
CS429: Computer Organization and Architecture
Bits and Bytes

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: September 3, 2014 at 08:40

CS429 Slideset 2: 1 Bits and Bytes

Topics of this Slideset

There are 10 kinds of people in the world: those who understand
binary, and those who don’t!

Why bits?

Representing information as bits

Binary and hexadecimal
Byte representations : numbers, characters, strings,
instructions

Bit level manipulations

Boolean algebra
C constructs

CS429 Slideset 2: 2 Bits and Bytes

Why Not Base 10?

Base 10 Number Representation.

Thats why fingers are known as “digits.”

Natural representation for financial transactions. Floating
point number cannot exactly represent $1.20.

Even carries through in scientific notation

1.5213× 104

Implementing Electronically

10 different values are hard to store. ENIAC (First electronic
computer) used 10 vacuum tubes / digit

They’re hard to transmit. Need high precision to encode 10
signal levels on single wire.

Messy to implement digital logic functions: addition,
multiplication, etc.

CS429 Slideset 2: 3 Bits and Bytes

Binary Representations

Base 2 Number Representation

Represent 1521310 as 111011011011012

Represent 1.2010 as 1.0011001100110011[0011] . . .2
Represent 1.5213× 104 as 1.11011011011012 × 213

Electronic Implementation

Easy to store with bistable elements.
Reliably transmitted on noisy and inaccurate wires.

CS429 Slideset 2: 4 Bits and Bytes

Representing Data

Fact: Whatever you plan to store on a computer ultimately has to
be represented as a collection of bits.

That’s true whether it’s integers, reals, characters, strings, data
structures, instructions, pictures, videos, etc.

In a sense the representation is arbitrary. The representation is just
a mapping from the domain onto a finite set of bit strings.

But some representations are better than others. Why would that
be? Hint: what operations do you want to support?

CS429 Slideset 2: 5 Bits and Bytes

Representing Data

Fact: If you are going to represent any type in k bits, you can only
represent 2k different values. There are exactly as many integers as
floats on IA32.

Fact: The same bit string can represent an integer (signed or
unsigned), float, character string, list of instructions, etc.
depending on the context.

CS429 Slideset 2: 6 Bits and Bytes

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

Conceptually very large array of bytes.

Actually implemented with hierarchy of different memory
types.

SRAM, DRAM, disk.
Only allocate storage for regions actually used by program.

In Unix and Windows NT, address space private to particular
“process.”

Encapsulates the program being executed.
Program can clobber its own data, but not that of others.

Compiler and Run-Time System Control Allocation

Where different program objects should be stored.

Multiple storage mechanisms: static, stack, and heap.

In any case, all allocation within single virtual address space.

CS429 Slideset 2: 7 Bits and Bytes

Encoding Byte Values

Byte = 8 bits
Which can be represented in
various forms:

Binary: 000000002 to
111111112

Decimal: 010 to 25510

Hexadecimal: 0016 to FF16

Base 16 number
representation
Use characters ’0’to ’9’
and ’A’ to ’F’
Write FA1D37B16 in C as
0xFA1D37B or 0xfa1d37b

Hex Dec Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

CS429 Slideset 2: 8 Bits and Bytes

Machine Words

Machines generally have a specific “word size.”

It’s the nominal size of integer-valued data, including
addresses.

Most current machines run 64-bit software (8 bytes).

32-bit software limits addresses to 4GB.
Becoming too small for memory-intensive applications.

All x86 current hardware systems are 64 bits (8 bytes).
Potentially address around 1.8X 1019 bytes.

Machines support multiple data formats.

Fractions or multiples of word size.
Always integral number of bytes.

X86-hardware systems operate in 16, 32, and 64 bits modes.

Initially starts in 286 mode, which is 16-bit.
Under programmer control, 32- and 64-bit modes are enabled.

CS429 Slideset 2: 9 Bits and Bytes

Word-Oriented Memory Organization

Addresses Specify Byte
Locations

Which is the address of the
first byte in word.

Addresses of successive
words differ by 4 (32-bit) or
8 (64-bit).

32-bit 64-bit bytes addr.
words words

0000
Addr: 0001
0000 0002

Addr: 0003
0000 0004

Addr: 0005
0004 0006

0007
0008

Addr: 0009
0008 0010

Addr: 0011
0008 0012

Addr: 0013
0012 0014

0015

CS429 Slideset 2: 10 Bits and Bytes

Data Representations

Sizes of C Objects (in Bytes)
C Data Type Alpha Intel IA32 AMD 64
int 4 4 4

long int 8 4 8

char 1 1 1

short 2 2 2

float 4 4 4

double 8 8 8

long double 8 8 10/12

char * 8 4 8

other pointer 8 4 8

CS429 Slideset 2: 11 Bits and Bytes

Byte Ordering

How should bytes within multi-byte word be ordered in
memory?

