CS429: Computer Organization and Architecture Integers

Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin

Last updated: August 26, 2014 at 15:04

- Numeric Encodings: Unsigned and two's complement
- Programming Implications: C promotion rules
- Basic operations:
 - addition, negation, multiplication
 - Consequences of overflow
 - Using shifts to perform power-of-2 multiply/divide

C Puzzles

- Assume a machine with 32-bit word size, two's complement integers.
- For each of the following C expressions, either:
 - Argue that is true for all argument values;
 - Give an example where it's not true.

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

x < 0	\rightarrow ((x*2) < 0
ux >= 0	
x & 7 == 7	\rightarrow (x<<30) < 0
ux > -1	
x > y	$\rightarrow -x < -y$
x * x >= 0	
x > 0 && y > 0	$\rightarrow x + y > 0$
$x \ge 0$	$\rightarrow -y \ll 0$
x <= 0	$\rightarrow -x \ge 0$

Encoding Integers

Assume we have a w length bit string X.

Unsigned: B2U(X) = $\sum_{i=0}^{w-1} X_i \times 2^i$

Two's complement: B2T(X) = $-X_{w-1} \times 2^{w-1} + \sum_{i=0}^{w-1} X_i \times 2^i$

Decimal	Hex	Binary
15213	3B 6D	00111011 01101101
-15213	C4 93	11000100 10010011

Sign Bit:

For 2's complement, the most significant bit indicates the sign.

- 0 for nonnegative
- 1 for negative

Encoding Example

x =	15213:	00111011	01101101
y =	-15213:	11000100	10010011

Weight		15213		-15213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum	15213			-15213

CS429 Slideset 3: 5 Int

Unsigned Values

$$UMin = 0$$
 000...0
 $UMax = 2^{w} - 1$ 111...1

Two's Complement Values

$$TMin = -2^{w-1} 100...0$$

TMax = $2^{w-1} - 1$ 011...1

Values for w = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	FF FF	1000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 00000000

w	8	16	32	64
UMax	255	65,525	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- $|\mathsf{TMin}| = \mathsf{TMax} + 1$
- $UMax = 2 \times TMax + 1$

C Programming

#include <limits.h>

Declares various constants: ULONG_MAX, LONG_MAX, LONG_MIN, etc. *The values are platform-specific.*

Equivalence: Same encoding for nonnegative values

Uniqueness:

- Every bit pattern represents a unique integer value
- Each representable integer has unique encoding

Can Invert Mappings:

- inverse of B2U(X) is U2B(X)
- inverse of B2T(X) is T2B(X)

Х	B2U(X)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

C allows conversions from signed to unsigned.

```
short intx = 15213;unsigned short into ux = (unsigned short) x;short inty = -15213;unsigned short into uy = (unsigned short) y;
```

Resulting Values:

- No change in bit representation.
- Nonnegative values are unchanged.
- Negative values change into (large) positive values.

Signed vs Unsigned in C

Constants

- By default, constants are considered to be signed integers.
- They are unsigned if they have "U" as a suffix: 0U, 4294967259U.

Casting

• Explicit casting between signed and unsigned is the same as U2T and T2U:

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls.

 $\begin{array}{rll} tx &=& ux\,;\\ uy &=& ty\,; \end{array}$

Expression Evaluation

- If you mix unsigned and signed in a single expression, signed values implicitly cast to unsigned.
- This includes when you compare using <, >, ==, <=, >=.

Const 1	Const 2	Rel.	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483648	>	signed
2147483647U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned) 1	-2	>	unsigned
2147483647	2147483648U	>	unsigned
2147483647	(int) 2147483648U	>	signed

Task: Given a w-bit signed integer x, convert it to a w+k-bit integer with the same value.

Rule: Make k copies of the sign bit :

$$x' = x_{w-1}, \dots x_{w-1}, x_{w-2}, \dots, w_0$$

Why does this work?

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

	Decimal	Hex	Binary
X	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	0000000 0000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

In converting from smaller to larger signed integer data types, C automatically performs sign extension.

Why Use Unsigned?

Don't use just to ensure numbers are nonzero.

• Some C compilers generate less efficient code for unsigned.

```
unsigned i;
for (i=1; i < cnt; i++)
a[i] += a[i-1]
```

• It's easy to make mistakes.

for
$$(i = cnt - 2; i \ge 0; i - -)$$

a[i] += a[i+1]

Do use when performing modular arithmetic.

