
CS429: Computer Organization and Architecture
Instruction Set Architecture

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: October 1, 2014 at 12:03

CS429 Slideset 6: 1 Instruction Set Architecture

Topics of this Slideset

Intro to Assembly language

Programmer visible state

Y86 Rudiments

RISC vs. CISC architectures

CS429 Slideset 6: 2 Instruction Set Architecture

Instruction Set Architecture

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

Application

Program

Compiler OS

CPU Design

Circuit Design

Chip Layout

ISA ISA Layer

Assembly Language View

Processor state: registers,
memory, etc.

Instructions and how
instructions are encoded

Layer of Abstraction

Above: how to program
machine, processor executes
instructions sequentially

Below: What needs to be
built

Use variety of tricks to
make it run faster
E.g., execute multiple
instuctions simultaneously

CS429 Slideset 6: 3 Instruction Set Architecture

Why Y86?

The Y86 is a “toy” machine that is similar to the x86 but much
simpler. It is a gentler introduction to assembly level programming
than the x86.

just a few instructions as opposed to thousands for the x86;

fewer addressing modes;

simpler system state;

absolute addressing.

Everything you learn about the Y86 will apply to the x86 with very
little modification.

CS429 Slideset 6: 4 Instruction Set Architecture

Language / Machine Semantics

There are various means of giving a semantics or meaning to a
programming system.

Probably the most sensible for an assembly (or machine) language
is an operational semantics, also known as an interpreter semantics.

That is, we explain the semantics of each possible operation in the
language by explaining the effect that execution of the operation
has on the machine state.

CS429 Slideset 6: 5 Instruction Set Architecture

Fetch / Decode / Execute Cycle

The most fundamental abstraction for the machine semantics for
the x86/Y86 or similar machines is the fetch-decode-execute cycle.

The machine repeats the
following steps forever:

1 fetch the next instruction
from memory (the PC tells
you which is next);

2 decode the instruction (in
the control unit);

3 execute the instruction,
updating the state
appropriately;

4 go to step 1.

CS429 Slideset 6: 6 Instruction Set Architecture

Conventions

It’s important to understand how individual operations update the
system state. But that’s not enough!

Much of the way the Y86/x86 operates is based on a a set of
programming conventions. Without them, you won’t understand
how programs work, what the compiler generates, or how your
code can interact with code written by others.

How do you pass arguments to a procedure?

Where are variables (local, global, static) created?

How does a procedure return a value?

How do procedures save and restore the state of the caller?

Some of these (e.g., the direction the stack grows) are reflected in
specific machine operations; others are purely conventions.

CS429 Slideset 6: 7 Instruction Set Architecture

Y86 Processor State

%eax

%edx

%ebx

%ecx

%esi

%edi

%esp

%ebp

ZF SFOF

Program

Registers Condition
codes

PC

Memory

Program registers: same 8 as IA32, each 32-bits

Condition flags: 1-bit flags set by arithmetic and logical
operations. OF: Overflow, ZF: Zero, SF: Negative

Program counter: indicates address of instruction

Memory
Byte-addressable storage array
Words stored in little-endian byte order

Status code (not shown): status can be AOK, HLT, INS,
ADR; indicate state of program execution.

CS429 Slideset 6: 8 Instruction Set Architecture

Y86 Instructions

We’re actually describing two languages: the assembly language
and the machine language. There is (sort of) a 1-1 correspondence
between them.

Format

1-6 bytes of information read from memory

Can determine instruction length from first byte
Not as many instruction types and simpler encoding than IA32

Each instruction accesses and modifies some part(s) of the
program state.

CS429 Slideset 6: 9 Instruction Set Architecture

Encoding Registers

Each register has an associated 4-bit id:

%eax 0 %esi 6

%ecx 1 %edi 7

%edx 2 %esp 4

%ebx 3 %ebp 5

Same encoding as in IA32. Register ID F indicates “no register.”
(Earlier versions of Y86 used 8 instead of F, so be on the lookout
for places we forgot to switch. There are some in the book.)

Most of these registers are general purpose; %esp and %ebp have
special functionality.

CS429 Slideset 6: 10 Instruction Set Architecture

Instruction Example

Addition Instruction

rBrA6 0add1 rA, rB

Generic form Encoded representation

Add value in register rA to that in register rB.

Store result in register rB
Note that Y86 only allows addition to be applied to register
data.

E.g., addl %eax, %esi is encoded as: 60 06. Why?

Set condition codes based on the result.

