Consider the factorial function:

\[k! = 1 \times 2 \times \ldots \times k. \]

This is often defined mathematically by the following recurrence relation:

\[1! = 1 \]
\[n! = n \times (n-1)! \text{, for } n > 1 \]

What assumptions are being made about the input?

We say that this definition is recursive because in defining the factorial function we’re using the factorial function. It is typically quite easy to implement a function in Python directly from the recurrence relation.

For example, to compute 5! we do the following:

\[5! = 5 \times 4! \]
\[= 5 \times (4 \times 3!) \]
\[= 5 \times (4 \times (3 \times 2!)) \]
\[= 5 \times (4 \times (3 \times (2 \times 1!))) \]
\[= 5 \times (4 \times (3 \times (2 \times 1))) \]
\[= 5 \times (4 \times (3 \times 2)) \]
\[= 120 \]

This is the result of the computation.
Factorial Function

Mathematical definition:

\[1! = 1 \]
\[n! = n \times (n - 1)!, \text{ for } n > 1 \]

Here's a straightforward implementation in Python.

```python
def fact(n):
    """ Factorial function. ""
    if n == 1:
        return 1
    else:
        return n * fact(n -1)  # note recursive call
```

This function is recursive because it calls itself.

Can you see anything wrong with this? How might you fix it?

Python Factorial Function

How should you deal with an illegal input, say `fact(0)`?

You can do everything you do for non-recursive functions:

- Assume the input will be legal (and crash if it’s not).
- Print an error message and return.
- Use Python error handling; we haven’t covered that this semester!
- Return a reasonable default answer.

```python
def fact(n):
    """ Factorial function. ""
    if n <= 1:
        return 1
    else:
        return n * fact(n-1)  # note recursive call
```

Recursion

In programming, recursion just means that a program calls itself, either directly or indirectly.

Functions A and B are mutually recursive if A calls B and B calls A.
Recursion is also a way of thinking about computing problems: Solve a “big” problem by solving “smaller” instances of the same problem. The simplest instances can be solved directly.

Example: Suppose I decide to walk to the store.

Base case: I’m already there; there’s nothing left to do.

Recursive case: I take one step; now I’ve reduced the problem to the “smaller” but structurally identical problem of walking from where I am now to the store.

What can go wrong:

- I don’t know how to take a step.
- I walk in the wrong direction.
- There is no store.
- You walk to the wrong store.
- I can’t recognize when I get to the store.
- I walk right past the store and keep going forever.

Any recursive function must have:

- one or more base cases that return an answer without calling the procedure recursively;
- one or more recursive cases that call the function on arguments that move the computation in the direction of some base case;
- assurance that you will eventually hit one of the base cases.

```python
def fact(n):
    if n <= 1:    # the base case
        return 1
    else:
        return n * fact(n-1)    # the recursive case
```

How do you know that this eventually terminates?
Some Faulty Examples

```python
def factBad(n):
    return n * factBad(n - 1)

def isEven(n):
    if n == 0:
        return True
    else:
        return isEven(n - 2)
```

What's wrong and how would you fix these?

Recursive Thinking: Counting in a List

Example: Suppose you want to count the number of items in a list. What's the base case? What's the simplest list you can think of?

If we're not in the base case, then what do we know?

Example: Suppose you want to count the number of items in a list.

What's the base case? What's the simplest list you can think of?

An empty list! How many items are in an empty list?

BTW: what's wrong with saying “a list with one element”?
Recursive Thinking: Counting in a List

If we’re not in the base case, then what do we know?

We know that our input list has at least one element in it! But we still don’t know how many.

But we could figure that out if we only had the solution to a slightly simpler problem: Suppose we knew how many items were in a list that was one shorter.

Then we’d be done. Why?

BTW, what is a list that is just our original list L with one element missing? That’s just L[1:].

Problem: how many items are in a list L?

Base case: If L is empty, length is 0.

