
CS429: Computer Organization and Architecture
Instruction Set Architecture II

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: October 1, 2014 at 08:36

CS429 Slideset 7: 1 Instruction Set Architecture II

Topics of this Slideset

Assembly Programmer’s Execution Model

Accessing Information

Registers

Memory

Arithmetic operations

BTW: We’re through with Y86 for a while, and starting the x86.
We’ll come back to the Y86 later for pipelining.

CS429 Slideset 7: 2 Instruction Set Architecture II

IA32 Processors

x86 processors totally dominate the computer market.

Evolutionary Design

Starting in 1978 with 8086

Added more features over time.

Complex Instruction Set Computer (CISC)

Still support many old, now obsolete, features.

There are many different instructions with many different
formats, but only a small subset are encountered with Linux
programs.

Hard to match performance of Reduced Instruction Set
Computers (RISC), though Intel has done just that!

CS429 Slideset 7: 3 Instruction Set Architecture II

x86 Evolution: Programmer’s View

Name Date Transistors
8086 1978 29K

16-bit processor. Basis for IBM PC and DOS.

Limited to 1MB address space. DOS only gives you 640K

80286 1982 134K

Added elaborate, but not very useful, addressing scheme.

Basis for IBM PC-AT and Windows

386 1985 275K

Extended to 32 bits. Added “flat addressing.”

Capable of running Unix.

Linux/gcc uses no instructions introduced in later models.

CS429 Slideset 7: 4 Instruction Set Architecture II

x86 Evolution: Programmer’s View

Name Date Transistors
486 Pro 1989 1.9M

Added on chip floating point unit.

Pentium 1993 3.1M
Pentium/MMX 1997 4.5M

Added special collection of instructions for operating on 64-bit
vectors of 1, 2, or 4 byte integer data.

Pentium Pro 1995 6.5M

Added conditional move instructions.

Big change in underlying microarchitecture.

CS429 Slideset 7: 5 Instruction Set Architecture II

x86 Evolution: Programmer’s View

Name Date Transistors
Pentium III 1999 8.2M

Added “streaming SIMD” instructions for operating on
128-bit vectors of 1, 2, or 4 byte integer or FP data.

Pentium 4 2001 42M

Added 8-byte formats and 144 new instructions for streaming
SIMD.

“Superpipelined” with very fast clocks.

Pentium 4 Xeon 2003 125M

Added hyperthreading, large caches.

Pentium M 2003 77M

Added hyperthreading, lower power.

CS429 Slideset 7: 6 Instruction Set Architecture II

x86 Evolution: Programmer’s View

Name Date Transistors
Pentium 4 EE 2005 164M

Includes hyperthreading.

Pentium EE 840 2005 230M

Dual core, shared L2 cache.

Pentium EE 840 2005 675M

8 Mbyte L3 Cache.

Pentium Core Duo 2006 250M+

Dual core, shared L2 cache.

“Nehalem” Core 2008 731M

Added 256-bit media instructions, on-chip memory controller.

CS429 Slideset 7: 7 Instruction Set Architecture II

x86 Evolution: 64-bit

“Tick-tock” implementation strategy.

Change processor in middle of stable technology.

Change technology in middle of stable design.

Pentium i3, i5, i7 2010 1.16B

“Sandy Bridge” 4 core, 2.27B transitors, 8 core.

Pentium i3, i5, i7 2012 1.4B

“Ivy Bridge” Tri-gate (3-D) transistor technology.

CS429 Slideset 7: 8 Instruction Set Architecture II

New Species: IA64

Itanium 2001 25M

Extends to IA64, a 64-bit architecture

Radically new instruction set designed for high performance.

Able to run existing IA32 programs with on-board “x86
engine.”

Joint project with Hewlett-Packard.

Itanium 2 2002 221M

Big performance boost.

