CS429: Computer Organization and Architecture

Floating Point

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: August 26, 2014 at 08:53

CS429 Slideset 4: 1 Floating Point

Topics of this Slideset

IEEE Floating Point Standard
Rounding

Floating point operations

e 6 o o

Mathematical properties

CS429 Slideset 4: 2 Floating Point

Floating Point Puzzles

For each of the following C expressions, either:
o argue that it is true for all argument values, or

o explain why it is not true.

int x = ...;
float f = ...;
double d = ...;

Assume neither d nor f is NaN.

== (int) (float) x

== (int) (double) x

== (float) (double) f

== (float) d

== -(-f)

2/3 == 2/3.0

d < 0.0 — ((d*2) < 0.0)
d > f — -f < -d

dxd >= 0.0

(@+f)-4 ==

H Qo Hh X

CS429 Slideset 4: 3 Floating Point

IEEE Floating Point Standard

IEEE Standard 754
o Established in 1985 as a uniform standard for floating point
arithmetic
o It is supported by all major CPUs.

o Before 1985 there were many idiosyncratic formats.

Driven by Numerical Concerns

o Nice standards for rounding, overflow, underflow

o Hard to make go fast: numerical analysts predominated over
hardware types in defining the standard

o Now all (add, subtract, multiply) operations are fast except
divide.

CS429 Slideset 4: 4 Floating Point

Fractional Binary Numbers

The binary number bjb;_1boby ... by.b_1b_2b_3 ... b_j represents
a particular sum. Each digit is multiplied by a power of two
according to the following chart:

Bit: ‘b,‘ b,',l‘...‘bg‘bl‘bo‘ . ‘bfl‘bfz‘b,3‘...‘b,j
Weight: | 27 [27T [...] 4 [2 [1

Representation:

o Bits to the right of the binary point represent fractional
powers of 2.

o This represents the rational number:

ibkx2k

k=—j

CS429 Slideset 4: 5 Floating Point

Fractional Binary Numbers: Examples

Value Representation
5+3/4 101.11,

2+4+7/8 10.111,

63/64 0.111111,

Observations
o Divide by 2 by shifting right
o Multiply by 2 by shifting left
@ Numbers of the form 0.11111..., are just below 1.0

o 1/2+1/4+1/8+...41/2" - 1.0
o We use the notation 1.0 — e.

CS429 Slideset 4: 6 Floating Point

Representable Numbers

Limitation
o You can only represent numbers of the form y + x/2'.

@ Other fractions have repeating bit representations

Value Representation

1/3 0.0101010101[01] .. .

1/5 0.001100110011[0011].. .2
1/10 0.0001100110011[0011].. .2

CS429 Slideset 4: 7 Floating Point

Floating Point Representation

Numerical Form
—15x M x 2F

@ Sign bit s determines whether number is negative or positive.

o Significand M is normally a fractional value in the range
[1.0...2.0)

o Exponent E weights value by power of two.

Encoding

] s \ exp \ frac

@ The most significant bit is the sign bit.
o The exp field encodes E.

@ The frac field encodes M.

CS429 Slideset 4: 8 Floating Point

Floating Point Precisions

Encoding

] s \ exp \ frac ‘

@ The most significant bit is the sign bit.
@ The exp field encodes E.

@ The frac field encodes M.

Sizes
@ Single precision: 8 exp bits, 23 frac bits, for 32 bits total
@ Double precision: 11 exp bits, 52 frac bits, for 64 bits total

o Extended precision: 15 exp bits, 63 frac bits

o Only found in Intel-compatible machines
o Stored in 80 bits: an explicit “1" bit appears in the format,
except when exp is 0.

CS429 Slideset 4: 9 Floating Point

Normalized Numeric Values

Condition: exp # 000...0 and exp # 111...1
Exponent is coded as a biased value
E = Exp — Bias

o Exp: unsigned value denoted by exp.

o Bias: Bias value

o Single precision: 127 (Exp: 1...254, E : —126...127)

o Double precision: 1023 (Exp: 1...2046, E : —1022...1023)

o In general: Bias= 2¢=1 _ 1 where e is the number of
exponent bits

Significand coded with implied leading 1
M=1xxx...x
0 xxx...x: bits of frac
e Minimum when 000...0 (M = 1.0)
o Maximum when 111...1 (M =2.0—¢)
o We get the extra leading bit “for free.”

(CS429 Slideset 4: 10 Floating Point

Normalized Encoding Example

Value:
float F = 15213.0;

1523139 = 11101101101101, = 1.11011011011015 x 213

Significand
M = 1.1101101101101,
frac = 11011011011010000000000

Exponent

E=13

Bias = 127

Exp = 140 = 10001100

CS429 Slideset 4: 11 Floating Point

Normalized Encoding Example

Floating Point Representation
Hex: 466DB400
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 01100
15213: 1110 1101 1011 01

(CS429 Slideset 4: 12 Floating Point

Denormalized Values

Condition: exp = 000...0
Value

o Exponent values: E = -Bias + 1 Why this value?

o Significand value: M = 0.xxx ... x>, where xxx...x are the
bits of frac.

