
CS429: Computer Organization and Architecture
Linking I

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: December 3, 2014 at 07:50

CS429 Slideset 24: 1 Linking I

A Simplistic Translation Scheme

p

m.c

m.s

Compiler

Assembler

ASCII source file

Binary executable object file

(memory image on disk)

Problems:

Efficiency: small change
requires complete
re-compilation.

Modularity: hard to share
common functions (e.g.,
printf).

Solution: Static linker (or
linker).

CS429 Slideset 24: 2 Linking I

Better Scheme Using a Linker

Compiler

Assembler

a.c

a.s

a.o

m.c

m.s

Compiler

Assembler

m.o

Linker (ld)

p

Executable object file

(code and data for all functions

defined in m.c and a.c)

relocatable object files

Separately compiled

ASCII source files

Linking is the process of
combining various pieces
of code and data into a
single file that can be
loaded (copied) into
memory and executed.

Linking could happen at:

compile time;

load time;

run time.

Must somehow tell a
module about symbols
from other modules.

CS429 Slideset 24: 3 Linking I

Linking

A linker takes representations of separate program modules and
combines them into a single executable.

This involves two primary steps:

1 Symbol resolution: associate each symbol reference
throughout the set of modules with a single symbol definition.

2 Relocation: associate a memory location with each symbol
definition, and modify each reference to point to that location.

CS429 Slideset 24: 4 Linking I

Translating the Example Program

Compiler driver coordinates all steps in the translation and linking
process.

Typically included with each compilation system (e.g., gcc).

Invokes the preprocessor (cpp), compiler (cc1), assembler
(as), and linker (ld).

Passes command line arguments to the appropriate phases

Example: Create an executable p from m.c and a.c:

> gcc −O2 −v −o p m. c a . c
cpp [a r g s] m. c /tmp/ cca07630 . i
cc1 /tmp/ cca07630 . i m. c −O2 [a r g s] −o /tmp/ cca07630 . s
as [a r g s] −o /tmp/ cca076301 . o /tmp/ cca07630 . s
< s i m i l a r p r o c e s s f o r a . c>
l d −o p [system ob j f i l e s] /tmp/ cca076301 . o /tmp/

cca076302 . o
>

CS429 Slideset 24: 5 Linking I

Compiling/Assembling

C Code

doub l e sum(i n t v a l) {
i n t sum = 0 ;
doub l e p i = 3 . 1 4 ;
i n t i ;

f o r (i =3; i<=va l ; i++)
sum += i ;

r e t u r n sum + p i ;
}

Obtain with command:
gcc -O -S sum.c

Produces file code.s

sum :
p u s h l %ebp
movl %esp , %ebp
movl 8(%ebp) , %ecx
movl $0 , %edx
cmpl $2 , %ecx
j l e . L 4
movl $0 , %edx
movl $3 , %eax

. L 5 :
a d d l %eax , %edx
a d d l $1 , %eax
cmpl %eax , %ecx
j g e . L 5

. L 4 :
p u s h l %edx
f i l d l (%esp)
l e a l 4(% esp) , %esp
f a d d l .LC0
p o p l %ebp
r e t

.LC0 :
. l o n g 1374389535
. l o n g 1074339512

CS429 Slideset 24: 6 Linking I

Role of the Assembler

Translate assembly code (compiled or hand generated) into
machine code.

Translate data into binary code (using directives).

Resolve symbols—translate into relocatable offsets.

Error checking:

Syntax checking;
Ensure that constants are not too large for fields.

CS429 Slideset 24: 7 Linking I

Where Did the Labels Go?

Disassembled Object Code

08048334 <sum>:
8048334: 55 push %ebp
8048335: 89 e5 mov %esp , %ebp
8048337: 8b 4d 08 mov 8(%ebp) , %ecx
804833 a : ba 00 00 00 00 mov $0x0 , %edx
804833 f : 83 f 9 02 cmp $0x2 , %ecx
8048342: 7 e 13 j l e 8048357 <sum+0x23>
8048344: ba 00 00 00 00 mov $0x0 , %edx
8048349: b8 03 00 00 00 mov $0x3 , %eax
804834 e : 01 c2 add %eax , %edx
8048350: 83 c3 01 add $0x1 , %eax
8048353: 39 c1 cmp %eax , %ecx
8048355: 7d f 7 j g e 804834 e <sum+0x1a>
8048357: 52 push %edx
8048358: db 04 24 f i l d l (%esp)
804835 b : 8d 64 24 04 l e a 4(% esp) , %esp
804835 f : dc 05 50 84 04 08 f a d d l 0 x8048450
8048365: 5d pop %ebp
8048366: c3 r e t

CS429 Slideset 24: 8 Linking I

Label Resolution

Disassembled Object Code

8048342: 7 e 13 j l e 8048357 <sum+0x23>
. . .