Itanium 2, Big 2006 410M

24 Mbyte cache, good for server operations, expensive ($500
to $4000) per processor.

Not good market acceptance; Intel ended support.
CS429 Slideset 7: 9 Instruction Set Architecture II

x86 Evolution: Clones

Transmeta
Radically different approach to implementation.

Translate x86 code into “very long instruction word” (VLIW)
code.

Very high degree of parallelism.

Centaur / Via

Continued evolution from Cyrix, the 3rd x86 vendor. Low
power, design team in Austin.

32-bit processor family.

At 2 GHz, around 2 watts; at 600 MHz around 0.5 watt.

64-bit processor family, used by HP, Lenovo, OLPC, IBM.

Very low power, only a few watts at 1.2 GHz.
Full virtualization and SSE support.

CS429 Slideset 7: 10 Instruction Set Architecture II

x86 Evolution: Clones

Advanced Micro Devices (AMD)
Historically,

AMD has followed just behind Intel.

A little bit slower, but enough cheaper to be competitive.

Recently,

Recruited top circuit designers from Digital Equipment Corp.

Exploited the fact that Intel was distracted by IA64.

Now is a close competitor to Intel.

Developed first commerically-available x86 extension to 64-bits,
which forced Intel to do the same.
Current,

Delivering 64-bit x86 processors for desktop and server market.

Have sophisticated point-to-point IO bus.

Providing competitive products in desktop and server market.

CS429 Slideset 7: 11 Instruction Set Architecture II

Abstract and Concrete Machine Models

Machine Models

Memory Processor

C

Memory

c−codes

Processor

ALU

Regs

Stack

Assembly

Data Control
1) char 1) loops
2) int, float 2) conditionals
3) double 3) switch
4) struct, array 4) proc. call
5) pointer 5) proc. return

1) byte 1) branch/jump
2) 2-byte word 2) call
3) 4-byte long word 3) ret
4) contiguous byte

allocation
5) address of initial byte

CS429 Slideset 7: 12 Instruction Set Architecture II

Assembly Programmer’s View

EIP

Registers

CPU

Condition
codes

Memory

Object Code

Program Code

OS Data

Stack

Addresses

Data

Instructions

Programmer Visible State

EIP (Program Counter): address of
next instruction.

Register file: heavily used program
data.

Condition codes:

Store status info about most
recent arithmetic operation.
Used for conditional branching.

Memory

Byte addressable
array.

Code, user data,
(some) OS data.

Includes stack.

CS429 Slideset 7: 13 Instruction Set Architecture II

ISA Principles

Contract between programmer and the hardware.

Defines visible state of the system.
Defines how state changes in response to instructions.

For Programmer: ISA is model of how a program will execute.

For Hardware Designer: ISA is formal definition of the correct
way to execute a program.

With a stable ISA, SW doesn’t care what the HW looks like
under the hood.
Hardware implementations can change drastically.
As long as the HW implements the same ISA, all prior SW
should still run.
Example: x86 ISA has spanned many chips; instructions have
been added but the SW for prior chips still runs.

ISA specification: the binary encoding of the instruction set.

CS429 Slideset 7: 14 Instruction Set Architecture II

ISA Basics

Memory

Regs

Memory

Regs

Op Mode Ra Rb

After StateBefore State

Instruction

Data type

Interrupts / Events

Operations

Machine State

Memory organization

Register organization

Instruction formats

Addressing modes

Instruction types

CS429 Slideset 7: 15 Instruction Set Architecture II

Architecture vs. Implementation

Architecture: defines what a computer system does in response
to a program and set of data.

Programmer visible elements of computer system.

Implementation: defines how a computer does it.

Sequence of steps to complete operations.

Time to execute each operation.

Hidden “bookkeeping” function.

CS429 Slideset 7: 16 Instruction Set Architecture II

Examples

Architecture or Implementation?

