CS429: Computer Organization and Architecture

Bits and Bytes

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: September 3, 2014 at 08:40

CS429 Slideset 2: 1 Bits and Bytes

Topics of this Slideset

There are 10 kinds of people in the world: those who understand
binary, and those who don’t!

o Why bits?
o Representing information as bits
o Binary and hexadecimal
o Byte representations : numbers, characters, strings,
instructions
o Bit level manipulations

o Boolean algebra
o C constructs

CS429 Slideset 2: 2 Bits and Bytes

Why Not Base 107

Base 10 Number Representation.

o Thats why fingers are known as “digits.”

o Natural representation for financial transactions. Floating
point number cannot exactly represent $1.20.

o Even carries through in scientific notation

1.5213 x 10*

Implementing Electronically

o 10 different values are hard to store. ENIAC (First electronic
computer) used 10 vacuum tubes / digit

o They're hard to transmit. Need high precision to encode 10
signal levels on single wire.

o Messy to implement digital logic functions: addition,
multiplication, etc.

CS429 Slideset 2: 3 Bits and Bytes

Binary Representations

Base 2 Number Representation

o Represent 1521319 as 111011011011015
o Represent 1.2010 as 1.0011001100110011[0011].. .,
o Represent 1.5213 x 10* as 1.1101101101101, x 213

Electronic Implementation
o Easy to store with bistable elements.
@ Reliably transmitted on noisy and inaccurate wires.

Voltage

Threshold

OFF

LN NN M

T2

MNoisy Signal

CS429 Slideset 2: 4 Bits and Bytes

Representing Data

Fact: Whatever you plan to store on a computer ultimately has to
be represented as a collection of bits.

That's true whether it's integers, reals, characters, strings, data
structures, instructions, pictures, videos, etc.

In a sense the representation is arbitrary. The representation is just
a mapping from the domain onto a finite set of bit strings.

But some representations are better than others. Why would that
be? Hint: what operations do you want to support?

CS429 Slideset 2: 5 Bits and Bytes

Representing Data

Fact: If you are going to represent any type in k bits, you can only
represent 2% different values. There are exactly as many integers as
floats on 1A32.

Fact: The same bit string can represent an integer (signed or
unsigned), float, character string, list of instructions, etc.
depending on the context.

CS429 Slideset 2: 6 Bits and Bytes

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

o Conceptually very large array of bytes.

o Actually implemented with hierarchy of different memory
types.

o SRAM, DRAM, disk.
o Only allocate storage for regions actually used by program.

@ In Unix and Windows NT, address space private to particular
“process.”

o Encapsulates the program being executed.
o Program can clobber its own data, but not that of others.

Compiler and Run-Time System Control Allocation
o Where different program objects should be stored.
o Multiple storage mechanisms: static, stack, and heap.

@ In any case, all allocation within single virtual address space.

CS429 Slideset 2: 7 Bits and Bytes

Encoding Byte Values

Byte = 8 bits Hex | Dec | Binary
Which can be represented in (1) (1) 888(1)
various forms: 3 2 0010
o Binary: 00000000, to S L
11111111, 5 5 0101

o Decimal: 019 to 25519 g ? 811(1)

o Hexadecimal: 0016 to FFig 8 8 1000

o Base 16 number 9 9 1001

. A 10 | 1010

representation B 11 1011

o Use characters '0'to '9’ C 12 1100

and 'A’' to 'F’ D 13 1101

o Write FA1D37B14 in C as E | 14 | 1110
0xFA1D37B or Oxfald37b F_| 15 | 1l

CS429 Slideset 2: 8 Bits and Bytes

Machine Words

Machines generally have a specific “word size.”

o It's the nominal size of integer-valued data, including
addresses.
@ Most current machines run 64-bit software (8 bytes).
o 32-bit software limits addresses to 4GB.
o Becoming too small for memory-intensive applications.
@ All x86 current hardware systems are 64 bits (8 bytes).
Potentially address around 1.8X10'9 bytes.
@ Machines support multiple data formats.

o Fractions or multiples of word size.
o Always integral number of bytes.

o X86-hardware systems operate in 16, 32, and 64 bits modes.

o Initially starts in 286 mode, which is 16-bit.
o Under programmer control, 32- and 64-bit modes are enabled.