Two byte encoding:

First indicates instruction type.
Second gives source and destination registers.

CS429 Slideset 6: 11 Instruction Set Architecture

Arithmetic and Logical Operations

Add
addl rA, rB 6 0 rA rB

Subtract (rA from rB)
subl rA, rB 6 1 rA rB

And
andl rA, rB 6 2 rA rB

Exclusive Or
xorl rA, rB 6 3 rA rB

Refer to generically as
“OP1”

Encodings differ only by
“function code”: lower-order
4-bits in first instruction
byte.

Set condition codes as side
effect.

CS429 Slideset 6: 12 Instruction Set Architecture

Move Operations

Register to Register
rrmovl rA, rB 2 0 rA rB

Immediate to Register
irmovl V, rB 3 0 F rB V

Register to Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory to Register
mrmovl D(rB), rA 5 0 rA rB D

Similar to the IA32 movl instruction.

Similar format for memory addresses.

Slightly different names to distinguish them.

CS429 Slideset 6: 13 Instruction Set Architecture

Move Instruction Examples

IA32 Y86 Y86 Encoding

movl $0xabcd, %edx irmovl $0xabcd, %edx 30 F2 cd ab 00 00
movl %esp, %ebx rrmovl %esp, %ebx 20 43
movl -12(%ebp), %ecx mrmovl -12(%ebp), %ecx 50 15 f4 ff ff ff
movl %esi, 0x41c(%esp) rmmovl %esi, 0x41c(%esp) 40 64 1c 04 00 00

movl %0xabcd, (%eax) none
movl %eax, 12(%eax, %edx) none
movl (%ebp, %ezx, 4), %ecx none

The Y86 adds special move instructions to compensate for the lack
of certain addressing modes.

CS429 Slideset 6: 14 Instruction Set Architecture

Jump Instructions

Jump Unconditionally
jmp Dest 7 0 Dest

Jump when less or equal
jle Dest 7 1 Dest

Jump when less
jl Dest 7 2 Dest

Jump when equal
je Dest 7 3 Dest

Jump when not equal
jne Dest 7 4 Dest

Jump when greater or equal
jge Dest 7 5 Dest

Jump when greater
jg Dest 7 6 Dest

CS429 Slideset 6: 15 Instruction Set Architecture

Jump Instructions

Refer to jump instructions generically as “jXX.”

Encodings differ only in “function code.”

Basically the same as the IA32 counterparts.

Encode the full (“absolute”) destination address; unlike the
PC-relative addressing seen in IA32.

CS429 Slideset 6: 16 Instruction Set Architecture

Y86 Program Stack

.

.

.

Stack "top"

Stack "bottom"

Increasing

Addresses

%esp

Region of memory holding program
data.

Used in Y86 (and IA32) for
supporting procedure calls.

Stack top is indicated by %esp,
address of top stack element.

Stack grows toward lower
addresses.

Top element is at lowest address
in the stack.
When pushing, must first
decrement stack pointer.
When popping, increment stack
pointer.

CS429 Slideset 6: 17 Instruction Set Architecture

Stack Operations

Push
pushl rA a 0 rA F

Decrements %esp by 4.

Store word from rA to memory at %esp.

Similar to IA32 pushl operation.

Pop
popl rA b 0 rA F

Read word from memory at %esp.

Save in rA.

Increment %esp by 4.

Similar to IA32 popl operation.

CS429 Slideset 6: 18 Instruction Set Architecture

Subroutine Call and Return

Subroutine call
call Dest 8 0 Dest

Push address of next instruction onto stack.

Start executing instructions at Dest.

Similar to IA32 call instruction.

Subroutine return
ret 9 0

Pop value from stack.

Use as address for next instruction.

Similar to IA32 ret instruction.

CS429 Slideset 6: 19 Instruction Set Architecture

Miscellaneous Instructions

No operation
nop 1 0

Don’t do anything but advance PC.

Halt execution
halt 0 0

Stop executing instructions.

Sets status to HLT.

IA32 has a comparable instruction, but you can’t execute it in
user mode.

We will use it to stop the simulator.

CS429 Slideset 6: 20 Instruction Set Architecture

Writing Y86 Code

Try to use the C compiler as much as possible.

Write code in C.

Compile for IA32 with gcc -S.

Transliterate into Y86 code.

To understand Y86 (or x86) code, you have to know the meaning
of the statement, but also certain programming conventions,
especially the stack discipline.

How do you pass arguments to a procedure?

Where are local variables created?

How does a procedure return a value?