Number of general purpose registers

Width of memory bus

Binary representation of the instruction: sub r4, r2, #27

Number of cycles to execute a FP instruction

Which condition code bits are set on a move instruction

Size of the instruction cache

Type of FP format

CS429 Slideset 7: 17 Instruction Set Architecture II

Turning C into Object Code

Code in files: p1.c, p2.c

Compile with command: gcc -O p1.c p2.c -o p

Use optimization (-O)

Put resulting binary in file p

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Compiler (gcc)

Assembler (gcc or as)

Linker (gcc or lo)

text

text

binary

binary

CS429 Slideset 7: 18 Instruction Set Architecture II

Compiling into Assembly

C Code:

i n t sum(i n t x , i n t y)
{

i n t t = x+y ;
r e t u r n t ;

}

Run command: gcc -O -S code.c
produces file code.s.

sum :
pu sh l %ebp
movl %esp ,%ebp
movl 12(%ebp) ,%eax
add l 8(%ebp) ,%eax
movl %ebp ,%esp
pop l %ebp
r e t

CS429 Slideset 7: 19 Instruction Set Architecture II

Assembly Characteristics

Minimal Data Types

“Integer” data of 1, 2 or 4 bytes

Addresses (untyped pointers)

Floating point data of 4, 8 or 10 bytes

No aggregate types such as arrays or structures

Just contiguously allocated bytes in memory

Primitive Operations

Perform arithmetic functions on register or memory data

Transfer data between memory and register

Load data from memory into register

Store register data into memory

Transfer control

Unconditional jumps to/from procedures

Conditional branches

CS429 Slideset 7: 20 Instruction Set Architecture II

Object Code

0x401040 : <sum>:
0 x55
0x89 # t o t a l o f
0 xe5 # 13 by t e s
0x8b
0x45 # each i n s t
0 x0c # 1 , 2 , o r
0x03 # 3 by t e s
0x45
0x08 # s t a r t s a t
0x89 # addr
0 xec # 0x401040
0x5d
0 xc3

Assembler

Translates .s into .o

Binary encoding of each inst.

Nearly complete image of
executable code

Missing linkages between code in
different files

Linker

Resolves references between files

Combines with static run-time
libraries

E.g., code for malloc, printf

Some libraries are dynamically
linked

Linking just before execution.

CS429 Slideset 7: 21 Instruction Set Architecture II

Machine Instruction Example

i n t t = x + y ;

add l 8(%ebp) ,%eax

Similar to expression: x += y.

0x401046 : 03 45 08

C Code

Add two signed integers.

Assembly

Add two 4-byte integers

“Long” words in GCC terms

Same instruction signed or
unsigned

Operands:

x: Register %eax
y: Memory M[%ebp+8]
t: Register %eax

Return value in %eax

Object Code

3-byte instruction

Stored at address 0x401046
CS429 Slideset 7: 22 Instruction Set Architecture II

Disassembling Object Code

00401040 < sum>:
0 : 55 push %ebp
1 : 89 e5 mov %esp , %ebp
3 : 8b 45 0c mov 0 xc(%ebp) , %eax
6 : 03 45 08 add 0x8(%ebp) , %eax
9 : 89 ec mov %ebp , %exp
b : 5d pop %ebp
c : c3 r e t
d : 8d 76 00 l e a 0x0(% e s i) , %e s i

Disassembler

objdump -d p

Useful tool for examining object code

Analyzes bit pattern of series of instructions

Produces approximate rendition of assembly code

Can be run one either a.out (complete executable) or .o file

CS429 Slideset 7: 23 Instruction Set Architecture II

Alternate Disassembly

Object code:

0x401040 :
0x55
0x89
0 xe5
0x8b
0x45
0 x0c
0x03
0x45
0x08
0x89
0 xec
0x5d
0 xc3

Within gdb:

gdb p
disassemble sum

0x401040 <sum>: push %ebp
0x401041 <sum+1>: mov %esp ,%ebp
0x401043 <sum+3>: mov 0 xc(%ebp) ,%eax
0x401046 <sum+6>: add 0x8(%ebp) ,%eax
0x401049 <sum+9>: mov %ebp ,%esp
0x40104b <sum+11>: pop %ebp
0 x40104c <sum+12>: r e t
0 x40104d <sum+13>: l e a 0x0(% e s i) ,% e s i

Disassemble procedure:

x/13b sum

Examine the 13 bytes starting at sum.

