CS429: Computer Organization and Architecture Floating Point

Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin

Last updated: August 26, 2014 at 08:53

- IEEE Floating Point Standard
- Rounding
- Floating point operations
- Mathematical properties

Floating Point Puzzles

For each of the following C expressions, either:

- argue that it is true for all argument values, or
- explain why it is not true.

```
int x = \ldots;
float f = \ldots;
double d = \ldots;
```

Assume neither d nor f is NaN.

```
 x == (int)(float) x 
 x == (int)(double) x 
 f == (float)(double) f 
 d == (float) d 
 f == -(-f) 
 2/3 == 2/3.0 
 d < 0.0 <math>\rightarrow ((d*2) < 0.0) 
 d > f \rightarrow -f < -d 
 d*d >= 0.0 
 (d+f)-d == f
```

IEEE Standard 754

- Established in 1985 as a uniform standard for floating point arithmetic
- It is supported by all major CPUs.
- Before 1985 there were many idiosyncratic formats.

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast: numerical analysts predominated over hardware types in defining the standard
- Now all (add, subtract, multiply) operations are fast except divide.

Fractional Binary Numbers

The binary number $b_i b_{i-1} b_2 b_1 \dots b_0 . b_{-1} b_{-2} b_{-3} \dots b_{-j}$ represents a particular sum. Each digit is multiplied by a power of two according to the following chart:

		b_{i-1}								
Weight:	2'	2^{i-1}	 4	2	1	•	1/2	1/4	1/8	 2 ^{-j}

Representation:

- Bits to the right of the *binary point* represent fractional powers of 2.
- This represents the rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value	Representation
5 + 3/4	101.11 ₂
2 + 7/8	10.111 ₂
63/64	0.111111 ₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of the form $0.11111..._2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + \ldots + 1/2^i \rightarrow 1.0$
 - We use the notation 1.0ϵ .

Limitation

- You can only represent numbers of the form $y + x/2^{i}$.
- Other fractions have repeating bit representations

Representation
$0.0101010101[01] \dots_2$
0.001100110011[0011]2
$0.0001100110011[0011] \dots_2$

Numerical Form

$$-1^s imes M imes 2^E$$

- Sign bit s determines whether number is negative or positive.
- Significand M is normally a fractional value in the range [1.0...2.0)
- Exponent E weights value by power of two.

Encoding

- The most significant bit is the sign bit.
- The exp field encodes E.
- The frac field encodes M.

Encoding

- The most significant bit is the sign bit.
- The exp field encodes E.
- The frac field encodes M.

Sizes

- Single precision: 8 exp bits, 23 frac bits, for 32 bits total
- Double precision: 11 exp bits, 52 frac bits, for 64 bits total
- Extended precision: 15 exp bits, 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits: an explicit "1" bit appears in the format, except when exp is 0.

Normalized Numeric Values

Condition: $exp \neq 000...0$ and $exp \neq 111...1$ **Exponent is coded as a biased value** E = Exp - Bias

- *Exp*: unsigned value denoted by exp.
- Bias: Bias value
 - Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)
 - In general: $Bias = 2^{e-1} 1$, where *e* is the number of exponent bits

Significand coded with implied leading $\boldsymbol{1}$

 $M = 1.xxx \dots x_2$

- xxx ... x: bits of frac
- Minimum when 000...0 (*M* = 1.0)
- Maximum when $111 \dots 1$ ($M = 2.0 \epsilon$)
- We get the extra leading bit "for free."

Value:

float F = 15213.0;

 $15231_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

 $\begin{array}{l} \mbox{Significand} \\ \mbox{M} = 1.1101101101101_2 \\ \mbox{frac} = 1101101101101000000000 \end{array}$

Exponent

 $\begin{array}{l} {\sf E} \,=\, 13 \\ {\sf Bias} \,=\, 127 \\ {\sf Exp} \,=\, 140 \,=\, 10001100 \end{array}$

Floating Point Representation

140:100 0110 015213:1110 1101 1011 01

```
Condition: exp = 000...0
```

Value

- Exponent values: E = -Bias + 1 Why this value?
- Significand value: M = 0.xxx ... x₂, where xxx ... x are the bits of frac.

