CS429: Computer Organization and Architecture Integers

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences University of Texas at Austin

Last updated: August 26, 2014 at 15:04

Topics of this Slideset

- Numeric Encodings: Unsigned and two's complement
- Programming Implications: C promotion rules
- Basic operations:
- addition, negation, multiplication
- Consequences of overflow
- Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Assume a machine with 32 -bit word size, two's complement integers.
- For each of the following C expressions, either:
- Argue that is true for all argument values;
- Give an example where it's not true.

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

$$
\begin{array}{ll}
\mathrm{x}<0 \\
\mathrm{ux}>=0 & \rightarrow((\mathrm{x} * 2)<0 \\
\mathrm{x} \& 7==7 & \\
\mathrm{ux}>-1 \\
\mathrm{x}>\mathrm{y} & \\
\mathrm{x} * \mathrm{x}>=0 & \\
\mathrm{x}>0 \& \& \mathrm{x} \ll 30)<0 \\
\mathrm{x}>=0 & \rightarrow-\mathrm{x}<-\mathrm{y} \\
\mathrm{x}<=0 & \rightarrow \mathrm{x}+\mathrm{y}>0 \\
& \rightarrow-\mathrm{y}<=0 \\
& \rightarrow-\mathrm{x}>=0
\end{array}
$$

Encoding Integers

Assume we have a w length bit string X.
Unsigned: $\mathrm{B} 2 \mathrm{U}(X)=\sum_{i=0}^{w-1} X_{i} \times 2^{i}$
Two's complement: B2T $(X)=-X_{w-1} \times 2^{w-1}+\sum_{i=0}^{w-1} X_{i} \times 2^{i}$

Decimal	Hex	Binary
15213	$3 B 6 D$	0011101101101101
-15213	C4 93	1100010010010011

Sign Bit:

For 2's complement, the most significant bit indicates the sign.

- 0 for nonnegative
- 1 for negative

Encoding Example

$x=$	$15213:$	00111011	01101101
$y=$	$-15213:$	11000100	10010011

Weight	$\mathbf{1 5 2 1 3}$		$\mathbf{- 1 5 2 1 3}$		
1	1	1	1	1	
2	0	0	1	2	
4	1	4	0	0	
8	1	8	0	0	
16	0	0	1	16	
32	1	32	0	0	
64	1	64	0	0	
128	0	0	1	128	
256	1	256	0	0	
512	1	512	0	0	
1024	0	0	1	1024	
2048	1	2048	0	0	
4096	1	4096	0	0	
8192	1	8192	0	0	
16384	0	0	1	16384	
-32768	0	0	1	-32768	
Sum	$\mathbf{1 5 2 1 3}$			$\mathbf{- 1 5 2 1 3}$	

Numeric Ranges

Unsigned Values

$$
\begin{array}{ll}
\text { UMin }=0 & 000 \ldots 0 \\
\text { UMax }=2^{w}-1 & 111 \ldots 1
\end{array}
$$

Two's Complement Values

$$
\begin{array}{ll}
\text { TMin }=-2^{w-1} & 100 \ldots 0 \\
\text { TMax }=2^{w-1}-1 & 011 \ldots 1
\end{array}
$$

Values for $\mathbf{w}=16$

	Decimal	Hex	Binary
UMax	65535	FF FF	1111111111111111
TMax	32767	7F FF	0111111111111111
TMin	-32768	FF FF	1000000000000000
-1	-1	FF FF	1111111111111111
0	0	00 00	0000000000000000

Values for Different Word Sizes

\mathbf{w}	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
UMax	255	65,525	$4,294,967,295$	$18,446,744,073,709,551,615$
TMax	127	32,767	$2,147,483,647$	$9,223,372,036,854,775,807$
TMin	-128	$-32,768$	$-2,147,483,648$	$-9,223,372,036,854,775,808$

Observations

- \mid TMin $\mid=$ TMax +1
- $\mathrm{UMax}=2 \times \mathrm{TMax}+1$

C Programming

\#include <limits.h>
Declares various constants: ULONG_MAX, LONG_MAX, LONG_MIN, etc. The values are platform-specific.

Unsigned and Signed Numeric Values

Equivalence: Same encoding for nonnegative values

Uniqueness:

- Every bit pattern represents a unique integer value
- Each representable integer has unique encoding

Can Invert Mappings:

- inverse of $\mathrm{B} 2 \mathrm{U}(\mathrm{X})$ is $\mathrm{U} 2 \mathrm{~B}(\mathrm{X})$
- inverse of $B 2 T(X)$ is $\operatorname{T2B}(X)$

X	B2U (X)	B2T (X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Casting Signed to Unsigned

C allows conversions from signed to unsigned.

```
short int }x=15213
unsigned short into ux = (unsigned short) x;
short int y = - 15213;
unsigned short into uy = (unsigned short) y;
```


Resulting Values:

- No change in bit representation.
- Nonnegative values are unchanged.
- Negative values change into (large) positive values.