8048355: 7d f 7 j g e 804834 e <sum+0x1a>
. . .

804835 f : dc 05 50 84 04 08 f a d d l 0 x8048450

Byte relative offsets for jle and jge:

jge: 13 bytes forward

jge: 9 bytes backward (two’s complement of 0xf7)

Relocatable absolute address:

faddl: 0x8048450

CS429 Slideset 24: 9 Linking I

How Does the Assembler Work?

One Pass

Record label definitions

When use is found, compute offset

Two Pass

Pass 1: scan for label instantiations—creates symbol table

Pass 2: compute offsets from label use/def

Can detect if computed offset is too large for assembly
instruction.

CS429 Slideset 24: 10 Linking I

Symbol Table

00000000 g .text 00000033 sumF

segment offset from symbol

namesegment start

symbol type

(global)

The symbol table tracks the location of symbols in the object file.

Symbols that can be resolved need not be included.

Symbols that may be needed during linking must be included.

CS429 Slideset 24: 11 Linking I

What Does a Linker Do?

Merges object files

Merges multiple relocatable (.o) object files into a single
executable object file that can be loaded and executed.

Resolves external references

As part of the merging process, resolves external references.

External reference: reference to a symbol defined in another
object file.

Relocates symbols

Relocates symbols from their relative locations in the .o files
to new absolute positions in the executable.

Updates all references to these symbols to reflect their new
positions.

References can be in either code or data:

code: a(); /* reference to symbol a */
data: *xp = &x; /* reference to symbol x */

CS429 Slideset 24: 12 Linking I

Why Linkers?

Modularity

Programs can be written as a collection of smaller source files,
rather than one monolithic mass.

Can build libraries of common functions shared by multiple
programs (e.g., math library, standard C library)

Efficiency

Time:

Change one source file, recompile, and then relink.
No need to recompile other source files.

Space:

Libraries of common functions can be aggregated into a single
file.
Yet executable files and running machine images contain only
code for the functions they actually use.

CS429 Slideset 24: 13 Linking I

Executable and Linkable Format (ELF)

Standard binary format for object files.

Derives from AT&T System V Unix, and later adopted by
BSD Unix variants and Linux.

One unified format for:

Relocatable object files (.o),
Executable object files,
Shared object files (.so).

The generic name is ELF binaries.

Better support for shared libraries than the old a.out formats.

CS429 Slideset 24: 14 Linking I

ELF Object File Format

ELF header: magic number, type
(.o, exec, .so), machine, byte
ordering, etc.

Program header table: page size,
virtual addresses of memory
segments (sections), segment sizes

.text section: code

.data section: initialized (static)
data

.bss section:

uninitialized (static) data
“Block Started by Symbol”
“Better Save Space”
Has section header, but occupies
no space.

ELF header

Program header tables
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

CS429 Slideset 24: 15 Linking I

ELF Object File Format (continued)

.symtab section
Symbol table
Procedure and static variable names

Section names and locations

.rel.text section
Relocation info for .text section
Addresses of instructions that will need
to be modified in the executable

Instructions for modifying

.rel.data section
Relocation info for .data section

Addresses of pointer data needing

modification in the merged executable

.debug section

Info for symbolic debugging (gcc -g)

ELF header

Program header tables
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

CS429 Slideset 24: 16 Linking I

Example C Program

m.c

i n t e = 7 ;

i n t main ()
{

i n t r = a () ;
e x i t (0) ;

}

a.c

e x t e r n i n t e ;

i n t ∗ep = &e ;
i n t x = 15 ;
i n t y ;

i n t a ()
{

r e t u r n ∗ep + x + y ;
}

CS429 Slideset 24: 17 Linking I

Merging Relocatable Object Files

Relocatable object files are merged into an executable by the
Linker. Both are in ELF format.

.text

.data

.bss

system code

system data

main()

int e = 7

a()

int *ep = &e

int x = 15

int y

.text

.text

.data

.data

headers

system code

main()

a()

more system code

.text

system data

int e = 7

int *ep = &e

int x = 15

uninitialized data

.symtab

.debug

.data

.bss

CS429 Slideset 24: 18 Linking I

Summary

This slideset:

Compilation / Assembly / Linking

Symbol resolution and symbol tables

Next time:

Code and data relocation

Loading

Libraries

Dynamically linked libraries

CS429 Slideset 24: 19 Linking I