Conventions

Sun, PowerPC MacIntosh computers are “big endian”
machines: least significant byte has highest address.

Alpha, Intel MacIntosh, PC’s are “little endian” machines:
least significant byte has lowest address.

ARM processor offer support for big endian, but mainly they
are used in their default, little endian configuration.

There are many (hundreds) of microcontrollers so check
before you start programming!

CS429 Slideset 2: 12 Bits and Bytes

Byte Ordering Examples

Big Endian: Least significant byte has highest address.

Little Endian: Least significant byte has lowest address.

Example:

Variable x has 4-byte representation 0x01234567.
Address given by &x is 0x100

Big Endian:

Address: 0x100 0x101 0x102 0x103

Value: 01 23 45 67

Little Endian:

Address: 0x100 0x101 0x102 0x103

Value: 67 45 23 01

CS429 Slideset 2: 13 Bits and Bytes

Reading Byte-Reversed Listings

Disassembly

Text representation of binary machine code.

Generated by program that reads the machine code.

Example Fragment:

Address I n s t r u c t i o n Code Assembly Rend i t i o n
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab ,%ebx
804836 c : 83 bb 28 00 00 00 00 cmpl $0x0 , 0 x28(%ebx)

Deciphering Numbers: Consider the value 0x12ab in the second
line of code:

Pad to 4 bytes: 0x000012ab

Split into bytes: 00 00 12 ab

Reverse: ab 12 00 00

CS429 Slideset 2: 14 Bits and Bytes

Examining Data Representations

Code to Print Byte Representations of Data
Casting a pointer to unsigned char * creates a byte array.

t y p ed e f uns i gned char ∗ p o i n t e r ;

v o i d show byte s (p o i n t e r s t a r t , i n t l e n)
{

i n t i ;
f o r (i = 0 ; i < l e n ; i++)

p r i n t f (”0x%p\ t0x%.2x\n” , s t a r t+i , s t a r t [i]) ;
p r i n t f (”\n”) ;

}

Printf directives:

%p: print pointer

%x: print hexadecimal

CS429 Slideset 2: 15 Bits and Bytes

show bytes Execution Example

i n t a = 15213;
p r i n t f (” i n t a = 15213;\ n”) ;
show byte s ((p o i n t e r) &a , s i z e o f (i n t)) ;

Result (Linux):

0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00

CS429 Slideset 2: 16 Bits and Bytes

Representing Integers

i n t A = 15213 ;
i n t B = −15213;
l ong i n t C = 15213 ;

1521310 = 00111011011011012 = 3B6D16

Linux Alpha Sun

A 6D 3B 00 00 6D 3B 00 00 00 00 3B 6D

B 93 C4 FF FF 93 C4 FF FF FF FF C4 93

C 6D 3B 00 00 6D 3B 00 00 00 00 00 00 00 00 3B 6D

We’ll cover the representation of negatives shortly.

CS429 Slideset 2: 17 Bits and Bytes

Representing Pointers

i n t B = −15213;
i n t ∗P = &B;

Linux Address:
Hex: BFFFF8D4
Binary: 10111111111111111111100011010100
In memory: D4 F8 FF BF

Sun Address:
Hex: EFFFFFB2C
Binary: 11101111111111111111101100101100
In Memory: EF FF FB 2C

Alpha Address:
Hex: 1FFFFFCA0
Binary: 000111111111111111111111110010100000
In Memory: A0 FC FF FF 01 00 00 00
Different compilers and machines assign different locations.

CS429 Slideset 2: 18 Bits and Bytes

Representing Floats

All modern machines implement the IEEE Floating Point standard.
This means that it is consistent across all machines.

f l o a t F = 15213 . 0 ;

Hex: 466DB400
Binary: 01000110011011011011010000000000
In Memory (Linux/Alpha): 00 B4 6D 46
In Memory (Sun): 46 6D B4 00

Note that it’s not the same as the int representation, but you can
see that the int is in there, if you know where to look.

CS429 Slideset 2: 19 Bits and Bytes

Representing Strings

Strings in C

Strings are represented by an array of characters.

Each character is encoded in ASCII format.

Standard 7-bit encoding of character set.
Other encodings exist, but are less common.
Character 0 has code 0x30. Digit i has code 0x30+i.

Strings should be null-terminated. That is, the final character
has ASCII code 0.

Compatibility

Byte ordering not an issue since the data are single byte
quantities.

Text files are generally platform independent, except for
different conventions of line termination character(s).

CS429 Slideset 2: 20 Bits and Bytes

Machine Level Code Representation

Encode Program as Sequence of Instructions

Each simple operation

Arithmetic operation
Read or write memory
Conditional branch

Instructions are encoded as sequences of bytes.

Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced
Instruction Set Computer” (RISC)).
PC’s and Intel Mac’s use variable length instructions (Complex
Instruction Set Computer (CISC)).

Different instruction types and encodings for different
machines.

Most code is not binary compatible.

Remember: Programs are byte sequences too!

CS429 Slideset 2: 21 Bits and Bytes

Representing Instructions

i n t sum(i n t x , i n t y) {
r e t u r n x + y ;

}

For this example, Alpha and Sun use two 4-byte instructions. They
use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows
and Linux are not fully compatible.

Different machines typically use different instuctions and
encodings.

Instruction sequence for sum program:

Alpha: 00 00 30 42 01 80 FA 68
Sun: 81 C3 E0 08 90 02 00 09
PC: 55 89 E5 8B 45 OC 03 45 08 89 EC 5D C3

CS429 Slideset 2: 22 Bits and Bytes

Boolean Algebra

Developed by George Boole in the 19th century, Boolean algebra is
the algebraic representation of logic. We encode “True” as 1 and
“False” as 0.

And: A & B = 1 when both A =
1 and B = 1.

0 1 &
0 0 0
0 1 0
1 0 0
1 1 1

Or: A | B = 1 when either A =
1 or B = 1.

0 1 |

0 0 0
0 1 1
1 0 1
1 1 1

Not: ~A = 1 when A = 0.
0 ~

0 1
1 0

Xor: A ^ B = 1 when either A
= 1 or B = 1, but not both.

0 1 ^

0 0 0
0 1 1
1 0 1
1 1 0

CS429 Slideset 2: 23 Bits and Bytes

Application of Boolean Algebra

In a 1937 MIT Master’s Thesis, Claude Shannon showed that
Boolean algebra would be a great way to model digital networks.

At that time, the networks were relay switches. But today, all
combinational circuits can be described in terms of Boolean
“gates.”

CS429 Slideset 2: 24 Bits and Bytes

Integer Algebra

Mathematical Rings

A ring is an algebraic structure.

It includes a finite set of elements and some operators with
certain properties.

A ring has a finite number of elements, a sum operation, a
product operation, additive inverses, and identity elements.

The addition and product ops must be associative and
commutative.

The product operation should distribute over addition.

Integer Arithmetic

〈Z , +, ∗, , 0, 1〉 forms a ring.

Addition is the sum operation.

Multiplication is the product operation.

Minus returns the additive inverse

0 is the identity for sum.

1 is identity for product.
CS429 Slideset 2: 25 Bits and Bytes

Boolean Algebra

〈{0, 1}, |, &,∼, 0, 1〉 forms a Boolean algebra.

Or is the sum operation.

And is the product operation.

∼ is the “complement” operation (not additive inverse).

0 is the identity for sum.

1 is the identity for product.

Note that a Boolean algebra is not the same as a ring, though
every Boolean algebra gives rise to a ring if you let ^ be the
product operator.

CS429 Slideset 2: 26 Bits and Bytes

Boolean Algebra like Integer Ring

Commutativity:

A|B = B|A A + B = B + A
A & B = B & A A ∗ B = B ∗ A

Associativity:

(A|B)|C = A|(B|C) (A + B) + C = A + (B + C)
(A & B)|C = A & (B & C) (A ∗ B) ∗ C = A ∗ (B ∗ C)

Product Distributes over Sum:

A & (B|C) = (A & B)|(A & C)A ∗ (B + C) = (A ∗ B) + (A ∗ C)
Sum and Product Identities:

A|0 = A A + 0 = A
A & 1 = A A ∗ 1 = A

Zero is product annihilator:

A & 0 = 0 A ∗ 0 = 0
Cancellation of negation:

∼ (∼ A)) = A −(−A)) = A

CS429 Slideset 2: 27 Bits and Bytes

Boolean Algebra vs. Integer Ring

Boolean: Sum distributes over product
A|(B & C) = (A|B) & (A|C) A + (B ∗ C) 6= (A + B) ∗ (A + C)

Boolean: Idempotency
A|A = A A + A 6= A
A & A = A A ∗ A 6= A

Boolean: Absorption
A|(A & B) = A A + (A ∗ B) 6= A
A & (A|B) = A A ∗ (A + B) 6= A

Boolean: Laws of Complements
A| ∼ A = 1 A + A 6= 1

Ring: Every element has additive inverse
A| A 6= 0 A + A = 0

CS429 Slideset 2: 28 Bits and Bytes

Properties of & and ˆ

〈{0, 1}, ˆ, 0, 1〉 forms a Boolean ring.

This is isomorphic to the integers mod 2.

I is the identity operation: I (A) = A.