Cases

- $exp = 000 \dots 0$ and $frac = 000 \dots 0$
 - represents values of 0
 - $\bullet\,$ notice that we have distinct +0 and -0
- $exp = 000 \dots 0$ and $frac \neq 000 \dots 0$
 - These are numbers very close to 0.0
 - Lose precision as they get smaller
 - Experience "gradual underflow"

Condition: exp = 111...1

Cases

• $exp = 111 \dots 1$ and $frac = 000 \dots 0$

- Represents value of infinity (∞)
- Result returned for operations that overflow
- Sign indicates positive or negative

• E.g.,
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -\infty$

• $exp = 111 \dots 1$ and $frac \neq 000 \dots 0$

- Not-a-Number (NaN)
- Represents the case when no numeric value can be determined

• E.g., sqrt
$$(-1)$$
, $\infty-\infty$

Tiny Floating Point Example

8-bit Floating Point Representation

- The sign bit is in the most significant bit.
- The next four bits are the exponent with a bias of 7.
- The last three bits are the frac.

This has the general form of the IEEE Format

- Has both normalized and denormalized values.
- Has representations of 0, NaN, infinity.

Values Related to the Exponent

Exp	exp	Е	2 ^E	comment
0	0000	-6	1/64	(denorms)
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a		(inf, NaN)
	CS429 Slides	et 4: 16	Floating	Point

	s	exp	frac	Е	Value	
	0	0000	000	-6	0	
	0	0000	001	-6	1/8 imes 1/64 = 1/512	closest to zero
Denormalized	0	0000	010	-6	$2/8 \times 1/64 = 2/512$	
numbers						
	0	0000	110	-6	$6/8 \times 1/64 = 6/512$	
	0	0000	111	-6	$7/8 \times 1/64 = 7/512$	largest denorm
	0	0001	000	-6	$8/8 \times 1/64 = 8/512$	smallest norm
	0	0001	001	-6	$9/8 \times 1/64 = 9/512$	
	0	0110	110	-1	14/8 imes 1/2 = 14/16	
Normalized	0	0110	111	-1	$15/8 \times 1/2 = 15/16$	closest to 1 below
numbers	0	0111	000	0	$8/8 \times 1 = 1$	
	0	0111	001	0	$9/8 \times 1 = 9/8$	closest to 1 above
	0	0111	010	0	$10/8 \times 1 = 10/8$	
	0	1110	110	7	14/8 imes 128 = 224	
	0	1110	111	7	$15/8 \times 128 = 240$	largest norm
	0	1111	000	n/a	∞	

Description frac Numeric value exp 00...00 00...00 Zero 0.0 $2^{\{-23,-52\}} \times 2^{\{-126,-1022\}}$ Smallest Pos. Denorm 00...00 00...01 • Single $\approx 1.4 \times 10^{-45}$ • Double $\approx 4.9 \times 10^{-324}$ $00...00 \quad 11...11 \quad (1.0-\epsilon) \times 2^{\{-126,-1022\}}$ Largest Denorm. • Single $\approx 1.18 \times 10^{-38}$ • Double $\approx 2.2 \times 10^{-308}$ $1.0 imes 2^{\{-126, -1022\}}$ Smallest Pos. Norm. 00...01 00...01 Just larger than the largest denomalized. 01...11 00...00 One 1.0 11...11 11...11 $(2.0 - \epsilon) \times 2^{\{127, 1023\}}$ Largest Norm. • Single $\approx 3.4 \times 10^{38}$ • Double $\approx 1.8 \times 10^{308}$

Special Properties of Encoding

FP Zero is the Same as Integer Zero: All bits are 0.

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits.
- Must consider -0 = 0.
- NaNs are problematic:
 - Will be greater than any other values.
 - What should the comparison yield?
- Otherwise, it's OK.
 - Denorm vs. normalized works.
 - Normalized vs. infinity works.

Floating Point Operations

Conceptual View

- First compute the exact result.
- Make it fit into the desired precision.
 - Possibly overflows if exponent is too large.
 - Possibly round to fit into frac.

Rounding Modes (illustrated with \$ rounding)

J (\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Zero	\$1	\$1	\$1	\$2	-\$1
Round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
Round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
Nearest even (default)	\$1	\$2	\$2	\$2	-\$2

- Q Round down: rounded result is close to but no greater than true result.
- Q Round up: rounded result is close to but no less than true result.

Default Rounding Mode

- Hard to get any other kind without dropping into assembly.
- All others are statistically biased; the sum of a set of integers will consistently be under- or over-estimated.

Applying to Other Decimal Places / Bit Positions When exactly halfway between two possible values, round so that the least significant digit is even.

E.g., round to the nearest hundredth:

1.2349999	1.23	Less than half way
1.2350001	1.24	Greater than half way
1.2350000	1.24	Half way, round up
1.2450000	1.24	Half way, round down

Binary Fractional Numbers

- "Even" when least significant bit is 0.
- Half way when bits to the right of rounding position = $100..._2$.