How do procedures save and restore the state of the caller?

CS429 Slideset 6: 21 Instruction Set Architecture

A Preview of the Stack

Stack bottom

...

...

...

Argument n

Argument 1

+4+4n

Saved %ebp

Return address

Saved registers,

local variables

and temporaries

+8

+4

−4

Caller’s frame

Earlier frames

Current frame

Stack top

build area
Argument

Stack pointer %esp

Frame pointer %ebp

addresses
Increasing

CS429 Slideset 6: 22 Instruction Set Architecture

A Simple Example

i n t s imp l e (i n t ∗xp , i n t y)
{

i n t t = ∗xp + y ;
∗xp = t ;
r e t u r n t ;

}

Here’s the corresponding Y86 code:

s imp l e :
pu sh l %ebp # save frame p o i n t e r
r rmov l %esp , %ebp # c r e a t e new frame p o i n t e r
mrmovl 8(%ebp) , %edx # get xp
mrmovl 0(%edx) , %ebx # get ∗xp
mrmovl 12(%ebp) , %eax # get y
add l %ebx , %eax # t = ∗xp + y
rmmovl %eax , 0(%edx) # s t o r e i n ∗xp
pop l %ebp # r e s t o r e f rame p o i n t e r
r e t # r e t u r n to c a l l e r

CS429 Slideset 6: 23 Instruction Set Architecture

Simple Example

s i m p l e :
p u s h l %ebp
r r m o v l %esp , %ebp
mrmovl 8(%ebp) , %edx
mrmovl 0(%edx) , %ebx
mrmovl 12(%ebp) , %eax
a d d l %ebx , %eax
rmmovl %eax , 0(%edx)
p o p l %ebp
r e t

123 0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

0x124xp

%ebp

Offset

y 0x5

%esp

CS429 Slideset 6: 24 Instruction Set Architecture

Another Example

/∗ Find number o f e l ement s i n n u l l−t e rm ina t ed l i s t . ∗/
i n t l e n2 (i n t a [])
{

i n t l e n = 0 ;
wh i l e (∗ a++)

l e n++;
r e t u r n l e n ;

}

How do you find the Y86 assembler that corresponds to this C
code?

Could generate it by hand, or compile for x86 and translate.

Why not use arrays here instead of explicit pointers?

Arrays tend to use scaled addressing, which is available in x86 but
not in Y86.

CS429 Slideset 6: 25 Instruction Set Architecture

Another Example (2)

l e n 2 : p u s h l %ebp # s a v e frame p o i n t e r
r r m o v l %esp , %ebp # c r e a t e new frame p o i n t e r
mrmovl 8(%ebp) , %edx # g e t a
mrmovl 0(%edx) , %eax # g e t ∗a
x o r l %ecx , %ecx # l e n = 0
jmp L26

L24 : mrmovl 0(%edx) , %eax # g e t ∗a
i r m o v l $1 , %e s i
a d d l %e s i , %ecx # l e n++

L26 : i r m o v l $4 , %e s i
a d d l %e s i , %edx # a++
a n d l %eax , %eax # ∗a == 0?
j n e L24
r r m o v l %ecx , %eax # t h e r e t u r n v a l u e
r r m o v l %ebp , %esp # c l e a n frame
p o p l %ebp # r e s t o r e frame p o i n t e r
r e t # r e t u r n to c a l l e r

CS429 Slideset 6: 26 Instruction Set Architecture

Y86 Program Structure

i r m o v l Stack , %esp # s e t up s t a c k
r r m o v l %esp , %ebp # s e t up frame
i r m o v l L i s t , %edx
p u s h l %edx # push arguments
c a l l l e n 2 # c a l l f u n c t i o n
h a l t # s t o p e x e c u t i o n

. a l i g n 4
L i s t : # t h e a r r a y to

. l o n g 5043 # measure

. l o n g 6125

. l o n g 7395

. l o n g 0

F u n c t i o n
l e n :

A l l o c a t e s p a c e f o r s t a c k
. p o s 0 x100
Stack :

CS429 Slideset 6: 27 Instruction Set Architecture

Y86 Program Structure (2)

Program starts at address 0.

Must set up the stack.

Make sure that execution doesn’t overwrite the code.

Try to use symbolic names.

Add assembler directives as appropriate.

Caller pushes args onto the stack.

Caller and/or callee must save registers that should be
preserved.

CS429 Slideset 6: 28 Instruction Set Architecture

Assembling a Y86 Program

unix> yas f i l e . y s

Generates object code file.yo.