CS429 Slideset 7: 24 Instruction Set Architecture II

What Can be Disassembled?

Anything that can be interpreted as executable code.

Disassembler examines bytes and reconstructs assembly
source.

% objdump −d WINWORD.EXE

WINWORD.EXE: f i l e fo rmat pe i−i 3 86

No symbol s i n ”WINWORD.EXE” .
D i sa s s emb l y o f s e c t i o n . t e x t :

30001000 < . t e x t >:
30001000: 55 push %ebp
30001001: 8b ec mov %esp , %ebp
30001003: 6a f f push $ 0 x f f f f f f f f
30001005: 68 90 10 00 30 push $0x30001090
3000100a : 68 91 dc 4c 30 push $0x304cdc91

CS429 Slideset 7: 25 Instruction Set Architecture II

Whose Assembler?

Intel/Microsoft Format

l e a eax , [ecx+ecx ∗2]
sub esp , 8
cmp dword p t r [ebp−8] , 0
mov eax , dword p t r [eax

∗4+100h]

GAS/Gnu Format

l e a l (%ecx ,%ecx , 2) , %eax
s u b l $8 ,%esp
cmpl $0 ,−8(%ebp)
movl $0x100 (,%eax , 4) ,%eax

Intel/Microsoft Differs from GAS

Operands are listed in opposite order:

mov Dest, Src movl Src, Dest

Constants not preceded by ’$’; denote hex with ’h’ at end.

100h $0x100

Operand size indicated by operands rather than operator
suffix.

sub subl

Addressing format shows effective address computation.

[eax*4+100h] $0x100(,%eax,4)

CS429 Slideset 7: 26 Instruction Set Architecture II

Moving Data

From now on we’ll always use GAS assembler format.

Moving Data:

Form: movl Source, Dest

Move 4-byte “long” word

Lots of these in typical code

Operand Types

Immediate: Constant integer data
Like C constant, but prefixed with ’$’
E.g., $0x400, $-533
Encoded with 1, 2, or 4 bytes

Register: One of 8 integer registers
But %esp and %ebp are reserved for special use
Others have special uses for particular instructions

Memory: source/dest is first address of block (4 bytes for an
int).

Various “addressing modes”

CS429 Slideset 7: 27 Instruction Set Architecture II

Registers

IA32 uses the same 8 registers as Y86.

%eax
%edx
%ecx
%ebx
%esi
%edi
%esp
%ebp

Some have addressable internal structure; more on that later.

CS429 Slideset 7: 28 Instruction Set Architecture II

movl Operand Combinations

Unlike the Y86, we don’t distinguish the operator depending on
the operand addressing modes.

Source Dest. Assembler C Analog
Immediate Register movl $0x4,%eax temp = 0x4;
Immediate Memory movl $-147,(%eax) *p = -147;

Register Register movl %eax,%edx temp2 = temp1;
Register Memory movl %eax,(%edx) *p = temp;
Memory Register movl (%eax),%edx temp = *p

Memory–memory transfers are not allowed within a single
instruction.

CS429 Slideset 7: 29 Instruction Set Architecture II

Simple Addressing Modes

Register: Reg[R]

movl %ecx, %ebx

Normal (R): Mem[Reg[R]]

Register R specifies memory address.
This is often called indirect addressing.

movl (%ecx), %eax

Displacement D(R): Mem[Reg[R]+D]

Register R specifies start of memory region.
Constant displacement D specifies offset

movl 8(%ecb),%edx

CS429 Slideset 7: 30 Instruction Set Architecture II

Addresses and Pointers in C

C programming model is close to machine language.

Machine language manipulates memory addresses.

