CS429: Computer Organization and Architecture Bits and Bytes

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences University of Texas at Austin

Last updated: September 3, 2014 at 08:40

Topics of this Slideset

There are 10 kinds of people in the world: those who understand binary, and those who don't!

- Why bits?
- Representing information as bits
- Binary and hexadecimal
- Byte representations : numbers, characters, strings, instructions
- Bit level manipulations
- Boolean algebra
- C constructs

Why Not Base 10?

Base 10 Number Representation.

- Thats why fingers are known as "digits."
- Natural representation for financial transactions. Floating point number cannot exactly represent $\$ 1.20$.
- Even carries through in scientific notation

$$
1.5213 \times 10^{4}
$$

Implementing Electronically

- 10 different values are hard to store. ENIAC (First electronic computer) used 10 vacuum tubes / digit
- They're hard to transmit. Need high precision to encode 10 signal levels on single wire.
- Messy to implement digital logic functions: addition, multiplication, etc.

Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 11101101101101_{2}
- Represent 1.20_{10} as $1.0011001100110011[0011] \ldots 2$
- Represent 1.5213×10^{4} as $1.1101101101101_{2} \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements.
- Reliably transmitted on noisy and inaccurate wires.

Representing Data

Fact: Whatever you plan to store on a computer ultimately has to be represented as a collection of bits.

That's true whether it's integers, reals, characters, strings, data structures, instructions, pictures, videos, etc.

In a sense the representation is arbitrary. The representation is just a mapping from the domain onto a finite set of bit strings.

But some representations are better than others. Why would that be? Hint: what operations do you want to support?

Representing Data

Fact: If you are going to represent any type in k bits, you can only represent 2^{k} different values. There are exactly as many integers as floats on IA32.

Fact: The same bit string can represent an integer (signed or unsigned), float, character string, list of instructions, etc. depending on the context.

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes.
- Actually implemented with hierarchy of different memory types.
- SRAM, DRAM, disk.
- Only allocate storage for regions actually used by program.
- In Unix and Windows NT, address space private to particular "process."
- Encapsulates the program being executed.
- Program can clobber its own data, but not that of others.

Compiler and Run-Time System Control Allocation

- Where different program objects should be stored.
- Multiple storage mechanisms: static, stack, and heap.
- In any case, all allocation within single virtual address space.

Encoding Byte Values

Byte $=8$ bits

Which can be represented in
various forms:

- Binary: 00000000_{2} to 11111111_{2}
- Decimal: 0_{10} to 255_{10}
- Hexadecimal: 00_{16} to $F F_{16}$
- Base 16 number representation
- Use characters '0'to '9' and 'A' to ' F '
- Write FA1D37B ${ }_{16}$ in C as 0xFA1D37B or 0xfa1d37b

Hex	Dec	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Machine Words

Machines generally have a specific "word size."

- It's the nominal size of integer-valued data, including addresses.
- Most current machines run 64-bit software (8 bytes).
- 32-bit software limits addresses to 4GB.
- Becoming too small for memory-intensive applications.
- All $x 86$ current hardware systems are 64 bits (8 bytes). Potentially address around 1.8×10^{19} bytes.
- Machines support multiple data formats.
- Fractions or multiples of word size.
- Always integral number of bytes.
- X86-hardware systems operate in 16,32 , and 64 bits modes.
- Initially starts in 286 mode, which is 16-bit.
- Under programmer control, 32- and 64-bit modes are enabled.

Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Which is the address of the first byte in word.
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit).

32-bit words	64-bit words	bytes	addr.
Addr:0000	Addr:0000		0000
			0001
			0002
			0003
Addr: 0004			0004
			0005
			0006
			0007
Addr: 0008	Addr: 0008		0008
			0009
			0010
			0011
Addr: 0012			0012
			0013
			0014
			0015

Data Representations

Sizes of C Objects (in Bytes)

C Data Type	Alpha	Intel IA32	AMD 64
int	4	4	4
long int	8	4	8
char	1	1	1
short	2	2	2
float	4	4	4
double	8	8	8
long double	8	8	$10 / 12$
char $*$	8	4	8
other pointer	8	4	8

Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Sun, PowerPC Maclntosh computers are "big endian" machines: least significant byte has highest address.
- Alpha, Intel Maclntosh, PC's are "little endian" machines: least significant byte has lowest address.
- ARM processor offer support for big endian, but mainly they are used in their default, little endian configuration.
- There are many (hundreds) of microcontrollers so check before you start programming!

Byte Ordering Examples

Big Endian: Least significant byte has highest address.

Little Endian: Least significant byte has lowest address.

