often does a load occur and how often does that load
cause a stall?
o How often does a branch occur and how often is it
mispredicted?
o How often does a return occur?
o We can measure these using:
o a simulator, or
o hardware performance counters.
@ We can also estimate them through historical averages.

o Then use estimates to make early design tradeoffs for the
architecture.

CS429 Slideset 16: 10 Pipeline IV

Computing CPI (3)

Cause Name | Instruction | Condition | Stalls | Product
Frequency | Frequency

Load/use Ip 0.30 0.3 1 0.09

Mispredict mp 0.20 0.4 2 0.16

Return rp 0.02 1.0 3 0.06

Total penalty 0.31

CPI=1+0.31=1.31==31%

This is not ideal.

This gets worse when:
@ you also account for non-ideal memory access latency;

o deeper pipeline (where stalls per hazard increase).

CS429 Slideset 16: 11 Pipeline IV