Signed vs Unsigned in C

Constants

- By default, constants are considered to be signed integers.
- They are unsigned if they have " U " as a suffix: OU, 4294967259U.

Casting

- Explicit casting between signed and unsigned is the same as U2T and T2U:

```
int tx, ty;
unsigned ux, uy;
tx = (int)ux;
uy = (unsigned) ty;
```

- Implicit casting also occurs via assignments and procedure calls.

$$
\begin{aligned}
& \mathrm{tx}=\mathrm{ux} \\
& \mathrm{uy}=\mathrm{ty}
\end{aligned}
$$

Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, signed values implicitly cast to unsigned.
- This includes when you compare using <, >, ==, <=, >=.

Const 1	Const 2	Rel.	Evaluation
0	$0 U$	$==$	unsigned
-1	0	$<$	signed
-1	$0 U$	$>$	unsigned
2147483647	-2147483648	$>$	signed
2147483647 U	-2147483648	$<$	unsigned
-1	-2	$>$	signed
(unsigned) 1	-2	$>$	unsigned
2147483647	2147483648 U	$>$	unsigned
2147483647	(int) 2147483648 U	$>$	signed

Sign Extension

Task: Given a w-bit signed integer x , convert it to a w+k-bit integer with the same value.

Rule: Make k copies of the sign bit :

$$
x^{\prime}=x_{w-1}, \ldots x_{w-1}, x_{w-2}, \ldots, w_{0}
$$

Why does this work?

Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = - 15213;
int iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	0011101101101101
ix	15213	00 00 3B 6D	00000000000000000011101101101101
y	-15213	C4 93	1100010010010011
iy	-15213	FF FF C4 93	11111111111111111100010010010011

In converting from smaller to larger signed integer data types, C automatically performs sign extension.

Why Use Unsigned?

Don't use just to ensure numbers are nonzero.

- Some C compilers generate less efficient code for unsigned.

```
unsigned i;
for (i=1; i < cnt; i++)
    a[i] += a[i-1]
```

- It's easy to make mistakes.

$$
\begin{aligned}
& \text { for } \quad(\mathrm{i}=\mathrm{cnt}-2 ; \mathrm{i}>=0 ; \mathrm{i}--) \\
& \quad a[\mathrm{i}]+=\mathrm{a}[\mathrm{i}+1]
\end{aligned}
$$

Do use when performing modular arithmetic.

- multiprecision arithmetic
- other esoteric stuff

Do use when you need extra bits of range.

Negating Two's Complement

To find the negative of a number in two's complement form: complement the bit pattern and add 1 :

$$
\sim x+1=-x
$$

Example:

$$
10011101=0 \times 9 C=-98_{10}
$$

complement:

$$
01100010=0 \times 62=97_{10}
$$

add 1:
$01100011=0 \times 63=98_{10}$

Try it with: 11111111 and 00000000.

Complement and Increment Examples

	Decimal	Hex	Binary
x	15213	3B 6D	0011101101101101
${ }_{\sim}^{x} \mathrm{x}$	-15214	C4 92	1100010010010010
${ }^{\mathrm{x}} \mathrm{x}+1$	-15213	C4 93	1100010010010011
0	0	0000	0000000000000000
${ }_{\sim} 0$	-1	FF FF	1111111111111111
\sim_{0+1}	0	0000	0000000000000000

Unsigned Addition

Given two w-bit unsigned quantities u, v, the true sum may be a w+1-bit quantity.

We just discard the carry bit, and treat the result as an unsigned integer.

Thus, unsigned addition implements modular addition.

$$
\begin{gathered}
\operatorname{UAdd}_{w}(u, v)=(u+v) \bmod 2^{w} \\
\operatorname{UAdd}_{w}(u, v)= \begin{cases}u+v & u+v<2^{w} \\
u+v-2^{w} & u+v \geq 2^{w}\end{cases}
\end{gathered}
$$

Properties of Unsigned Addition

Unsigned addition forms an Abelian Group.

- Closed under addition:

$$
0 \leq \operatorname{UAdd}_{w}(u, v) \leq 2^{w}-1
$$

- Commutative

$$
\operatorname{UAdd}_{w}(u, v)=\operatorname{UAdd}_{w}(v, u)
$$

- Associative

$$
\operatorname{UAdd}_{w}\left(t, \operatorname{UAdd}_{w}(u, v)\right)=\operatorname{UAdd}_{w}\left(\operatorname{UAdd}_{w}(t, u), v\right)
$$

- 0 is the additive identity

$$
\operatorname{UAdd}_{w}(u, 0)=u
$$

- Every element has an additive inverse Let $\mathrm{UComp}_{w}(u)=2^{w}-u$, then

$$
\operatorname{UAdd}_{w}\left(u, \operatorname{UComp}_{w}(u)\right)=0
$$

Two's Complement Addition

Given two w-bit unsigned quantities u, v, the true sum may be a w+1-bit quantity.