For address computation;
To store addresses in registers or memory.

C employs pointers, which are just addresses of primitive data
elements or data structures.

Examples of operators * and &:

int a, b; /* declare integers a and b */

int *a_ptr; /* a is a pointer to an integer */

a_ptr = a; /* illegal, types don’t match*/

a_ptr = &a; /* a ptr holds address of a */

b = *a_ptr; /* dereference a ptr and assign value to b */

CS429 Slideset 7: 31 Instruction Set Architecture II

Using Simple Addressing Modes

vo i d swap (i n t ∗xp , i n t ∗yp)
{

i n t t0 = ∗xp ;
i n t t1 = ∗yp ;
∗xp = t1 ;
∗yp = t0 ;

}

swap :
pu sh l %ebp
movl %esp ,%ebp
pu sh l %ebx

movl 12(%ebp) ,%ecx
movl 8(%ebp) ,%edx
movl (%ecx) ,%eax
movl (%edx) ,%ebx
movl %eax ,(% edx)
movl %ebx ,(% ecx)

the f o l l o w i n g i s
t r i c k y :

movl −4(%ebp) ,%ebx
movl %ebp ,%esp
pop l %ebp
r e t

CS429 Slideset 7: 32 Instruction Set Architecture II

Understanding Swap

Register Variable

%ecx yp
%edx xp
%eax t1
%ebx t0

.

.

.
Offset

12

8

4

0

−4

Stack

%ebp

yp

xp

Rtn addr

Old %ebp

Old %ebx

vo i d swap (i n t ∗xp , i n t ∗yp)
{

i n t t0 = ∗xp ;
i n t t1 = ∗yp ;
∗xp = t1 ;
∗yp = t0 ;

}

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

CS429 Slideset 7: 33 Instruction Set Architecture II

Understanding Swap (2)

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

123

456

Old %ebp

Old %ebx

CS429 Slideset 7: 34 Instruction Set Architecture II

Understanding Swap (3)

movl 12(%ebp) ,%ecx # ecx = yp

movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

%eax

%edx

%ecx 0x120

%ebx

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

123

456

Old %ebp

Old %ebx

CS429 Slideset 7: 35 Instruction Set Architecture II

Understanding Swap (4)

movl 12(%ebp) ,%ecx # ecx = yp

movl 8(%ebp) ,%edx # edx = xp

movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

%eax

%edx 0x124

%ecx 0x120

%ebx

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

123

456

Old %ebp

Old %ebx

CS429 Slideset 7: 36 Instruction Set Architecture II

Understanding Swap (5)

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp

movl (%ecx) ,%eax # eax = ∗yp

movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

%eax 456

%edx 0x124

%ecx 0x120

%ebx

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

123

456

Old %ebp

Old %ebx

CS429 Slideset 7: 37 Instruction Set Architecture II

Understanding Swap (6)

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp

movl (%edx) ,%ebx # ebx = ∗xp

movl %eax ,(% edx) # ∗xp = eax
movl %ebx ,(% ecx) # ∗yp = ebx

%eax 456

%edx 0x124

%ecx 0x120

%ebx 123

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

123

456

Old %ebp

Old %ebx

CS429 Slideset 7: 38 Instruction Set Architecture II

Understanding Swap (7)

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp

movl %eax ,(% edx) # ∗xp = eax

movl %ebx ,(% ecx) # ∗yp = ebx

%eax 456

%edx 0x124

%ecx 0x120

%ebx 123

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

456

456

Old %ebx

Old %ebp

CS429 Slideset 7: 39 Instruction Set Architecture II

Understanding Swap (8)

movl 12(%ebp) ,%ecx # ecx = yp
movl 8(%ebp) ,%edx # edx = xp
movl (%ecx) ,%eax # eax = ∗yp
movl (%edx) ,%ebx # ebx = ∗xp
movl %eax ,(% edx) # ∗xp = eax

movl %ebx ,(% ecx) # ∗yp = ebx

%eax 456

%edx 0x124

%ecx 0x120

%ebx 123

%esi

%edi

%esp

%ebp 0x104

0x124

0x120

0x11c

0x118

0x114

0x110

0x10c

0x108

0x104

Rtn addr

0x100

Address

12

8

4

0

−4

Offset

0x124

0x120

xp

yp

%ebp

456

123

Old %ebp

Old %exp

CS429 Slideset 7: 40 Instruction Set Architecture II

Indexed Addressing Modes

Most General Form:

D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg[Ri] + D]

D: Constant “displacement” of 1, 2 or 4 bytes

Rb: Base register, any of the 8 integer registers

Ri: Index register, any except %esp (and probably not %ebp)

S: Scale, one of 1, 2, 4 or 8.

Special Cases:

(Rb, Ri) Mem[Reg[Rb] + Reg[Ri]]
D(Rb, Ri) Mem[Reg[Rb] + Reg[Ri] + D]
(Rb, Ri, S) Mem[Reg[Rb] + S * Reg[Ri]]

CS429 Slideset 7: 41 Instruction Set Architecture II

Addressing Modes

Type Form Operand value Name

Immediate $D D Immediate
Register Ea R[Ea] Register
Memory D M[D] Absolute
Memory (Ea) M[R[Ea]] Indirect
Memory D(Eb) M[D + R[Eb]] Base + displacement
Memory (Eb, Ei), M[R[Eb] + R[Ei]] Indexed
Memory D(Eb, Ei), M[D + R[Eb] + R[Ei]] Indexed
Memory (, Ei , s) M[R[Ei] · s] Scaled indexed
Memory D(, Ei , s) M[D + R[Ei] · s] Scaled indexed
Memory (Eb, Ei , s), M[R[Eb] + R[Ei] · s] Scaled indexed
Memory D(Eb, Ei , s) M[D + R[Eb] + R[Ei] · s] Scaled indexed

The scaling factor s must be either 1, 2, 4, or 8.

CS429 Slideset 7: 42 Instruction Set Architecture II

Address Computation Example

%edx 0xf000

%ecx 0x100

Expression Computation Address

0x8(%edx) 0xf000 + 0x8 0xf008
(%edx, %ecx) 0f000 + 0x100 0xf100

(%edx, %ecx, 4) 0xf000 + 4*0x100 0xf400
0x80(,%edx, 2) 2*0xf000 + 0x80 0x1e080

CS429 Slideset 7: 43 Instruction Set Architecture II

Address Computation Instruction

Form: leal Src, Dest

Src is address mode expression.

Sets Dest to address denoted by the expression

Uses:

Computing address without doing a memory reference:

E.g., translation of p = &x[i];

Computing arithmetic expressions of the form x + k × y ,
where i ∈ {1, 2, 4, 8}

CS429 Slideset 7: 44 Instruction Set Architecture II

Some Arithmetic Operations

Two operand instructions:

Format Computation
addl Src, Dest Dest = Dest + Src
subl Src, Dest Dest = Dest - Src
imull Src, Dest Dest = Dest * Src
sall Src, Dest Dest = Dest << Src also called shll
sarl Src, Dest Dest = Dest >> Src arithmetic
shrl Src, Dest Dest = Dest >> Src logical
xorl Src, Dest Dsst = Dest ^ Src
andl Src, Dest Dest = Dest & Src
orl Src, Dest Dest = Dest | Src

CS429 Slideset 7: 45 Instruction Set Architecture II

Some Arithmetic Operations

One operand instructions:

Format Computation
incl Dest Dest = Dest + 1
decl Dest Dest = Dest - 1
negl Dest Dest = -Dest
notl Dest Dest = ~Dest

CS429 Slideset 7: 46 Instruction Set Architecture II

Using leal for Arithmetic Expressions

i n t a r i t h
(i n t x , i n t y , i n t z)