Examples

E.g., Round to nearest 1/4 (2 bits to right of binary point).

Value	Binary	Rounded	Action	Rounded Value
2 2/32	10.00011_2	10.00	(< 1/2: down)	2
2 3/16	10.00110_2	10.01	(> 1/2: down)	2 1/4
2 7/8	10.11100_2	11.00	(1/2: up)	3
2 5/8	10.10100_2	10.10	(1/2: down)	2 1/2

FP Multiplication

Operands: $(-1)^{S_1} \times M_1 \times 2^{E_1}, (-1)^{S_2} \times M_2 \times 2^{E_2}$

Exact Result:
$$(-1)^{S} \times M \times 2^{E}$$

- Sign S: $S_1 \operatorname{xor} S_2$
- Significant M: $M_1 \times M_2$
- Exponent E: $E_1 + E_2$

Fixing

- If $M \ge 2$, shift M right, increment E
- E is out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands.

Operands: $(-1)^{S_1} \times M_1 \times 2^{E_1}, (-1)^{S_2} \times M_2 \times 2^{E_2}$ Assume $E_1 > E_2$

Exact Result: $(-1)^{S} \times M \times 2^{E}$

- Sign S, Significant M; result of signed align and add.
- Exponent E: E1

Fixing

- If $M \ge 2$, shift M right, increment E
- If M < 1, shift M left k positions, decrement E by k
- if E is out of range, overflow
- Round M to fit frac precision

Compare to those of Abelian Group

- Closed under addition? Yes, but may generate infinity or NaN.
- Commutative? Yes.
- Associative? No, because of overflow and inexactness of rounding.
- O is additive identity? Yes.
- Every element has additive inverse? Almost, except for infinities and NaNs.

Monotonicity

 a ≥ b ⇒ a + c ≥ b + c? Almost, except for infinities and NaNs.

Compare to those of Commutative Ring

- Closed under multiplication? Yes, but may generate infinity or NaN.
- Multiplication Commutative? Yes.
- Multiplication is Associative? No, because of possible overflow and inexactness of rounding.
- 1 is multiplicative identity? Yes.
- Multiplication distributes over addition? No, because of possible overflow and inexactness of rounding.

Monotonicity

a ≥ b & c ≥ 0 ⇒ a × c ≥ b × c? Almost, except for infinities and NaNs.

Floating Point in C

C guarantees two levels

- float: single precision
- double: double precision

Conversions

- Casting among int, float, and double changes numeric values
- Double or float to int:
 - truncates fractional part
 - like rounding toward zero
 - not defined when out of range: generally saturates to TMin or TMax
- $\bullet\,$ int to double: exact conversion as long as int has \leq 53-bit word size
- int to float: will round according to rounding mode.

int x = ...; float f = ...; double d = ...;

Assume neither d nor f is NaN.

$$\begin{aligned} \mathbf{x} &== (int)(float) \mathbf{x} \\ \mathbf{x} &== (int)(double) \mathbf{x} \\ \mathbf{f} &== (float)(double) \mathbf{f} \\ \mathbf{d} &== (float) \mathbf{d} \\ \mathbf{f} &== -(-f) \\ 2/3 &== 2/3.0 \\ \mathbf{d} &< 0.0 \qquad \longrightarrow ((\mathbf{d}*2) < 0.0) \\ \mathbf{d} &> \mathbf{f} \qquad \longrightarrow -\mathbf{f} < -\mathbf{d} \\ \mathbf{d}*\mathbf{d} &= 0.0 \\ (\mathbf{d}+\mathbf{f})-\mathbf{d} &== \mathbf{f} \end{aligned}$$

No: 24 bit significand Yes: 53 bit significand Yes: increases precision No: loses precision Yes: just change sign bit No: 2/3 == 0 Yes Yes Yes No: not associative

Ariane 5

On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its lift-off from Kourou, French Guiana. The rocket was on its first voyage, after a decade of development costing \$7 billion. The destroyed rocket and its cargo were valued at \$500 million. The cause of the failure was a software error in the inertial reference system. Specifically a 64-bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16-bit signed integer. The number was larger than 32,767, the largest integer storeable in a 16-bit signed integer, and thus the conversion failed.

IEEE Floating Point has Clear Mathematical Properties

- Represents numbers of the form $M \times 2^E$.
- Can reason about operations independent of implementation: as if computed with perfect precision and then rounded.
- Not the same as real arithmetic.
 - Violates associativity and distributivity.
 - Makes life difficult for compilers and serious numerical application programmers.