CS429 Slideset 2: 9 Bits and Bytes

Word-Oriented Memory Organization

32-bit | 64-bit | bytes | addr.

words | words
0000
. Addr: 0001
Addresses Specify Byte 0000 0002
Locations Addr: 0003
0000 0004
o Which is the address of the Addr: 0005
fi b . d 0004 0006
Irst byte in word. 0007
. 0008

)

Add ress.es of successwe. Addr- 0005
words differ by 4 (32-bit) or 0008 0010
8 (64—blt) Addr: 0011
0008 0012
Addr: 0013
0012 0014
0015

(CS429 Slideset 2: 10 Bits and Bytes

Data Representations

Sizes of C Objects (in Bytes)

C Data Type | Alpha | Intel IA32 | AMD 64
int 4 4 4

long int 8 4 8

char 1 1 1

short 2 2 2

float 4 4 4

double 8 8 8

long double 8 8 10/12
char * 8 4 8

other pointer | 8 4 8

(CS429 Slideset 2: 11 Bits and Bytes

Byte Ordering

How should bytes within multi-byte word be ordered in
memory?

Conventions

@ Sun, PowerPC Maclntosh computers are “big endian”
machines: least significant byte has highest address.

o Alpha, Intel Maclntosh, PC's are “little endian” machines:
least significant byte has lowest address.

@ ARM processor offer support for big endian, but mainly they
are used in their default, little endian configuration.

@ There are many (hundreds) of microcontrollers so check
before you start programming!

(CS429 Slideset 2: 12 Bits and Bytes

Byte Ordering Examples

Big Endian: Least significant byte has highest address.
Little Endian: Least significant byte has lowest address.
Example:

@ Variable x has 4-byte representation 0x01234567.
o Address given by &x is 0x100

Big Endian:
Address: 0x100 | Ox101 | 0x102 | 0x103
Value: 01 23 45 67
Little Endian:
Address: 0x100 | 0x101 | Ox102 | 0x103
Value: 67 45 23 01

(CS429 Slideset 2: 13 Bits and Bytes

Reading Byte-Reversed Listings

Disassembly
o Text representation of binary machine code.

o Generated by program that reads the machine code.

Example Fragment:

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836¢c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Deciphering Numbers: Consider the value 0x12ab in the second
line of code:

o Pad to 4 bytes: 0x000012ab
o Split into bytes: 00 00 12 ab
o Reverse: ab 12 00 00

(CS429 Slideset 2: 14 Bits and Bytes

Examining Data Representations

Code to Print Byte Representations of Data
Casting a pointer to unsigned char * creates a byte array.

typedef unsigned char xpointer;
void show_bytes(pointer start, int len)
{ . .
int 1
for (i = 0; i < len; i++4)
printf (" 0x%p\t0x%.2x\n" ,start+i, start[i]);
printf("\n");

Printf directives:
@ %p: print pointer

o %x: print hexadecimal

(CS429 Slideset 2: 15 Bits and Bytes

show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes ((pointer) &a, sizeof(int));

Result (Linux):

0x11ffffcb8 0x6d
Ox11ffffcb9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00

(CS429 Slideset 2: 16 Bits and Bytes

Representing Integers

int A= 15213;
int B= —15213;
long int C = 15213;

15213190 = 0011101101101101, = 3B6D15

] \ Linux \ Alpha \ Sun ‘
A | 6D 3B 00 00 | 6D 3B 00 00 00 00 3B 6D
B | 93 C4 FF FF | 93 C4 FF FF FF FF C4 93
C | 6D 3B 0000 | 6D 3B 00 00 00 00 00 00 | 00 00 3B 6D

We'll cover the representation of negatives shortly.

(CS429 Slideset 2: 17 Bits and Bytes

Representing Pointers

int B= —15213;
int xP = &B;

Linux Address:

Hex: BFFFF8D4

Binary: 10111111111111111111100011010100
In memory: D4 F8 FF BF

Sun Address:

Hex: EFFFFFB2C

Binary: 11101111111111111111101100101100
In Memory: EF FF FB 2C

Alpha Address:

Hex: 1FFFFFCAQ

Binary: 000111111111111111111111110010100000

In Memory: A0 FC FF FF 01 00 00 00

Different compilers and machines assign different locations.

(CS429 Slideset 2: 18 Bits and Bytes

Representing Floats

All modern machines implement the IEEE Floating Point standard.
This means that it is consistent across all machines.

float F = 15213.0;

Hex: 466DB400

Binary: 01000110011011011011010000000000
In Memory (Linux/Alpha): 00 B4 6D 46

In Memory (Sun): 46 6D B4 00

Note that it's not the same as the int representation, but you can
see that the int is in there, if you know where to look.

(CS429 Slideset 2: 19 Bits and Bytes

Representing Strings

Strings in C
o Strings are represented by an array of characters.

o Each character is encoded in ASCII format.

o Standard 7-bit encoding of character set.
o Other encodings exist, but are less common.
o Character 0 has code 0x30. Digit i has code 0x30+i.

@ Strings should be null-terminated. That is, the final character
has ASCII code 0.