- multiprecision arithmetic
- other esoteric stuff

Do use when you need extra bits of range.

To find the negative of a number in two's complement form: complement the bit pattern and add 1:

 $\sim x + 1 = -x$

Example:

 $10011101 = 0 \text{x9C} = -98_{10}$ complement:

 $\begin{array}{l} \text{01100010} = 0 \text{x62} = 97_{10} \\ \text{add 1:} \end{array}$

 $\texttt{01100011} = \texttt{0x63} = \texttt{98}_{\texttt{10}}$

Try it with: 11111111 and 00000000.

Complement and Increment Examples

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	0000000 00000000

Given two w-bit unsigned quantities u, v, the true sum may be a w+1-bit quantity.

We just discard the carry bit, and treat the result as an unsigned integer.

Thus, unsigned addition implements modular addition.

$$\mathsf{UAdd}_w(u,v) = (u+v) \mod 2^w$$

$$\mathsf{UAdd}_w(u,v) = \begin{cases} u+v & u+v < 2^w \\ u+v-2^w & u+v \ge 2^w \end{cases}$$

Properties of Unsigned Addition

Unsigned addition forms an Abelian Group.

• Closed under addition:

$$0 \leq \mathsf{UAdd}_w(u, v) \leq 2^w - 1$$

Commutative

$$\mathsf{UAdd}_w(u,v) = \mathsf{UAdd}_w(v,u)$$

Associative

 $\mathsf{UAdd}_w(t,\mathsf{UAdd}_w(u,v)) = \mathsf{UAdd}_w(\mathsf{UAdd}_w(t,u),v)$

• 0 is the additive identity

$$UAdd_w(u,0) = u$$

• Every element has an additive inverse Let $UComp_w(u) = 2^w - u$, then

 $\mathsf{UAdd}_w(u,\mathsf{UComp}_w(u))=0$

Given two w-bit unsigned quantities u, v, the true sum may be a w+1-bit quantity.

We just discard the carry bit, treat the result as a two's complement number.

$$\mathsf{TAdd}_w(u,v) = \begin{cases} u+v+2^{w-1} & u+v < \mathsf{TMin}_w \text{ (NegOver)} \\ u+v & \mathsf{TMin}_w < u+v \le \mathsf{TMax}_w \\ u+v-2^{w-1} & \mathsf{TMax}_w < u+v \text{ PosOver} \end{cases}$$

TAdd and UAdd have identical bit-level behavior.

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

This will give s == t.

Task:

Determine if $s = TAdd_w(u, v) = u + v$.

Claim: We have overflow iff either:

- u, v < 0 but $s \ge 0$ (NegOver)
- $u, v \ge 0$ but s < 0 (PosOver)

Can compute this as:

Isomorphic Algebra to UAdd.

This is clear since they have identical bit patterns.

 $\mathsf{Tadd}_w(u, v) = \mathsf{U2T}(\mathsf{UAdd}_w(\mathsf{T2U}(u), \mathsf{T2U}(v)))$

Two's Complement under TAdd forms a group.

- Closed, commutative, associative, 0 is additive identity.
- Every element has an additive inverse:

Let $TComp_w(u) = U2T(UComp_w(T2U(u)))$, then $TAdd_w(u, UComp_w(u)) = 0$

$$\mathsf{TComp}_w(u) = \begin{cases} -u & u \neq \mathsf{TMin}_w \\ \mathsf{TMin}_w & u = \mathsf{TMin}_w \end{cases}$$

Multiplication

Computing the exact product of two w-bit numbers x, y. This is the same for both signed and unsigned.

Ranges:

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$, requires up to 2w bits.
- Two's comp. min: $x * y \ge (-2^{w-1}) * (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$, requires up to 2w - 1 bits.
- Two's comp. max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$, requires up to 2w, but only for $TMin_w)^2$.

Maintaining the exact result

- Would need to keep expanding the word size with each product computed.
- Can be done in software with "arbitrary precision" arithmetic packages.

Given two w-bit unsigned quantities u, v, the true sum may be a 2w-bit quantity.

We just discard the most significant w bits, treat the result as an unsigned number.

Thus, unsigned multiplication implements **modular multiplication**.