Recursive case: Assume I know the length of L[1:], and use that to compute the length of L. How?

```python
def countItemsInList(L):
    """ Recursively count the number of items in list. ""
    if not L:  # empty list counts as False
        return 0
    else:
        return 1 + countItemsInList(L[1:])
```

Does this work for any list?

What’s Actually Happening?

I instrumented the code to print out an “execution trace.”

```python
def countItems2(lst, k):
    if not lst:
        print("1 +"*k, "+ 0 =")
        return 0
    else:
        print("1 +"*k, "1 + countItems(" , lst[1:], ",") =")
        return 1 + countItems2(lst[1:], k+1)
```

```bash
>>> lst = [4, 5, 2, 5, 9, 2, 8]
>>> countItems2(lst, 0)
1 + countItems([5, 2, 5, 9, 2, 8]) =
1 + 1 + countItems([2, 5, 9, 2, 8]) =
1 + 1 + 1 + countItems([5, 9, 2, 8]) =
1 + 1 + 1 + 1 + countItems([9, 2, 8]) =
1 + 1 + 1 + 1 + 1 + countItems([2, 8]) =
1 + 1 + 1 + 1 + 1 + 1 + countItems([8]) =
1 + 1 + 1 + 1 + 1 + 1 + 1 + countItems([]) = 7
```

It Seems Like Magic, but It’s Not
Example: how can you sum a list of numbers?

Base case: If L is empty, the sum is 0.

Recursive case: If I knew the sum of L[1:], then I could compute the sum of L. How?

```python
def sumItemsInList(L):
    """Recursively sum the items in a list.""
    if not L:  # empty list counts as False
        return 0
    else:
        return L[0] + sumItemsInList(L[1:])
```

```bash
>>> lst = [5, 6, 14, -3, 0, -70]
>>> sumItemsInList(lst)
-48
```

Example: how can you count the occurrences of key in list L?

Base case: If L is empty, the count is 0.

Recursive case: If L starts with key, then it’s 1 plus the count in the rest of the list; otherwise, it’s just the count in the rest of the list.

```python
def countOccurrencesInList(key, L):
    """Recursively count the occurrences of key in L.""
    if not L:  # empty list counts as False
        return 0
    elif key == L[0]:
        return 1 + countOccurrencesInList(key, L[1:])
    else:
        return countOccurrencesInList(key, L[1:])
```

```bash
>>> lst = [5, 6, 14, -3, 0, -70, 6]
>>> countOccurrencesInList(3, lst)
0
>>> countOccurrencesInList(6, lst)
2
```

Example: how can you reverse a list L?

Base case: If L is empty, the reverse is [].

Recursive case: If L is not empty, remove the first element and append it to end of the reverse of the rest.

```python
def reverseList(L):
    """Recursively reverse a list.""
    if not L:  # empty list counts as False
        return []
    else:
        return reverseList(L[1:]) + [L[0]]
```

```bash
>>> lst = [1, 5, "red", 2.3, 17]
>>> print(reverseList(lst))
[17, 2.3, 'red', 5, 1]
```
Recursive Thinking: Some Examples

How would Jason do this recursively?

```python
COUNT = 500
STRING = "I will not throw paper airplanes in class."

def blackboard(n):
    if n <= 0: # base case
        return
    else:
        print(STRING) # recursive case
        blackboard(n - 1)
blackboard(COUNT)
```

An algorithm that dates from Euclid finds the greatest common divisor of two positive integers:

\[
gcd(a, b) = a, \text{ if } a = b
\]

\[
gcd(a, b) = gcd(a, b - a), \text{ if } a < b
\]

\[
gcd(a, b) = gcd(a - b, b), \text{ if } b < a
\]

```python
def gcd(a, b):
    """ Euclid’s algorithm for GCD. """
    print("Computing gcd(", a, ",", b, ")")
    if a < b:
        return gcd(a, b-a)
    elif b < a:
        return gcd(a-b, b)
    else:
        print("Found gcd:", a)
        return a

print("gcd(68, 119) =", gcd(68, 119))
```

What is assumed about \(a\) and \(b\)? What is the base case? The recursive cases?