Compatibility
o Byte ordering not an issue since the data are single byte
quantities.

o Text files are generally platform independent, except for
different conventions of line termination character(s).

(CS429 Slideset 2: 20 Bits and Bytes

Machine Level Code Representation

Encode Program as Sequence of Instructions

o Each simple operation

o Arithmetic operation
o Read or write memory
o Conditional branch

@ Instructions are encoded as sequences of bytes.

o Alpha, Sun, PowerPC Mac use 4 byte instructions (Reduced
Instruction Set Computer” (RISC)).

o PC’'s and Intel Mac's use variable length instructions (Complex
Instruction Set Computer (CISC)).

o Different instruction types and encodings for different
machines.

o Most code is not binary compatible.

Remember: Programs are byte sequences too!

(CS429 Slideset 2: 21 Bits and Bytes

Representing Instructions

int sum(int x, int y) {
return x + vy;
}

For this example, Alpha and Sun use two 4-byte instructions. They
use differing numbers of instructions in other cases.

PC uses 7 instructions with lengths 1, 2, and 3 bytes. Windows
and Linux are not fully compatible.

Different machines typically use different instuctions and
encodings.
Instruction sequence for sum program:

Alpha: 00 00 30 42 01 80 FA 68
Sun: 81 C3 EO 08 90 02 00 09
PC: 55 89 E5 8B 45 OC 03 45 08 89 EC 5D C3

(CS429 Slideset 2: 22 Bits and Bytes

Boolean Algebra

Developed by George Boole in the 19th century, Boolean algebra is
the algebraic representation of logic. We encode “True” as 1 and
“False” as 0.

And: A & B =1 when both A =

land B =1. Not: "A =1 when A = 0.
ol -
01
10

Xor: A = B = 1 when either A

Or: A | B =1 when either A = = lor B =1, but not both.

lorB=1.

CS429 Slideset 2: 23 Bits and Bytes

Application of Boolean Algebra

In a 1937 MIT Master's Thesis, Claude Shannon showed that
Boolean algebra would be a great way to model digital networks.

At that time, the networks were relay switches. But today, all

combinational circuits can be described in terms of Boolean
“gates.”

(CS429 Slideset 2: 24 Bits and Bytes

Integer Algebra

Mathematical Rings

o A ring is an algebraic structure.

o It includes a finite set of elements and some operators with
certain properties.

@ A ring has a finite number of elements, a sum operation, a
product operation, additive inverses, and identity elements.

@ The addition and product ops must be associative and
commutative.

@ The product operation should distribute over addition.

Integer Arithmetic

(Z,4,*,,0,1) forms a ring.

Addition is the sum operation.
Multiplication is the product operation.
Minus returns the additive inverse

0 is the identity for sum.

1 is identity for product.

(CS429 Slideset 2: 25 Bits and Bytes

(]

© 6 6 0 o

Boolean Algebra

o ({0,1},],&,~,0,1) forms a Boolean algebra.

@ Or is the sum operation.

o And is the product operation.

@ ~ is the “complement” operation (not additive inverse).
o 0 is the identity for sum.

°

1 is the identity for product.

Note that a Boolean algebra is not the same as a ring, though
every Boolean algebra gives rise to a ring if you let ~ be the
product operator.

(CS429 Slideset 2: 26 Bits and Bytes

Boolean Algebra like Integer Ring

Commutativity:

AlB = B|A A+B=BA
A& B=B&A AxB=BxA
Associativity:
(A|B)|C = A|(B|C) (A+B)+ C=A+(B+ ()

(A& B)IC=A&(B&C) (AxB)xC=Ax(Bx()
Product Distributes over Sum:

A& (BIC)=(A& B)|(A& C)Ax(B+ C)=(A*B)+ (Ax C)
Sum and Product ldentities:

A=A A+0=A

A&l1=A Axl1=A
Zero is product annihilator:

A&0=0 Ax0=0
Cancellation of negation:

~(~A))=A —(-A)=A

CS429 Slideset 2: 27 Bits and Bytes

Boolean Algebra vs. Integer Ring

Boolean: Sum distributes over product
A(B& C)=(AB)& (A|IC) A+ (BxC)#(A+B)x(A+ ()

Boolean: Idempotency

AA=A A+A+£A

ALA=A AxA#£A
Boolean: Absorption

A(A&B)=A A+ (AxB)#A

A& (AIB)=A Ax(A+B)#A
Boolean: Laws of Complements

Al~A=1 A+A#£1

Ring: Every element has additive inverse
AlA#£0 A+A=0

(CS429 Slideset 2: 28 Bits and Bytes

Properties of & and ~

e ({0,1},7,0,1) forms a Boolean ring.
o This is isomorphic to the integers mod 2.
@ [is the identity operation: /(A) = A.