Example:

- Variable x has 4-byte representation 0x01234567.
- Address given by \&x is $0 x 100$

Big Endian:

Address:			0×100	0×101	0×102	0×103		
Value:			01	23	45	67		

Little Endian:

Address:			0×100	0×101	0×102	0×103		
Value:			67	45	23	01		

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code.
- Generated by program that reads the machine code.

Example Fragment:

Deciphering Numbers: Consider the value $0 x 12 \mathrm{ab}$ in the second line of code:

- Pad to 4 bytes: 0x000012ab
- Split into bytes: 000012 ab
- Reverse: ab 120000

Examining Data Representations

Code to Print Byte Representations of Data

 Casting a pointer to unsigned char * creates a byte array.```
typedef unsigned char * pointer;
void show_bytes(pointer start, int len)
{
 int i;
 for (i = 0; i < len; i++)
 printf("0x%p\t0x%.2x\n",start+i, start[i]);
 printf("\n");
}
```

Printf directives:

- \%p: print pointer
- \%x: print hexadecimal


## show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```


## Result (Linux):

0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00

## Representing Integers

```
int A = 15213;
int B = - 15213;
long int C = 15213;
```

$$
15213_{10}=0011101101101101_{2}=3 B 6 D_{16}
$$

|  | Linux | Alpha | Sun |
| :--- | :--- | :--- | :--- |
| A | 6D 3B 00 00 | 6D 3B 00 00 | 0000 3B 6D |
| B | 93 C4 FF FF | 93 C4 FF FF | FF FF C4 93 |
| C | 6D 3B 00 00 | 6D 3B 000000000000 | 0000 3B 6D |

We'll cover the representation of negatives shortly.

## Representing Pointers

$$
\begin{aligned}
& \text { int } B=-15213 \\
& \text { int } * P=\& B
\end{aligned}
$$

Linux Address:
Hex: BFFFF8D4
Binary: 10111111111111111111100011010100 In memory: D4 F8 FF BF

## Sun Address:

Hex: EFFFFFB2C
Binary: 11101111111111111111101100101100
In Memory: EF FF FB 2C
Alpha Address:
Hex: 1FFFFFCCA0
Binary: 000111111111111111111111110010100000
In Memory: A0 FC FF FF 01000000
Different compilers and machines assign different locations.

## Representing Floats

All modern machines implement the IEEE Floating Point standard. This means that it is consistent across all machines.
float $F=15213.0$;
Hex: 466DB400
Binary: 01000110011011011011010000000000
In Memory (Linux/Alpha): 00 B4 6D 46
In Memory (Sun): 46 6D B4 00

Note that it's not the same as the int representation, but you can see that the int is in there, if you know where to look.

## Representing Strings

## Strings in C

- Strings are represented by an array of characters.
- Each character is encoded in ASCII format.
- Standard 7-bit encoding of character set.
- Other encodings exist, but are less common.
- Character 0 has code $0 \times 30$. Digit i has code 0x30+i.
- Strings should be null-terminated. That is, the final character has ASCII code 0.


## Compatibility

- Byte ordering not an issue since the data are single byte quantities.
- Text files are generally platform independent, except for different conventions of line termination character(s).


## Machine Level Code Representation

## Encode Program as Sequence of Instructions

- Each simple operation
- Arithmetic operation
- Read or write memory
- Conditional branch
- Instructions are encoded as sequences of bytes.
- Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced Instruction Set Computer" (RISC)).
- PC's and Intel Mac's use variable length instructions (Complex Instruction Set Computer (CISC)).
- Different instruction types and encodings for different machines.
- Most code is not binary compatible.

Remember: Programs are byte sequences too!

## Representing Instructions