We just discard the carry bit, treat the result as a two's complement number.

$$
\operatorname{TAdd}_{w}(u, v)= \begin{cases}u+v+2^{w-1} & u+v<\operatorname{TMin}_{w} \text { (NegOver) } \\ u+v & \operatorname{TMin}_{w}<u+v \leq \operatorname{TMax}_{w} \\ u+v-2^{w-1} & \operatorname{TMax}_{w}<u+v \operatorname{PosOver}\end{cases}
$$

Two's Complement Addition

TAdd and UAdd have identical bit-level behavior.

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v
```

This will give $s==t$.

Detecting 2's Complement Overflow

Task:
Determine if $s=\operatorname{TAdd}_{w}(u, v)=u+v$.

Claim: We have overflow iff either:

- $u, v<0$ but $s \geq 0$ (NegOver)
- $u, v \geq 0$ but $s<0$ (PosOver)

Can compute this as:

$$
\text { ovf }=(u<0==v<0) \& \&(u<0 \quad!=s<0) ;
$$

Properties of TAdd

Isomorphic Algebra to UAdd.

This is clear since they have identical bit patterns.

$$
\operatorname{Tadd}_{w}(u, v)=\mathrm{U} 2 \mathrm{~T}\left(\operatorname{UAdd}_{w}(\operatorname{T} 2 \mathrm{U}(u), \operatorname{T} 2 \mathrm{U}(v))\right)
$$

Two's Complement under TAdd forms a group.

- Closed, commutative, associative, 0 is additive identity.
- Every element has an additive inverse:

Let $\operatorname{TComp}_{w}(u)=\mathrm{U} 2 \mathrm{~T}\left(\mathrm{UComp}_{w}(\mathrm{~T} 2 \mathrm{U}(u))\right.$, then
$\operatorname{TAdd}_{w}\left(u, \operatorname{UComp}_{w}(u)\right)=0$

$$
\operatorname{TComp}_{w}(u)= \begin{cases}-u & u \neq \operatorname{TMin}_{w} \\ \operatorname{TMin}_{w} & u=\operatorname{TMin}_{w}\end{cases}
$$

Multiplication

Computing the exact product of two w-bit numbers x, y. This is the same for both signed and unsigned.

Ranges:

- Unsigned: $0 \leq x * y \leq\left(2^{w}-1\right)^{2}=2^{2 w}-2^{w+1}+1$, requires up to $2 w$ bits.
- Two's comp. min:
$x * y \geq\left(-2^{w-1}\right) *\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}$, requires up to $2 w-1$ bits.
- Two's comp. max: $x * y \leq\left(-2^{w-1}\right)^{2}=2^{2 w-2}$, requires up to $2 w$, but only for $\left.\operatorname{TMin}_{w}\right)^{2}$.

Maintaining the exact result

- Would need to keep expanding the word size with each product computed.
- Can be done in software with "arbitrary precision" arithmetic packages.

Unsigned Multiplication in C

Given two w-bit unsigned quantities u, v, the true sum may be a $2 w$-bit quantity.

We just discard the most significant \mathbf{w} bits, treat the result as an unsigned number.

Thus, unsigned multiplication implements modular multiplication.

$$
\mathrm{UMult}_{w}(u, v)=(u \times v) \bmod 2^{w}
$$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
```

- Truncates product to w-bit number: $u p=$ UMult $_{w}(u x, u y)$
- Modular arithmetic: $u p=u x \cdot u y \bmod 2^{w}$

Two's Complement Multiplication

```
int x, y;
int p = x * y;
```

- Compute exact product of two w-bit numbers x, y.
- Truncate result to w-bit number: $p=\operatorname{TMult}_{w}(x, y)$

Unsigned vs. Signed Multiplication

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
```


Two's Complement Multiplication