Commutative sum: A"B=B"A

Commutative product: A&B=B&A

Associative sum: (A"B)"C = A"(B"(C)
Associative product: (A& B)& C=A& (B& ()
Prod. over sum: A& (B"C)=(A&B)" (A& ()
0 is sum identity: A0=A

1 is prod. identity: A&l1=A

0 is product annihilator: A&0=0

Additive inverse: A"A=0

(CS429 Slideset 2: 29 Bits and Bytes

Relations Between Operations

DeMorgan’s Laws
Express & in terms of |, and vice-versa:

A& B =~ (~A| ~ B)
AB=~(~A& ~ B)
Exclusive-Or using Inclusive Or:
A'B=(~A&B)|(A& ~ B)
A*B = (AB) & ~ (A& B)

(CS429 Slideset 2: 30 Bits and Bytes

General Boolean Algebras

We can also operate on bit vectors (bitwise). All of the properties
of Boolean algebra apply:

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

(CS429 Slideset 2: 31 Bits and Bytes

Representing Sets

Representation
A width w bit vector may represents subsets of {0, ..., wl}.
ai=1iffjc A
Bit vector A:
01101001 represents {0,3,5,6}
76543210
Bit vector B:
01010101 represents {0,2,4,6}
76543210

What bit operations on these set representations correspond to:
intersection, union, complement?

CS429 Slideset 2: 32 Bits and Bytes

Representing Sets

Operations:
Given the two sets above, perform these bitwise ops to obtain:

Set operation Boolean op Result Set
Intersection A& B 01000001 {0,6}

Union A|B 01111101 {o,2,3,4,5,6}
Symmetric difference A ~ B 00111100 {2,3,4,5}
Complement ~A 10010110 {1,2,4,7}

(CS429 Slideset 2: 33 Bits and Bytes

Bit Level Operations in C

The operations &, |, ~, " are all available in C.
o Apply to any integral data type: long, int, short, char.
o View the arguments as bit vectors.
o Operations are applied bit-wise to the argument(s).

Examples: (char data type)

~ 0x41 — OxBE

~ 01000001, — 10111110,

~ 0x00 — OxFF

~ 00000000, — 11111111,

0x69 & 0x55 — 0x41

01101001, & 01010101, — 01000001,
0x69|0x55 — 0x7D
01101001,|01010101, — 01111101,

(CS429 Slideset 2: 34 Bits and Bytes

Contrast to Logical Operators in C

Remember the operators: &&, ||, !.
o View 0 as “False.”
o View anything nonzero as “True.”
o Always return 0 or 1.
o Allow for early termination.

Examples:
10x41 — 0x00
10x00 — 0x01
110x41 — 0x01
110x69 && 0x55 — 0x01
110x69 || 0x55 — 0x01

Can use p && *p to avoids null pointer access. How and why?

(CS429 Slideset 2: 35 Bits and Bytes

Shift Operations

Left Shift: x << y
Shift bit vector x left by y positions

o Throw away extra bits on the left.
o Fill with O's on the right.

Right Shift: x >> y
Shift bit vector x right by y positions.
o Throw away extra bits on the right.
o Logical shift: Fill with 0's on the left.

o Arithmetic shift: Replicate with most significant bit on the
left.

Arithmetic shift is useful with two's complement integer
representation.

(CS429 Slideset 2: 36 Bits and Bytes

Shift Operations

‘ Argument x ‘ 01100010

<< 3 00010000
Log. >> 2 | 00011000
Arith. >> 2 | 00011000

‘ Argument x | 10100010

<< 3 00010000
Log. >> 2 | 00101000
Arith. >> 2 | 11101000

CS429 Slideset 2: 37 Bits and Bytes

Cool Stuff with XOR

Bitwise XOR is a form of addition, with the extra property that

each value is its own additive inverse: A = A = 0.
void funny(int *x, int xy)
{
kX = xx " xy; [x #1 x/
xy = *kx " ky; [k #2 x/
kX = kX " ky; [k #3 x/
}
| | *x | *y
Begin A B
1 A~ B B
2 A~ B (A"B) "B=A
3 (A" B) "A=B B
End A B

Is there ever a case where this code fails?

(CS429 Slideset 2: 38 Bits and Bytes

It’s all about bits and bytes.
o Numbers
o Programs
o Text

Different machines follow different conventions.
o Word size
o Byte ordering

o Representations

Boolean algebra is the mathematical basis.
o Basic form encodes “False” as 0 and “True" as 1.
o General form is like bit-level operations in C; good for
representing and manipulating sets.

(CS429 Slideset 2: 39 Bits and Bytes

