
CS429: Computer Organization and Architecture
Logic Design

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: October 27, 2014 at 08:01

CS429 Slideset 5: 1 Logic Design

Topics of this Slideset

To execute a program we need:

Communications: getting data from one place to another

Computation: perform arithmetic or logical operations

Memory: store the program, variables, results

Everything is expressed in terms of bits (0s and 1s).

Communication

Low or high voltage on a wire

Computation

Compute boolean functions

Storage

Store bits

CS429 Slideset 5: 2 Logic Design

Digital Signals

Use voltage thesholds to extract discrete values from a
continuous signal: works with light for communication.
Simplest version: 1-bit signal

Either high range (1) or low range (0)
With a guard range between them.

Not strongly affected by noise or low-quality elements; circuits
are simple, small and fast.

CS429 Slideset 5: 3 Logic Design

Truth Tables

And: A & B = 1 when both A =
1 and B = 1.

0 1 &
0 0 0
0 1 0
1 0 0
1 1 1

Or: A | B = 1 when either A =
1 or B = 1.

0 1 |
0 0 0
0 1 1
1 0 1
1 1 1

Not: ~A = 1 when A = 0.
0 ~

0 1
1 0

Xor: A ˆ B = 1 when either A
= 1 or B = 1, but not both.

0 1 ˆ
0 0 0
0 1 1
1 0 1
1 1 0

CS429 Slideset 5: 4 Logic Design

Computing with Logic Gates

How are these logic functions actually computed in hardware?

Logic gates are constructed from transistors.
The output is a boolean function of inputs.
The gate responds continuously to changes in input with a
small delay.

How many of these do you really need?
CS429 Slideset 5: 5 Logic Design

Sets of Logic Gates

It’s pretty easy to see that any boolean function can be
implemented with AND, OR and NOT. Why? We call that a
functionally complete set of gates.

You can get by with fewer gates. How would you show each of the
following?

AND and NOT is complete.

OR and NOT is complete.

NAND is complete.

NOR is complete.

AND alone is not complete.

OR alone is not complete.

Often circuit designers will restrict themselves to a small subset of
gates (e.g., just NAND gates). Why would they do that?

CS429 Slideset 5: 6 Logic Design

A Complex Function

Simple boolean functions are
implemented by “logic gates”;
more complex functions, by
combinations of gates.

In C: Z = !A || (B && C);

A B C Z

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

CS429 Slideset 5: 7 Logic Design

Combinational Circuits

The box contains an acyclic network of logic gates.

Continuously responds to changes in inputs.

Outputs become (after a short delay) boolean functions of the
inputs.

CS429 Slideset 5: 8 Logic Design

Bit Equality

The following circuit generates a 1 if a and b are equal.

In C: int eq = (a&&b) || (!a&&!b);

CS429 Slideset 5: 9 Logic Design

Word Equality

Bit equal

Bit equal

Bit equal

Bit equal

eq31

eq30

eq1

eq0

b31

a31

a30

b30

b1

a0

a1

b0

... ... Eq

Word-level representation:

=
Eq

B

A

Equality operation

Generates Boolean value

CS429 Slideset 5: 10 Logic Design

Bit Multiplexor

Out

a

b

S

In C: int out = (s && a) || (!s && b);

Control signal s selects between two inputs a and b.

Output is a when s == 1, and b otherwise.

CS429 Slideset 5: 11 Logic Design

Word Multiplexor

S

...

out31

b0

out0

b31

a0

a31

Select input word A or B
depending on control signal S.

CS429 Slideset 5: 12 Logic Design

Word Examples

Minimum of 3 words

4−way Multiplexor

MIN3

MUX4
Out4

Min3
C

B

A

S1
S0

D1

D2

D3

D0

CS429 Slideset 5: 13 Logic Design

Constructing an ALU

An ALU is an Arithmetic Logic Unit

Multiple functions: add, subtract, and, xor, others

Combinational logic to perform functions.

Control signals select function to be performed.

Modular: multiple instances of 1-bit ALU

CS429 Slideset 5: 14 Logic Design

1-Bit Adder

The following circuit is a 1-bit
adder:

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

CS429 Slideset 5: 15 Logic Design

Adding a Pair of 4-bit Ints

How do you subtract? How do you multiply?

CS429 Slideset 5: 16 Logic Design

A 4-bit ALU

Combinational logic: continuously responding to inputs.

Control signal selects function computed: corresponding to
the 4 arithmetic/logical operations in Y86.

Also computes values of condition codes:

OF: overflow flag
ZF: zero flag
SF: sign flag

CS429 Slideset 5: 17 Logic Design

SR Flip Flop: Storing a Bit

Characteristic table

S R Qnext Action

0 0 Q hold state
0 1 0 reset
1 0 1 set
1 1 X not allowed

CS429 Slideset 5: 18 Logic Design

Gated D Latch: Store and Accesss One Bit

Higher level representation

_

Q

QD

CP

D Latch Truth table

E/C D Q Q Comment

0 X Q Q No change
1 0 0 1 Reset
1 1 1 0 Set

CS429 Slideset 5: 19 Logic Design

A 4-bit Register

4 D latches:

All share the E (aka WE or
Write Enable) input

D0–D3 are the data input

Q0–Q3 are the output

_

Q

_

Q

_

Q

_

Q

QD

CP

QD

CP

QD

CP

QD

CPCP

D2

D3

D1

D0 Q0

Q1

Q2

Q3

CS429 Slideset 5: 20 Logic Design

Register File Abstraction

Register file provides the CPU
with temporary, fast storage.

N registers.

Each of K bits.

L output ports.

Suppose we want eight 4-bit
registers and one output port.

WE

Data in

Reg

/3

/4

/1

Data out

/4

CS429 Slideset 5: 21 Logic Design

Race-Through Condition with D Latches

Write Enable (WE) must be held at “1” long enough to allow:

Data to be read;

Operation (e.g., addition) to be performed;

Result to be stored in target register.

ALU
Register

File

CS429 Slideset 5: 22 Logic Design

Edge Triggered Flip Flops

An edge-triggered flip-flop changes states either at the positive
edge (rising edge) or at the negative edge (falling edge) of the
clock pulse on the control input.

A register is made up of several flip flops, each providing
storage and access for an individual bit.

A register file is made up of several registers and control logic

CS429 Slideset 5: 23 Logic Design

Clocking

The clock acts to enforce timing control on the chip.

An integral part of every synchronous system.

Can be global

Clock Frequency = 1 / clock period

Measured in cycles per second (Hertz)

1 KHz = 1000 cycles / second

1ns (10−9 seconds) = 1GHz (109) clock frequency

Higher frequency means faster speed.

CS429 Slideset 5: 24 Logic Design

Random Access Memory (RAM)

Stores many words

Conceptually, a large array where each row is uniquely
addressable.

In reality, much more complex to increase throughput.

Multiple chips and banks, interleaved, with multi-word
operations.

Many implementations

Dynamic (DRAM) is large, inexpensive, but relatively slow.

1 transistor and 1 capacitor per bit.
Reads are destructive.
Requires periodic refresh.
Access time takes hundreds of CPU cycles.

Static (SRAM) is fast but expensive.

6 transistors per bit.
Streaming orientation.

CS429 Slideset 5: 25 Logic Design

Summary

Computation

Performed by combinational logic.

Implements boolean functions.

Continuously reacts to inputs.

Storage

Registers: part of the CPU.

Each holds a single word.
Used for temporary results of computation.
Loaded on rising clock.

Memory is much larger.

Variety of implementation techniques.

CS429 Slideset 5: 26 Logic Design