 $\mathsf{UMult}_w(u,v) = (u \times v) \mod 2^w$

Unsigned Multiplication

```
unsigned ux = (unsigned) x;
unsigned uy = (unsigned) y;
unsigned up = ux * uy;
```

- Truncates product to w-bit number: $up = UMult_w(ux, uy)$
- Modular arithmetic: $up = ux \cdot uy \mod 2^w$

Two's Complement Multiplication

int x, y; int p = x * y;

- Compute exact product of two w-bit numbers x, y.
- Truncate result to w-bit number: $p = TMult_w(x, y)$

Unsigned Multiplication

unsigned ux = (unsigned) x; unsigned uy = (unsigned) y; unsigned up = ux * uy;

Two's Complement Multiplication

int x, y; int p = x * y;

Relation

- Signed multiplication gives same bit-level result as unsigned.
- up == (unsigned) p

Multiply with Shift

A left shift by k, is equivalent to multiplying by 2^k . This is true for both signed and unsigned values.

u << $1 \rightarrow u \times 2$ u << $2 \rightarrow u \times 4$ u << $3 \rightarrow u \times 8$ u << $4 \rightarrow u \times 16$ u << $5 \rightarrow u \times 32$ u << $6 \rightarrow u \times 64$

Compilers often use shifting for multiplication, since shift and add is much faster than multiply.

A right shift by k, is (approximately) equivalent to dividing by 2^k , but the effects are different for the unsigned and signed cases. **Quotient of unsigned value by power of 2.**

u >> k ==
$$\lfloor x/2^k \rfloor$$

Uses logical shift.

	Division	Computed	Hex	Binary
у	15213	15213	3B 6D	00111011 01101101
y >> 1	7606.5	7606	1D B6	00011101 10110110
y >> 4	950.8125	950	03 B6	00000011 10110110
y >> 8	59.4257813	59	00 3B	0000000 00111011

Quotient of unsigned value by power of 2.

u >> k ==
$$\lfloor x/2^k \rfloor$$

- Uses arithmetic shift. What does that mean?
- Rounds in wrong direction when u < 0.

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	11100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
y >> 8	-59.4257813	-60	FF C4	11111111 11000100

We've seen that right shifting a negative number, give the wrong answer, because it rounds away from 0.

u >> k ==
$$\lfloor x/2^k \rfloor$$

We'd really like $\lceil x/2^k \rceil$ instead.

You can compute this as: $\lfloor (x+2^k-1)/2^k \rfloor$. In C, that's:

(x + (1 << k) -1) >> k

This biases the dividend toward 0.

Properties of Unsigned Arithmetic

Unsigned multiplication with additions forms a **Commutative Ring**.

- Addition is commutative
- Closed under multiplication

$$0 \leq \mathsf{UMult}_w(u, v) \leq 2^w - 1$$

Multiplication is commutative

$$\mathsf{UMult}_w(u,v) = \mathsf{UMult}_w(v,u)$$

• Multiplication is associative

 $\mathsf{UMult}_w(t, \mathsf{UMult}_w(u, v)) = \mathsf{UMult}_w(\mathsf{UMult}_w(t, u), v)$

• 1 is the multiplicative identity

$$\mathsf{UMult}_w(u,1) = u$$

• Multiplication distributes over addition

 $\mathsf{UMult}_w(t,\mathsf{UAdd}_w(u,v)) = \mathsf{UAdd}_w(\mathsf{UMult}_w(t,u),\mathsf{UMult}_w(t,v))$

Properties of Two's Complement Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition: truncate to w bits
- Two's complement multiplication and addition: truncate to w bits

Both form rings isomorphic to ring of integers mod 2^w Comparison to Interer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.

 $u > 0 \rightarrow u + v > 0$ $u > 0, v > 0 \rightarrow u \cdot v > 0$

• These properties are not obeyed by two's complement arithmetic.

TMax + 1 == TMin 15213 * 30426 == -10030 (for 16-bit words)

C Puzzle Answers

Assume a machine with 32-bit word size, two's complement integers.

int x = foo(); int y = bar(); unsigned ux = x; unsigned uy = y;

x < 0	\rightarrow ((x*2) < 0	False: TMin
ux >= 0		True: $0 = UMin$
x & 7 == 7	\rightarrow (x<<30) < 0	True: $x_1 = 1$
ux > -1		False: 0
x > y	\rightarrow -x < -y	False: -1 , TMin
x * x >= 0		False: 30426
x > 0 && y > 0	\rightarrow x + y > 0	False: TMax, TMax
x >= 0	\rightarrow -y <= 0	True: -TMax < 0
x <= 0	\rightarrow -x >= 0	False: TMin