Actually looks like disassembler output.

0 x000 : 308400010000 | i r m o v l Stack , %esp
0 x006 : 2045 | r r m o v l %esp , %ebp
0 x008 : 308218000000 | i r m o v l L i s t , %edx
0 x00e : a028 | p u s h l %edx
0 x010 : 8028000000 | c a l l l e n 2
0 x015 : 10 | h a l t
0 x018 : | . a l i g n 4
0 x018 : | L i s t :
0 x018 : b3130000 | . l o n g 5043
0 x01c : ed170000 | . l o n g 6125
0 x020 : e31c0000 | . l o n g 7395
0 x024 : 00000000 | . l o n g 0

CS429 Slideset 6: 29 Instruction Set Architecture

Simulating a Y86 Program

unix> y i s f i l e . yo

Instruction set simulator

Computes the effect of each instruction on the processor state.
Prints changes in state from original.

Stopped i n 41 s t e p s at PC = 0 x16 . Excep t i on ’HLT ’ , CC
Z=1 S=0 O=0

Changes to r e g i s t e r s :
%eax : 0 x00000000 0x00000003
%ecx : 0 x00000000 0x00000003
%edx : 0 x00000000 0x00000028
%esp : 0 x00000000 0 x000000fc
%ebp : 0 x00000000 0x00000100
%e s i : 0 x00000000 0x00000004

Changes to memory :
0 x00 f4 : 0 x00000000 0x00000100
0 x00 f8 : 0 x00000000 0x00000015
0 x00 f c : 0 x00000000 0x00000018

CS429 Slideset 6: 30 Instruction Set Architecture

Y86 Assembler

A program that translates Y86 code into machine language.

1-1 mapping of instructions to encodings.

Resolves symbolic names.

Translation is linear.

Assembler directives give additional control.

Some common directives:

.pos x: subsequent lines of code start at address x.

.align x: align the next line to an x-byte boundary (e.g.,
long ints should be at a word address).

.long x: put x at the current address; a way to initialize a
value.

CS429 Slideset 6: 31 Instruction Set Architecture

Y86 Stack Discipline

Stack used to:

implement function calls;

provide local storage;

%esp (stack pointer) points to current top of stack.

ISA provides push and pop instructions.

push rA: decrement %esp by 4; MEM[%esp] = rA

pop rA: rA = MEM[%esp]; increment %esp by 4;

Each function has an associated frame.

%ebp (frame pointer) points to its beginning.

Holds return address, arguments, local variables.

Provides storage for saved registers.

CS429 Slideset 6: 32 Instruction Set Architecture

Y86 Stack Discipline (Continued)

Caller responsible for:

Pushing arguments on stack in reverse order.

Storing return address on stack.

Transferring control to function.

Cleaning up after function completes.

Callee responsible for:

Saving %ebp.

Setting %ebp to current top of stack.

Saving registers it will be using.

Upon completion of task, restoring %ebp and returning control
to caller

ISA provides call and ret instructions.

call Dest: push address of next instruction on stack; set PC
to Dest.

ret: pop stack; set PC to value popped.

CS429 Slideset 6: 33 Instruction Set Architecture

Function Calls Using the Stack

Stack bottom

...

...

...

Argument n

Argument 1

+4+4n

Saved %ebp

Return address

Saved registers,

local variables

and temporaries

+8

+4

−4

Caller’s frame

Earlier frames

Current frame

Stack top

build area
Argument

Stack pointer %esp

Frame pointer %ebp

addresses
Increasing

CS429 Slideset 6: 34 Instruction Set Architecture

A More Complete Example

i n t a r r a y [] = {0xd , 0xc0 , 0xb00 , 0 xa000 } ;

/∗ $beg in sum−c ∗/
i n t Sum(i n t ∗ Sta r t , i n t Count)
{

i n t sum = 0 ;
wh i l e (Count) {

sum += ∗ S t a r t ;
S t a r t++;
Count−−;

}
r e t u r n sum ;

}
/∗ $end sum−c ∗/

i n t main ()
{

Sum(a r ray , 4) ;
r e t u r n 0 ;

}

Study this code to understand what it does.CS429 Slideset 6: 35 Instruction Set Architecture

The Compilation

E x e c u t i o n b e g i n s a t a d d r e s s 0
. p o s 0

i n i t :
i r m o v l Stack , %esp # s e t up s t a c k p o i n t e r
i r m o v l Stack , %ebp # s e t up frame p o i n t e r
jmp Main # e x e c u t e main program