Cases
@ exp =000...0 and frac = 000...0

o represents values of 0
o notice that we have distinct +0 and -0

@ exp =000...0 and frac #2000...0

o These are numbers very close to 0.0
o Lose precision as they get smaller
o Experience “gradual underflow”

(CS429 Slideset 4: 13 Floating Point

Special Values

Condition: exp = 111...1

Cases
@ exp =111...1 and frac = 000...0
Represents value of infinity (oo)
Result returned for operations that overflow
Sign indicates positive or negative
E.g., 1.0/0.0=-1.0/ — 0.0 = 400, 1.0/ — 0.0 = —©
@ exp =111...1 and frac # 000...0

o Not-a-Number (NaN)
o Represents the case when no numeric value can be determined
o E.g., sqrt(—1), oo — 0

(4]

e © o

(CS429 Slideset 4: 14 Floating Point

Tiny Floating Point Example

8-bit Floating Point Representation

@ The sign bit is in the most significant bit.
@ The next four bits are the exponent with a bias of 7.
o The last three bits are the frac.

This has the general form of the IEEE Format

@ Has both normalized and denormalized values.

@ Has representations of 0, NaN, infinity.

7 6 3 2 0
’s\ exp \frac ‘

(CS429 Slideset 4: 15 Floating Point

Values Related to the Exponent

Exp exp E 2 comment
0000 -6 1/64 (denorms)
0001 -6 1/64
0010 -5 1/32
0011 -4 1/16
0100 -3 1/8
0101 -2 1/4
0110 -1 1/2
0111 0 1
1000 +1 2
1001 +2 4
1010 +3 38
1011 +4 16
1100 +5 32
1101 +6 64
1110 +7 128
15 1111 n/a (inf, NaN)

cO~NO O~ WN RO

== === O
A OODNDBRERO

Dynamic Range

s exp frac E Value
0 0000 000 -6 O
0 0000 001 -6 1/8x1/64=1/512 closest to zero
Denormalized 0 0000 010 -6 2/8 x 1/64 = 2/512
numbers e
0 0000 110 -6 6/8x1/64=06/512
0 0000 111 -6 7/8x1/64=7/512 largest denorm
0 0001 000 -6 8/8x1/64=8/512 smallest norm
0 0001 001 -6 9/8x1/64=09/512
0 0110 110 -1 14/8x1/2=14/16
Normalized 0 o110 111 -1 15/8 x 1/2 =15/16 closest to 1 below
numbers 0 0111 000 0 8/8x1=1
0 0111 o001 0 9/8 x1=09/8 closest to 1 above
0 0111 010 0 10/8 x 1 =10/8
0 1110 110 7 14/8 x 128 = 224
0 1110 111 7 15/8 x 128 = 240 largest norm
0 1111 000 n/a oo

(CS429 Slideset 4: 17 Floating Point

Interesting FP Numbers

Description exp frac Numeric value
Zero 00...00 00...00 0.0
Smallest Pos. Denorm 00...00 00...01 2{=23,—52} 5 p{-126,-1022}

@ Single =~ 1.4 x 10=%
@ Double &~ 4.9 x 10324

Largest Denorm. 00...00 11...11 (1.0 —¢) x 2{—126,-1022}
@ Single ~ 1.18 x 10738
@ Double ~ 2.2 x 107308

Smallest Pos. Norm. 00...01 00...01 1.0 x 2{—126,—1022}

@ Just larger than the largest denomalized.

One 01...11 00...00 1.0

Largest Norm. 11...11 11...11 (2.0 —¢) x 2{127,1023}
@ Single ~ 3.4 x 103
@ Double ~ 1.8 x 103%

(CS429 Slideset 4: 18 Floating Point

Special Properties of Encoding

FP Zero is the Same as Integer Zero: All bits are 0.

Can (Almost) Use Unsigned Integer Comparison

(]

Must first compare sign bits.

Must consider —0 = 0.

NaNs are problematic:
o Will be greater than any other values.
o What should the comparison yield?

@ Otherwise, it's OK.

o Denorm vs. normalized works.
o Normalized vs. infinity works.

[~]

(7]

(CS429 Slideset 4: 19 Floating Point

Floating Point Operations

Conceptual View
o First compute the exact result.

@ Make it fit into the desired precision.

o Possibly overflows if exponent is too large.
o Possibly round to fit into frac.

Rounding Modes (illustrated with $ rounding)
| $1.40 $1.60 $1.50 $2.50 -$1.50

Zero $1 $1 $1 $2 -$1
Round down (—o0) $1 $1 $1 $2 -$2
Round up (+o0) $2 $2 $2 $3 -$1
Nearest even (default) | $1 $2 $2 $2 -$2

@ Round down: rounded result is close to but no greater than
true result.

Q Round up: rounded result is close to but no less than true
result.

(CS429 Slideset 4: 20 Floating Point

Closer Look at Round to Even

Default Rounding Mode

o Hard to get any other kind without dropping into assembly.

o All others are statistically biased; the sum of a set of integers
will consistently be under- or over-estimated.