```
int sum(int x, int y) {
 return x + y;
}
```

For this example, Alpha and Sun use two 4-byte instructions. They use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows and Linux are not fully compatible.

Different machines typically use different instuctions and encodings.

Instruction sequence for sum program:
Alpha: 000030420180 FA 68
Sun: 81 C3 E0 0890020009
PC: 5589 E5 8B 45 OC 03450889 EC 5D C3

## Boolean Algebra

Developed by George Boole in the 19th century, Boolean algebra is the algebraic representation of logic. We encode "True" as 1 and "False" as 0 .

And: $\mathrm{A} \& \mathrm{~B}=1$ when both $\mathrm{A}=$

1 and $B=1$.

| 0 | 1 | $\&$ |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

Not: ${ }^{\sim} \mathrm{A}=1$ when $\mathrm{A}=0$.

| 0 | $\sim$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 0 |

Xor: A - $B=1$ when either $A$
Or: A | $\mathrm{B}=1$ when either $\mathrm{A}=$ 1 or $B=1$.

| 0 | 1 | \| |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |


| 0 | 1 | - |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

## Application of Boolean Algebra

In a 1937 MIT Master's Thesis, Claude Shannon showed that Boolean algebra would be a great way to model digital networks.

At that time, the networks were relay switches. But today, all combinational circuits can be described in terms of Boolean "gates."

## Integer Algebra

## Mathematical Rings

- A ring is an algebraic structure.
- It includes a finite set of elements and some operators with certain properties.
- A ring has a finite number of elements, a sum operation, a product operation, additive inverses, and identity elements.
- The addition and product ops must be associative and commutative.
- The product operation should distribute over addition.


## Integer Arithmetic

- $\langle Z,+, *,, 0,1\rangle$ forms a ring.
- Addition is the sum operation.
- Multiplication is the product operation.
- Minus returns the additive inverse
- 0 is the identity for sum.
- 1 is identity for product.


## Boolean Algebra

- $\langle\{0,1\}, \mid, \&, \sim, 0,1\rangle$ forms a Boolean algebra.
- Or is the sum operation.
- And is the product operation.
- $\sim$ is the "complement" operation (not additive inverse).
- 0 is the identity for sum.
- 1 is the identity for product.

Note that a Boolean algebra is not the same as a ring, though every Boolean algebra gives rise to a ring if you let ^ be the product operator.

## Boolean Algebra like Integer Ring

Commutativity:

$$
\begin{array}{ll}
A|B=B| A & A+B=B+A \\
A \& B=B \& A & A * B=B * A
\end{array}
$$

Associativity:

$$
\begin{array}{ll}
(A \mid B)|C=A|(B \mid C) & (A+B)+C=A+(B+C) \\
(A \& B) \mid C=A \&(B \& C) & (A * B) * C=A *(B * C)
\end{array}
$$

Product Distributes over Sum:

$$
A \&(B \mid C)=(A \& B) \mid(A \& C) A *(B+C)=(A * B)+(A * C)
$$

Sum and Product Identities:

$$
\begin{array}{ll}
A \mid 0=A & A+0=A \\
A \& 1=A & A * 1=A
\end{array}
$$

Zero is product annihilator:

$$
A \& 0=0 \quad A * 0=0
$$

Cancellation of negation:

$$
\sim(\sim A))=A \quad-(-A))=A
$$

## Boolean Algebra vs. Integer Ring

Boolean: Sum distributes over product

$$
A \mid(B \& C)=(A \mid B) \&(A \mid C) \quad A+(B * C) \neq(A+B) *(A+C)
$$

Boolean: Idempotency

$$
\begin{array}{ll}
A \mid A=A & A+A \neq A \\
A \& A=A & A * A \neq A
\end{array}
$$

Boolean: Absorption

$$
\begin{array}{ll}
A \mid(A \& B)=A & A+(A * B) \neq A \\
A \&(A \mid B)=A & \\
A *(A+B) \neq A
\end{array}
$$

Boolean: Laws of Complements

$$
A \mid \sim A=1 \quad A+A \neq 1
$$

Ring: Every element has additive inverse

$$
A \mid A \neq 0
$$

$$
A+A=0
$$

## Properties of \& and

- $\left\langle\{0,1\},,^{\wedge}, 0,1\right\rangle$ forms a Boolean ring.
- This is isomorphic to the integers mod 2.
- $I$ is the identity operation: $I(A)=A$.

Commutative sum:
Commutative product:
Associative sum:
Associative product:
Prod. over sum:
0 is sum identity:
1 is prod. identity:
0 is product annihilator:
Additive inverse:

$$
\begin{aligned}
& A^{\wedge} B=B^{\wedge} A \\
& A \& B=B \& A \\
& \left(A^{\wedge} B\right)^{\wedge} C=A^{\wedge}\left(B^{\wedge} C\right) \\
& (A \& B) \& C=A \&(B \& C) \\
& A \&\left(B^{\wedge} C\right)=(A \& B)^{\wedge}(A \& C) \\
& A^{\wedge} 0=A \\
& A \& 1=A \\
& A \& 0=0 \\
& A^{\wedge} A=0
\end{aligned}
$$

## Relations Between Operations

DeMorgan's Laws