Array o f 4 e l e m e n t s
a r r a y :

. l o n g 0 xd

. l o n g 0 xc0

. l o n g 0 xb00

. l o n g 0 xa000

Main :
i r m o v l $4 , %eax
p u s h l %eax # push 4
i r m o v l a r r a y , %edx
p u s h l %edx # push a r r a y
c a l l Sum # Sum(a r r a y , 4)
h a l t

c o n t i n u e s n e x t s l i d e

CS429 Slideset 6: 36 Instruction Set Architecture

The Compilation (2)

i n t Sum(i n t ∗ S t a r t , i n t Count)
Sum :

p u s h l %ebp # s a v e o l d frame p t r .
r r m o v l %esp , %ebp # update frame p t r .
mrmovl 8(%ebp) , %ecx # ecx = S t a r t
mrmovl 12(%ebp) , %edx # edx = Count
i r m o v l $0 , %eax # sum = 0
a n d l %edx , %edx
j e End

Loop :
mrmovl 0(% ecx) , %e s i # g e t ∗ S t a r t
a d d l %e s i , %eax # add to Sum
i r m o v l $4 , %ebx #
a d d l %ebx , %ecx # S t a r t++
i r m o v l $−1, %ebx #
a d d l %ebx , %edx # Count −= 1
j n e Loop

End :
r r m o v l %ebp , %esp # r e s t o r e s t a c k p t r .
p o p l %ebp # r e s t o r e f rame p t r .
r e t

. p o s 0 x100
Stack : # t h e s t a c k goes h e r e .

CS429 Slideset 6: 37 Instruction Set Architecture

CISC Instruction Sets

Complex Instruction Set Computer

Dominant ISA style through the 80s.

Lots of instructions:

Variable length
Stack as mechanism for supporting functions
Explicit push and pop instructions.

ALU instructions can access memory.

E.g., addl %eax, 12(%ebx)
Requires memory read and write in one instruction execution.
Some ISAs had much more complex address calculations.

Set condition codes as a side effect of other instructions.

Basic philosophy:

Memory is expensive;
Instructions to support high-level language constructs.

CS429 Slideset 6: 38 Instruction Set Architecture

RISC Instruction Sets

Reduced Instruction Set Computer

Originated in IBM Research; popularized in Berkeley and
Stanford projects.

Few, simple instructions.

Takes more instructions to execute a task, but faster and
simpler implementation
Fixed length instructions for simpler decoding

Register-oriented ISA

More registers (32 typically)
Stack is back-up for registers

Only load and store instructions can access memory (mrmovl
and rmmovl in Y86).

Explicit test instructions set condition codes.

Philosophy: KISS

CS429 Slideset 6: 39 Instruction Set Architecture

MIPS Instruction Format

Register–register:
Op Ra Rb Rd 00000 Fn

addu $3,$2,$1 # register add: $3 = $2+$1

Register–immediate:
Op Ra Rb Offset

addu $3,$2,3145 # immediate add: $3 = $2+3145
sll $3,$2,2 # shift left: $3 = $2 << 2

Branch:
Op Ra Rb Immediate

beq $3,$2,dest # Branch when $3 = $2

Load/Store:
Op Ra Rb Immediate

lw $3,16($2) # Load word: $3 = M[$2+16]
sw $3,16($2) # Store word: M[$2+16] = $3

CS429 Slideset 6: 40 Instruction Set Architecture

MIPS Registers

bf Name Number Use Callee preserves?

$zero $0 constant 0 N/A

$at $1 assembler temporary No

$v0–$v1 $2–$3 function returns No
expression evaluation

$a0–$a3 $4–$7 function arguments No

$t0–$t7 $8–$15 temporaries No

$s0–$s7 $16–$23 saved temporaries Yes

$t8–$t9 $24–$25 temporaries No

$k0–$k1 $26–$27 reserved for OS kernel N/A

$gp $28 global pointer Yes

$sp $29 stack pointer Yes

$fp $30 frame pointer Yes

$ra $31 return address N/A

CS429 Slideset 6: 41 Instruction Set Architecture

What To Do?

In the 1980s a nasty debate:

Direct compilation vs. optimized compilation
Support for hardware management vs. simpler control

Several startups (ARM, MIPS) with technically superior
products

Decisions based on non-technical factors

Money makes the world go round
Need for backward compatibility

Enough transistors on a chip to achieve high performance

Intel seems to be moving away from x86 legacy.

CS429 Slideset 6: 42 Instruction Set Architecture