Applying to Other Decimal Places / Bit Positions
When exactly halfway between two possible values, round so that
the least significant digit is even.

E.g., round to the nearest hundredth:

1.2349999 1.23 Less than half way
1.2350001 1.24 Greater than half way
1.2350000 1.24 Half way, round up
1.2450000 1.24 Half way, round down

CS429 Slideset 4: 21 Floating Point

Rounding Binary Numbers

Binary Fractional Numbers
o “Even” when least significant bit is 0.

o Half way when bits to the right of rounding position =
100.. .o.

Examples

E.g., Round to nearest 1/4 (2 bits to right of binary point).

Value Binary Rounded Action Rounded Value
22/32 10.00011, 10.00 (< 1/2: down) 2

23/16 10.00110, 10.01 (>1/2: down) 21/4

27/8 10.11100, 11.00 (1/2: up) 3

25/8 10.10100, 10.10 (1/2: down) 21/2

(CS429 Slideset 4: 22 Floating Point

FP Multiplication

Operands: (—1) x My x 251 (—1)% x M, x 2B

Exact Result: (—1)°> x M x 2E
@ Sign S: 51 xor S
o Significant M: My x M,
o Exponent E: E; + E

Fixing
o If M > 2, shift M right, increment E
o E is out of range, overflow

@ Round M to fit frac precision

Implementation
Biggest chore is multiplying significands.

(CS429 Slideset 4: 23 Floating Point

FP Addition

Operands: (—1)% x My x 261 (—=1)%2 x M, x 2B
Assume E1 > E»

Exact Result: (—1)° x M x 2E

@ Sign S, Significant M; result of signed align and add.
o Exponent E: E;

Fixing
o If M > 2, shift M right, increment E
o If M < 1, shift M left k positions, decrement E by k
o if E is out of range, overflow

@ Round M to fit frac precision

(CS429 Slideset 4: 24 Floating Point

Mathematical Properties of FP Add

Compare to those of Abelian Group

(4]

Closed under addition? Yes, but may generate infinity or NaN.
Commutative? Yes.

(]

(]

Associative? No, because of overflow and inexactness of
rounding.

O is additive identity? Yes.

(]

(]

Every element has additive inverse? Almost, except for
infinities and NaNs.

Monotonicity

@ a>b=a+c> b+ c? Almost, except for infinities and
NaNs.

(CS429 Slideset 4: 25 Floating Point

Mathematical Properties of FP Mult

Compare to those of Commutative Ring

o Closed under multiplication? Yes, but may generate infinity or
NaN.
o Multiplication Commutative? Yes.

o Multiplication is Associative? No, because of possible overflow
and inexactness of rounding.

o 1 is multiplicative identity? Yes.

o Multiplication distributes over addition? No, because of
possible overflow and inexactness of rounding.

Monotonicity

@a>b&c>0=— axc>bxc? Almost, except for
infinities and NaNs.

(CS429 Slideset 4: 26 Floating Point

Floating Point in C

C guarantees two levels

o float: single precision

o double: double precision

Conversions

o Casting among int, float, and double changes numeric values
o Double or float to int:

o truncates fractional part
o like rounding toward zero

o not defined when out of range: generally saturates to TMin or
TMax

@ int to double: exact conversion as long as int has < 53-bit
word size

@ int to float: will round according to rounding mode.

(CS429 Slideset 4: 27 Floating Point

Answers to FP Puzzles

int x = ...,
float f = ...;
double d = ...;

Assume neither d nor f is NaN.

x == (int) (float) x

x == (int) (double) x
f == (float) (double) f
d == (float) d
f
2
d

== -(-f)
/3 == 2/3.0
< 0.0 — ((d*2) < 0.0)
d>f — -f < -d
d*d >= 0.0
(d+f)-4 ==

No: 24 bit significand
Yes: 53 bit significand
Yes: increases precision
No: loses precision

Yes: just change sign bit
No: 2/3==0

Yes

Yes

Yes

No: not associative

(CS429 Slideset 4: 28 Floating Point

On June 4, 1996 an unmanned Ariane 5 rocket launched
by the European Space Agency exploded just forty
seconds after its lift-off from Kourou, French Guiana.
The rocket was on its first voyage, after a decade of
development costing $7 billion. The destroyed rocket and
its cargo were valued at $500 million. The cause of the
failure was a software error in the inertial reference
system. Specifically a 64-bit floating point number
relating to the horizontal velocity of the rocket with
respect to the platform was converted to a 16-bit signed
integer. The number was larger than 32,767, the largest
integer storeable in a 16-bit signed integer, and thus the
conversion failed.

(CS429 Slideset 4: 29 Floating Point

IEEE Floating Point has Clear Mathematical Properties

o Represents numbers of the form M x 2F.
o Can reason about operations independent of implementation:
as if computed with perfect precision and then rounded.

@ Not the same as real arithmetic.

o Violates associativity and distributivity.
o Makes life difficult for compilers and serious numerical
application programmers.

(CS429 Slideset 4: 30 Floating Point