Commutative sum: AˆB = BˆA

Commutative product: A & B = B & A

Associative sum: (AˆB)ˆC = Aˆ(BˆC)

Associative product: (A & B) & C = A & (B & C)

Prod. over sum: A & (BˆC) = (A & B)ˆ(A & C)

0 is sum identity: Aˆ0 = A

1 is prod. identity: A & 1 = A

0 is product annihilator: A & 0 = 0

Additive inverse: AˆA = 0

CS429 Slideset 2: 29 Bits and Bytes

Relations Between Operations

DeMorgan’s Laws
Express & in terms of |, and vice-versa:

A & B =∼ (∼ A| ∼ B)

A|B =∼ (∼ A & ∼ B)

Exclusive-Or using Inclusive Or:

AˆB = (∼ A & B)|(A & ∼ B)

AˆB = (A|B) & ∼ (A & B)

CS429 Slideset 2: 30 Bits and Bytes

General Boolean Algebras

We can also operate on bit vectors (bitwise). All of the properties
of Boolean algebra apply:

01101001 01101001 01101001
& 01010101 | 01010101 ^ 01010101 ~ 01010101
__________ __________ __________ __________
01000001 01111101 00111100 10101010

CS429 Slideset 2: 31 Bits and Bytes

Representing Sets

Representation
A width w bit vector may represents subsets of {0, . . . , w1}.
ai = 1 iff j ∈ A

Bit vector A:
01101001 represents {0, 3, 5, 6}
76543210

Bit vector B:
01010101 represents {0, 2, 4, 6}
76543210

What bit operations on these set representations correspond to:
intersection, union, complement?

CS429 Slideset 2: 32 Bits and Bytes

Representing Sets

Operations:
Given the two sets above, perform these bitwise ops to obtain:

Set operation Boolean op Result Set

Intersection A & B 01000001 {0, 6}
Union A | B 01111101 {0, 2, 3, 4, 5, 6}
Symmetric difference A ^ B 00111100 {2, 3, 4, 5}
Complement ~A 10010110 {1, 2, 4, 7}

CS429 Slideset 2: 33 Bits and Bytes

Bit Level Operations in C

The operations &, |,∼, ˆ are all available in C.

Apply to any integral data type: long, int, short, char.

View the arguments as bit vectors.

Operations are applied bit-wise to the argument(s).

Examples: (char data type)
∼ 0x41→ 0xBE
∼ 010000012 → 101111102

∼ 0x00→ 0xFF
∼ 000000002 → 111111112

0x69 & 0x55→ 0x41
011010012 & 010101012 → 010000012

0x69|0x55→ 0x7D
011010012|010101012 → 011111012

CS429 Slideset 2: 34 Bits and Bytes

Contrast to Logical Operators in C

Remember the operators: &&, ||, !.

View 0 as “False.”

View anything nonzero as “True.”

Always return 0 or 1.

Allow for early termination.

Examples:
!0x41 → 0x00
!0x00 → 0x01
!!0x41 → 0x01
!!0x69 && 0x55 → 0x01
!!0x69 || 0x55 → 0x01

Can use p && *p to avoids null pointer access. How and why?

CS429 Slideset 2: 35 Bits and Bytes

Shift Operations

Left Shift: x << y
Shift bit vector x left by y positions

Throw away extra bits on the left.

Fill with 0’s on the right.

Right Shift: x >> y
Shift bit vector x right by y positions.

Throw away extra bits on the right.

Logical shift: Fill with 0’s on the left.

Arithmetic shift: Replicate with most significant bit on the
left.

Arithmetic shift is useful with two’s complement integer
representation.

CS429 Slideset 2: 36 Bits and Bytes

Shift Operations

Argument x 01100010

<< 3 00010000

Log. >> 2 00011000

Arith. >> 2 00011000

Argument x 10100010

<< 3 00010000

Log. >> 2 00101000

Arith. >> 2 11101000

CS429 Slideset 2: 37 Bits and Bytes

Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that
each value is its own additive inverse: A ^ A = 0.

vo i d funny (i n t ∗x , i n t ∗y)
{
∗x = ∗x ˆ ∗y ; /∗ #1 ∗/
∗y = ∗x ˆ ∗y ; /∗ #2 ∗/
∗x = ∗x ˆ ∗y ; /∗ #3 ∗/

}

*x *y

Begin A B

1 A ^ B B
2 A ^ B (A ^ B) ^ B = A
3 (A ^ B) ^ A = B B

End A B
Is there ever a case where this code fails?

CS429 Slideset 2: 38 Bits and Bytes

Main Points

It’s all about bits and bytes.

Numbers

Programs

Text

Different machines follow different conventions.

Word size

Byte ordering

Representations

Boolean algebra is the mathematical basis.

Basic form encodes “False” as 0 and “True” as 1.

General form is like bit-level operations in C; good for
representing and manipulating sets.

CS429 Slideset 2: 39 Bits and Bytes