{
i n t t1 = x+y ;
i n t t2 = z+t1 ;
i n t t3 = x+4;
i n t t4 = y ∗ 48 ;
i n t t5 = t3 + t4 ;
i n t r v a l = t2 ∗ t5 ;
r e t u r n r v a l ;

}

a r i t h :
s e t up

pu sh l %ebp
movl %esp , %ebp

body
movl 8(%ebp) , %eax
movl 12(%ebp) , %edx
l e a l (%edx ,%eax) ,%ecx
l e a l (%edx ,%edx , 2) ,%edx
s a l l $4 ,%edx
add l 16(%ebp) ,%ecx
l e a l 4(%edx ,%eax) ,%eax
imu l l %ecx ,%eax

f i n i s h
movl %ebp ,%esp
pop l %ebp
r e t

CS429 Slideset 7: 47 Instruction Set Architecture II

Understanding Arithmetic

i n t a r i t h
(i n t x , i n t y , i n t z)

{
i n t t1 = x+y ;
i n t t2 = z+t1 ;
i n t t3 = x+4;
i n t t4 = y ∗ 48 ;
i n t t5 = t3 + t4 ;
i n t r v a l = t2 ∗ t5 ;
r e t u r n r v a l ;

}

Offset

16

12

8

4

0 Old %ebp

Stack

Rtn addr

y

z

x

%ebp

...

movl 8(%ebp) , %eax # eax = x
movl 12(%ebp) , %edx # edx = y
l e a l (%edx ,%eax) ,%ecx # ecx = x+y (t1)
l e a l (%edx ,%edx , 2) ,%edx # edx = 3∗y
s a l l $4 ,%edx # edx = 48∗ y (t4)
add l 16(%ebp) ,%ecx # ecx = z+t1 (t2)
l e a l 4(%edx ,%eax) ,%eax # eax = 4+t4+x (t5)
imu l l %ecx ,%eax # eax = t5 ∗ t2 (r v a l)

CS429 Slideset 7: 48 Instruction Set Architecture II

Understanding Arithmetic

i n t a r i t h
(i n t x , i n t y , i n t z)

{
i n t t1 = x+y ;
i n t t2 = z+t1 ;
i n t t3 = x+4;
i n t t4 = y ∗ 48 ;
i n t t5 = t3 + t4 ;
i n t r v a l = t2 ∗ t5 ;
r e t u r n r v a l ;

}

eax = x
movl 8(%ebp) , %eax

edx = y
movl 12(%ebp) , %edx

ecx = x+y (t1)
l e a l (%edx ,%eax) ,%ecx

edx = 3∗y
l e a l (%edx ,%edx , 2) ,%edx

edx = 48∗ y (t4)
s a l l $4 ,%edx

ecx = z+t1 (t2)
add l 16(%ebp) ,%ecx

eax = 4+t4+x (t5)
l e a l 4(%edx ,%eax) ,%eax

eax = t5 ∗ t2 (r v a l)
im u l l %ecx ,%eax

CS429 Slideset 7: 49 Instruction Set Architecture II

Another Example

i n t l o g i c a l (i n t x , i n t y)
{

i n t t1 = xˆy ;
i n t t2 = t1 >> 17 ;
i n t mask = (1<<13) − 7 ;
i n t r v a l = t2 & mask ;
r e t u r n r v a l ;

}

Note:
213 = 8192; 213 − 7 = 8185

l o g i c a l :
pu sh l %ebp
movl %esp ,%ebp
movl 8(%ebp) ,%eax
x o r l 12(%ebp) ,%eax
s a r l $17 ,%eax
and l $8185 ,%eax
movl %ebp ,%esp
pop l %ebp
r e t

movl 8(%ebp) ,%eax # eax = x
x o r l 12(%ebp) ,%eax # eax = xˆy (t1)
s a r l $17 ,%eax # eax = t1>>17 (t2)
and l $8185 ,%eax # eax = t2 & 8185

CS429 Slideset 7: 50 Instruction Set Architecture II