Express \& in terms of |, and vice-versa:

$$
\begin{aligned}
& A \& B=\sim(\sim A \mid \sim B) \\
& A \mid B=\sim(\sim A \& \sim B)
\end{aligned}
$$

Exclusive-Or using Inclusive Or:

$$
\begin{gathered}
A^{\wedge} B=(\sim A \& B) \mid(A \& \sim B) \\
A^{\wedge} B=(A \mid B) \& \sim(A \& B)
\end{gathered}
$$

## General Boolean Algebras

We can also operate on bit vectors (bitwise). All of the properties of Boolean algebra apply:

| 01101001 | 01101001 | 01101001 |  |
| :---: | :---: | :---: | :---: |
| \& 01010101 | \| 01010101 | - 01010101 | $\sim 01010101$ |
| 01000001 | 01111101 | 00111100 | 10101010 |

## Representing Sets

## Representation

A width $w$ bit vector may represents subsets of $\{0, \ldots, w 1\}$. $a_{i}=1$ iff $j \in A$

Bit vector A:
01101001 represents $\{0,3,5,6\}$
76543210
Bit vector $B$ :
01010101
represents $\{0,2,4,6\}$
76543210

What bit operations on these set representations correspond to: intersection, union, complement?

## Representing Sets

## Operations:

Given the two sets above, perform these bitwise ops to obtain:

| Set operation | Boolean op | Result | Set |
| :--- | :--- | :--- | :--- |
| Intersection | A \& B | 01000001 | $\{0,6\}$ |
| Union | A I B | 01111101 | $\{0,2,3,4,5,6\}$ |
| Symmetric difference | A $\sim$ B | 00111100 | $\{2,3,4,5\}$ |
| Complement | $\sim$ A | 10010110 | $\{1,2,4,7\}$ |

## Bit Level Operations in C

The operations $\&, \mid, \sim,{ }^{\wedge}$ are all available in C.

- Apply to any integral data type: long, int, short, char.
- View the arguments as bit vectors.
- Operations are applied bit-wise to the argument(s).

Examples: (char data type)
$\sim 0 \times 41 \rightarrow 0 \times B E$
$\sim 01000001_{2} \rightarrow 10111110_{2}$
$\sim 0 \times 00 \rightarrow 0 x F F$
$\sim 00000000_{2} \rightarrow 11111111_{2}$
$0 \times 69$ \& $0 \times 55 \rightarrow 0 \times 41$
$01101001_{2} \& 01010101_{2} \rightarrow 01000001_{2}$
$0 \times 69 \mid 0 \times 55 \rightarrow 0 \times 7 D$
$01101001_{2} \mid 01010101_{2} \rightarrow 01111101_{2}$

## Contrast to Logical Operators in C

Remember the operators: \&\&, ||, !.

- View 0 as "False."
- View anything nonzero as "True."
- Always return 0 or 1 .
- Allow for early termination.


## Examples:

$$
\begin{aligned}
& !0 \times 41 \rightarrow 0 \times 00 \\
& !0 \times 00 \rightarrow 0 \times 01 \\
& !!0 \times 41 \rightarrow 0 \times 01 \\
& !!0 \times 69 \text { \& } \& \times 55 \rightarrow 0 \times 01 \\
& !!0 \times 69 \text { |। } 0 \times 55 \rightarrow 0 \times 01
\end{aligned}
$$

Can use $\mathrm{p} \& \& * \mathrm{p}$ to avoids null pointer access. How and why?

## Shift Operations

Left Shift: x << y
Shift bit vector $x$ left by y positions

- Throw away extra bits on the left.
- Fill with 0 's on the right.

Right Shift: x >> y
Shift bit vector x right by y positions.

- Throw away extra bits on the right.
- Logical shift: Fill with 0's on the left.
- Arithmetic shift: Replicate with most significant bit on the left.
Arithmetic shift is useful with two's complement integer representation.


## Shift Operations

| Argument $x$ | 01100010 |
| :---: | :---: |
| $\ll 3$ | 00010000 |
| Log. >> 2 | 00011000 |
| Arith. >> 2 | 00011000 |


| Argument $x$ | 10100010 |
| :---: | :---: |
| $\ll 3$ | 00010000 |
| Log. $\gg 2$ | 00101000 |
| Arith. $\gg 2$ | 11101000 |

## Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that each value is its own additive inverse: $\mathrm{A}{ }^{\wedge} \mathrm{A}=0$.

```
void funny(int *x, int *y)
{
 *x = *x^^*y; /* #1 */
 *y = *x^^*y; /* #2 */
 *x = *x^ ^ *y; /* #3 */
}
```

|  | $*_{\mathrm{x}}$ | $*_{\mathrm{y}}$ |
| :---: | :---: | :---: |
| Begin | A | B |
| 1 | $\mathrm{~A}^{\wedge} \mathrm{B}$ | B |
| 2 | $\mathrm{~A}^{\wedge} \mathrm{B}$ | $\left(\mathrm{A}^{\wedge} \mathrm{B}\right)^{\wedge} \mathrm{B}=\mathrm{A}$ |
| 3 | $\left(\mathrm{~A}{ }^{\wedge} \mathrm{B}\right)^{\wedge} \mathrm{A}=\mathrm{B}$ | B |
| End | A | B |

## Main Points

It's all about bits and bytes.

- Numbers
- Programs
- Text


## Different machines follow different conventions.

- Word size
- Byte ordering
- Representations

Boolean algebra is the mathematical basis.

- Basic form encodes "False" as 0 and "True" as 1.
- General form is like bit-level operations in C; good for representing and manipulating sets.