Some Exercises for You to Try

1. Write a recursive function to append two lists.
2. Write a recursive version of linear search in a list.
3. Write a recursive version of binary search in a list.
4. Write a recursive function to sum the digits in a decimal number.
5. Write a recursive function to check whether a string is a palindrome.

It’s probably occurred to you that many of these problems were already solved with built in Python methods or could be solved with loops.

That’s true, but our goal is to teach you to think recursively!
For some recursive solutions you’ll need a helper function.

For example, remember binary search from slideset 10.

```python
def BinarySearch(lst, key):
    """ Search for key in sorted list lst. """
    low = 0
    high = len(lst) - 1
    while (high >= low):
        mid = (low + high) // 2
        if key < lst[mid]:
            high = mid - 1
        elif key == lst[mid]:
            return mid
        else:
            low = mid + 1
    # What's true here? Why this value?
    return (-low - 1)
```

It’s clear how to think of this recursively.

Here’s one version:

```python
def BinarySearchRecursive(lst, key):
    """ Search for key in sorted list lst. """
    if lst == []:
        return False
    mid = (len(lst) - 1) // 2
    if key == lst[mid]:
        return True
    elif key < lst[mid]:
        return BinarySearchRecursive(lst[:mid], key)
    else:
        return BinarySearchRecursive(lst[mid+1:], key)
```

This is inferior to the iterative version for at least two reasons:

1. it creates a new copy of half of the list in each recursive call (by slicing);
2. it returns a Boolean rather than an index. Can you see why returning an index would be difficult?

A better approach would be to preserve the original list and add some parameters to the recursive function. This is often done with a helper function.

```python
def BinarySearchHelper(lst, key, low, high):
    if low > high:
        return -low - 1
    mid = (low + high) // 2
    if key < lst[mid]:
        high = mid - 1
    elif key == lst[mid]:
        return mid
    else:
        return BinarySearchHelper(lst, key, mid + 1, high)
```
Recursion vs. Iteration

For some problems a recursive solution is simpler to code and to understand than an iterative solution.

You can always convert a recursive solution to an iterative solution, and vice versa. But it may not be easy!

```python
def gcdIter(a, b):
    """ Iterative version of GCD. ""
    while a != b:
        if a < b:
            b = b - a
        elif b < a:
            a = a - b
    return a
```

The Overhead of Recursion

Though recursion is a wonderful conceptual tool, it’s not free. There is a cost to any recursive implementation.

Consider the computation of the nth Fibonacci number.

\[
F(0) = 0 \\
F(1) = 1 \\
F(n) = F(n-1) + F(n-2), \text{ for } n \geq 2
\]

Some of the Fibonacci Numbers:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
</tr>
</tbody>
</table>

BTW: often the sequence is started at 1 rather than at 0.
Fibonacci in Python

\[F(0) = 0 \]
\[F(1) = 1 \]
\[F(n) = F(n-1) + F(n-2), \text{ for } n \geq 2 \]

```python
def fib(n):
    """ Return nth Fibonacci number. """
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

This is a very nice transcription of the recurrence relation and works fine. Sort of. What's wrong and how would you fix it?

How Bad Is It?
If \(n \) is 0 or 1, you only make one call to \(\text{fib} \). But suppose \(n = 5 \), you do a lot of work, much of it repeated multiple times.

Counting Calls
How many calls to \(\text{fib} \) are made for a given \(n \)?

The recurrence relation for this is:

\[C(0) = 1 \]
\[C(1) = 1 \]
\[C(n) = 1 + C(n-1) + C(n-2), \text{ for } n \geq 2 \]

We can easily write a Python function to compute this:

```python
def fibCountCalls(n):
    if n == 0:
        return 1
    elif n == 1:
        return 1
    else:
        return 1 + fibCountCalls(n-1) + fibCountCalls(n-2)
```

How Many Calls

```plaintext
>>> fibTallyCalls(20)
i: 0 fib(i): 0 calls: 1
i: 1 fib(i): 1 calls: 1
i: 2 fib(i): 1 calls: 3
i: 3 fib(i): 2 calls: 5
i: 4 fib(i): 2 calls: 9
i: 5 fib(i): 5 calls: 15
i: 6 fib(i): 8 calls: 25
i: 7 fib(i): 13 calls: 41
i: 8 fib(i): 21 calls: 67
i: 9 fib(i): 34 calls: 109
i: 10 fib(i): 55 calls: 177
i: 11 fib(i): 89 calls: 287
i: 12 fib(i): 144 calls: 465
i: 13 fib(i): 233 calls: 753
i: 14 fib(i): 377 calls: 1219
i: 15 fib(i): 610 calls: 1973
i: 16 fib(i): 987 calls: 3193
i: 17 fib(i): 1597 calls: 5167
i: 18 fib(i): 2584 calls: 8361
i: 19 fib(i): 4181 calls: 13529
```
Instrumenting the Code

This computes \(\text{fib}(n) \) and keeps track of how long the computation takes and how many recursive calls are made.

```python
import time

def fibCaller():
    while True:
        n = int(input("Input an integer (negative to exit): "))
        if n < 0:
            break
        # Time the call
        tStart = time.time(); ans = fib(n); tEnd = time.time()
        interval = tEnd - tStart
        intervalStr = format(interval, "9.4f")
        # How many recursive calls?
        calls = countCalls(n)
        print("fib(\(n\)) = ", ans, "with \(n\) recursive calls")
        print("time = ", intervalStr, " seconds to execute")
```

The Computation

You can see that the values go up quickly.

```python
>>> fibCaller()
Input an integer (negative to exit): 10
fib(10) = 55 with 177 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 20
fib(20) = 6765 with 21891 recursive calls
time = 0.0053 seconds to execute
Input an integer (negative to exit): 30
fib(30) = 832040 with 2692537 recursive calls
time = 0.2702 seconds to execute
Input an integer (negative to exit): 40
fib(40) = 102334155 with 331160281 recursive calls
time = 31.0691 seconds to execute

< I tried it for 50 but got tired of waiting >
Input an integer (negative to exit): -10
```

Can We Do Better?

Take another look at the initial values of the Fibonacci sequence:

\[
\begin{array}{ccccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 F(n) & 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 \\
\end{array}
\]

Surely we can do better than our horrible exponential solution. Perhaps instead of computing backwards from \(n\) down to 0, we can compute forwards from 0 to \(n\).

A Better Implementation

```python
def fibHelper(k, limit, ans, ansSub1):
    if k >= limit:
        return ans
    else:
        return fibHelper(k+1, limit, ans + ansSub1, ans)

def fibBetter(n):
    return fibHelper(1, n, 1, 0)
```

Why was the \text{fibHelper} function needed?
After changing `fibCaller` to call `fibBetter`:

```python
>>> fibBetterCaller()
Input an integer (negative to exit): 10
fib(10) = 55 with 10 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 20
fib(20) = 6765 with 20 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 30
fib(30) = 832040 with 30 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 40
fib(40) = 102334155 with 40 recursive calls
time = 0.0000 seconds to execute
Input an integer (negative to exit): 500
fib(500) = 1394232245616978801397243828704072839500702565857697307
2641089629483257516226832906915575658876222521294125 with 500
recursive calls
time = 0.0004 seconds to execute
Input an integer (negative to exit): -10
```
Some problems (like Fibonacci) have a very natural recursive solution, but can easily be recoded in a non-recursive fashion.

Some other problems are very difficult to solve in any way but recursively.

Towers of Hanoi

The *Towers of Hanoi* consists of three pegs and a number of disks of different sizes that can slide onto any peg. The puzzle starts with the disks neatly stacked in order of size on one peg, the smallest at the top.

The objective of the puzzle is to move the entire stack to another peg, obeying the following rules:

- Only one disk may be moved at a time.
- No disk may be placed on top of a smaller disk

This is a problem which is easy to solve recursively, but very hard to solve iteratively.
There is a legend about a Vietnamese temple which contains a large room with three time-worn posts in it holding 64 golden disks. The priests of Hanoi, acting out the command of an ancient prophecy, have been moving these disks, in accordance with the rules of the puzzle, for centuries.

According to the legend, when the last move of the puzzle is completed, the world will end.

Are we in danger?

The smallest solution for 64 disks requires:

\[2^{64} - 1\] moves.

If the priests were able to move disks at a rate of one per second, using the smallest number of moves, it would take them \(2^{64} - 1\) seconds or roughly 600 billion years.

Problem: Move \(n\) disks from peg A to peg C, using peg B as the intermediate peg.

- What’s the base case?
- What are the recursive cases?

What problem are we solving? Solving the puzzle means moving the disks from the start state to the ending state, while following the rules.

Our program is solving a slightly different problem: print out a legal list of moves that will take us from start state to end state.

So, what’s a move?

```python
def makeMove(peg1, peg2):
    print("Move disk from " + peg1 + " to " + peg2)
```
Towers of Hanoi

Our main function has four parameters:

- \(n \) : how many disks to move (int);
- \(A \) : the start peg (str);
- \(B \) : the intermediate peg (str);
- \(C \) : the destination peg (str).

```python
def towersOfHanoi(n, A, B, C):
    """ Prints a list of legal moves to solve
    the Tower of Hanoi problem for \( n \) disks. """
    if n == 1:
        makeMove(A, C)
    else:
        towersOfHanoi(n-1, A, C, B)
        makeMove(A, C)
        towersOfHanoi(n-1, B, A, C)
```

Calling It

```python
>>> towersOfHanoi(4, 'A', 'B', 'C')
Move disk from A to B # \nMove disk from A to C # \nMove disk from B to C # Hanoi(3, A, C, B)
Move disk from C to A # / 
Move disk from C to B # / 
Move disk from A to B # / 
Move disk from A to C # move (A, C)
Move disk from B to C # / 
Move disk from B to A # / 
Move disk from C to A # 
Move disk from B to C # Hanoi(3, B, A, C)
Move disk from A to B # / 
Move disk from A to C # / 
Move disk from B to C # /
>>>"```

How Many Moves

```python
def towersOfHanoi(n, frm, using, to):
 """ Prints a list of legal moves to solve
 the Tower of Hanoi problem for \(n \) disks. """
 if n == 1:
 makeMove(frm, to)
 else:
 towersOfHanoi(n-1, frm, to, using)
 makeMove(frm, to)
 towersOfHanoi(n-1, using, frm, to)
```

It’s pretty clear that the number of moves (and recursive calls) is defined by:

\[
\begin{align*}
M(1) &= 1 \\
M(n) &= 1 + 2 \times M(n-1), \text{ for } n > 1
\end{align*}
\]

But this has solution:

\[
M(n) = 2^n - 1
\]

How Many Calls?

The number of moves is also the number of recursive calls.

```python
>>> for i in range(0, 64, 5):
... print(format(i, "3d"), " \n... format(towersMoveCount(i), "20d"))
...
0 0
5 31
10 1023
15 32767
20 1048575
25 33554431
30 1073741823
35 34359738367
40 1099511627775
45 35184372088831
50 1125899906842623
55 36028797018963967
60 1152921504606846975
>>> If there are so many recursive calls, why doesn’t the program crash?"```