```
int x, y;
int p = x * y;
```


Relation

- Signed multiplication gives same bit-level result as unsigned.
- up == (unsigned) p

Multiply with Shift

A left shift by k, is equivalent to multiplying by 2^{k}. This is true for both signed and unsigned values.

$$
\begin{aligned}
& \mathrm{u} \ll 1 \rightarrow u \times 2 \\
& \mathrm{u} \ll 2 \rightarrow u \times 4 \\
& \mathrm{u} \ll 3 \rightarrow u \times 8 \\
& \mathrm{u} \ll 4 \rightarrow u \times 16 \\
& \mathrm{u} \ll 5 \rightarrow u \times 32 \\
& \mathrm{u} \lll 6 \rightarrow u \times 64
\end{aligned}
$$

Compilers often use shifting for multiplication, since shift and add is much faster than multiply.

$$
u \ll 5-u \ll 3==u * 24
$$

Unsigned Divide by Shift

A right shift by k, is (approximately) equivalent to dividing by 2^{k}, but the effects are different for the unsigned and signed cases.
Quotient of unsigned value by power of 2.

$$
\mathrm{u} \gg \mathrm{k}==\left\lfloor x / 2^{k}\right\rfloor
$$

Uses logical shift.

	Division	Computed	Hex	Binary
y	15213	15213	3B 6D	0011101101101101
y >> 1	7606.5	7606	1D B6	0001110110110110
y >>4	950.8125	950	03 B 6	0000001110110110
y >> 8	59.4257813	59	$003 B$	0000000000111011

Signed Divide by Shift

Quotient of unsigned value by power of 2.

$$
\mathrm{u} \gg \mathrm{k}==\left\lfloor x / 2^{k}\right\rfloor
$$

- Uses arithmetic shift. What does that mean?
- Rounds in wrong direction when $u<0$.

	Division	Computed	Hex	Binary
y	-15213	-15213	C4 93	1100010010010011
y >> 1	-7606.5	-7607	E2 49	1110001001001001
y >> 4	-950.8125	-951	FC 49	1111110001001001
y >> 8	-59.4257813	-60	FF C4	1111111111000100

Correct Power-of-2 Division

We've seen that right shifting a negative number, give the wrong answer, because it rounds away from 0 .

$$
\mathrm{u} \gg \mathrm{k}==\left\lfloor x / 2^{k}\right\rfloor
$$

We'd really like $\left\lceil x / 2^{k}\right\rceil$ instead.
You can compute this as: $\left\lfloor\left(x+2^{k}-1\right) / 2^{k}\right\rfloor$. In C, that's:
$(x+(1 \ll k)-1) \gg k$
This biases the dividend toward 0 .

Properties of Unsigned Arithmetic

Unsigned multiplication with additions forms a Commutative Ring.

- Addition is commutative
- Closed under multiplication

$$
0 \leq \text { UMult }_{w}(u, v) \leq 2^{w}-1
$$

- Multiplication is commutative

$$
\operatorname{UMult}_{w}(u, v)=\operatorname{UMult}_{w}(v, u)
$$

- Multiplication is associative

$$
\operatorname{UMult}_{w}\left(t, \operatorname{UMult}_{w}(u, v)\right)=\operatorname{UMult}_{w}\left(\operatorname{UMult}_{w}(t, u), v\right)
$$

- 1 is the multiplicative identity

$$
\operatorname{UMult}_{w}(u, 1)=u
$$

- Multiplication distributes over addition
$\operatorname{UMult}_{w}\left(t, \operatorname{UAdd}_{w}(u, v)\right)=\operatorname{UAdd}_{w}\left(\operatorname{UMult}_{w}(t, u), \operatorname{UMult}_{w}(t, v)\right)$

Properties of Two's Complement Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition: truncate to w bits
- Two's complement multiplication and addition: truncate to w bits

Both form rings isomorphic to ring of integers mod 2^{w}
Comparison to Interer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.

$$
\begin{aligned}
u>0 & \rightarrow u+v>0 \\
u>0, v>0 & \rightarrow u \cdot v>0
\end{aligned}
$$

- These properties are not obeyed by two's complement arithmetic.

$$
\text { TMax }+1==\text { TMin }
$$

$$
15213 * 30426==-10030 \text { (for } 16 \text {-bit words) }
$$

C Puzzle Answers

Assume a machine with 32-bit word size, two's complement integers.

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

$\mathrm{x}<0$	$\rightarrow((\mathrm{x} * 2)<0$	False: TMin
$\mathrm{ux}>=0$		True: $0=$ UMin
$\mathrm{x} \& 7==7$	$\rightarrow(\mathrm{x} \ll 30)<0$	True: $x_{1}=1$
$\mathrm{ux}>-1$		False: 0
$\mathrm{x}>\mathrm{y}$	$\rightarrow-\mathrm{x}<-\mathrm{y}$	False: -1, TMin
$\mathrm{x} * \mathrm{x}>=0$		False: 30426
$\mathrm{x}>0 \& \& \mathrm{y}>0$	$\rightarrow \mathrm{x}+\mathrm{y}>0$	False: TMax, TMax
$\mathrm{x}>=0$	$\rightarrow-\mathrm{y}<=0$	True: -TMax <0
$\mathrm{x}<=0$	$\rightarrow-\mathrm{x}>=0$	False: TMin

