
CS303E: Elements of Computers
and Programming

Simple Python

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: January 17, 2025 at 14:12

CS303E Slideset 2: 1 Simple Python

Assignment Statements

Assignments are the most common statements in Python
programs.

An assignment in Python has form:

This means that variable name is assigned value. I.e., after the
assignment, name “contains” value.

>>> x = 17.2
>>> y = -39
>>> z = x * y - 2
>>> print(z)
-672.8

CS303E Slideset 2: 2 Simple Python

Variables

A variable is a named memory location used to store values. We’ll
explain shortly how to name variables.

Unlike many programming languages, Python variables do not have
associated types.

// C code
int x = 17; // variable x has type int
x = 5.3; // illegal

Python code
x = 17 # x gets int value 17
x = 5.3 # x gets float value 5.3

A variable in Python actually holds a pointer to a class object,
rather than the object itself.

CS303E Slideset 2: 3 Simple Python

Types in Python

Is it correct to say that there are no types in Python?

No. It is best to say that Python is “dynamically typed.” Variables
in Python are untyped, but values have associated types (actually
classes).

In some cases, you can convert values of one type to “equivalent”
values in another.

Most programming languages assign types to both variables and
values. This has its advantages and disadvantages.

Can you guess what the advantages are?

CS303E Slideset 2: 4 Simple Python

Variables and Assignments

You don’t have to declare variables, as in many other programming
languages. You can create a new variable in Python by assigning it
a value.
>>> x = 3 # creates x, assigns int
>>> print(x)
3
>>> x = "abc" # re - assigns x a string
>>> x # don ’t really need print
abc # in interactive mode
>>> x = 3.14 # re - assigns x a float
>>> x
3.14
>>> y = 6 # creates y, assigns int
>>> x * y # uses x and y
18.84

CS303E Slideset 2: 5 Simple Python

Meaning of a Variable

x = 17 # Defines and initializes x
y = x + 3 # Defines y and initializes y
z = w # Runtime error if w undefined

This code defines three variables x, y and z. Notice that on the left
hand side of an assignment the variable is created (if it doesn’t
already exist), and given a value. On the lhs, it stands for a
memory location.

On the right hand side of an assignment, it stands for the current
value of the variable. If there is none, it’s an error.

CS303E Slideset 2: 6 Simple Python

Naming Variables

Below are (some of) the rules for naming variables:
Variable names must begin with a letter or underscore (“ ”)
character.
After that, use any number of letters, underscores, or digits.
Case matters: “score” is a different variable than “Score.”
You can’t use reserved words; these have a special meaning to
Python and cannot be variable names.

CS303E Slideset 2: 7 Simple Python

Naming Variables

Python Reserved Words:
and, as, assert, break, class, continue,
def, del, elif, else, except, False, fi-
nally, for, from, global, if, import, in,
is, lambda, nonlocal, None, not, or,
pass, raise, return, True, try, while,
with, yield

IDLE and many IDEs display reserved words in color to help you
recognize them.

CS303E Slideset 2: 8 Simple Python

Not Reserved, but Don’t Use

Function names like print are not reserved words. But using them
as variable names is a very bad idea because it redefines them.

>>> x = 17
>>> print(x)
17
>>> print = 23
>>> print(x)
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’int ’ object is not callable

Sometimes you’ll use a name, like str, not realizing it’s a function
name. Such errors are sometimes hard to find.

CS303E Slideset 2: 9 Simple Python

Naming Variables

>>> ___ = 10 # wierd but legal
>>> _123 = 11 # also wierd
>>> ab_cd = 12 # perfectly OK
>>> ab|c = 13 # illegal character

File "<stdin >", line 1
SyntaxError : can ’t assign to operator
>>> assert = 14 # assert is reserved

File "<stdin >", line 1
assert = 14

ˆ
SyntaxError : invalid syntax
>>> maxValue = 100 # good one
>>> print = 8 # legal but ill - advised
>>> print ("abc") # we ’ve redefined print
Traceback (most recent call last):

File "<stdin >", line 1, in <module >
TypeError : ’int ’ object is not callable

CS303E Slideset 2: 10 Simple Python

Naming Variables

In addition to the rules, there are also some conventions that good
programmers follow:

Variable names should begin with a lowercase letter.
Choose meaningful names that describe how the variable is
used. This helps with program readibility.

Use maxValue rather than m.
Use numberOfColumns rather than c.

One exception is that loop variables are often i, j, etc.

for x in lst: print(x)

rather than:
for listItem in lst: print(listItem)

CS303E Slideset 2: 11 Simple Python

Camel Casing

If you use a multi-word names (good practice), a common style is
to use “camel casing”: avgHeight, countOfItems, etc.

These are just conventions; many folks use different conventions,
and you’ll see lots of counterexamples in real code.

CS303E Slideset 2: 12 Simple Python

Common Python Data Types
Variables don’t have types; values do!

CS303E Slideset 2: 13 Simple Python

What is a Data Type?

A data type is a collection of values.
Type Description Syntax example
int An immutable fixed precision number of

unlimited magnitude
42

float An immutable floating point number
(system-defined precision)

3.1415927

str An immutable sequence of characters. ’Wikipedia’
”Wikipedia”
”””Spanning
multiple lines”””

bool An immutable truth value True, False
tuple Immutable, can contain mixed types (4.0, ’string’, True)
bytes An immutable sequence of bytes b’Some ASCII’

b”Some ASCII”
list Mutable, can contain mixed types [4.0, ’string’, True, 4.0]
set Mutable, unordered, no duplicates {4.0, ’string’, True}
dict A mutable group of key and value pairs {’key1’: 1.0, 3: False}

CS303E Slideset 2: 14 Simple Python

Three Common Data Types

Three data types you’ll encounter in many Python programs are:
int: signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points)
Large range, but fixed precision
Computations are approximate, not exact
Examples: 3.2, -9.0, 3.5e7

str: represents text (a string)
We use it for input and output
We’ll see more uses later
Examples: ”Hello, World!”, ’abc’

These are all immutable.

CS303E Slideset 2: 15 Simple Python

Mutable vs. Immutable

An immutable object is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

A mutable object is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 2: 16 Simple Python

What Immutable Means

An immutable object is one that cannot be changed by the
programmer after you create it; e.g., numbers, strings, etc.

It also means that there is only one copy of the object in memory.
Whenever the system encounters a new reference to 17, say, it
creates a pointer to the already stored value 17.
>>> x = 17
>>> y = 12 + 5
>>> z = x
>>> x is y # are x and y the "same" value ?
True
>>> z is x # are x and z the "same" value ?
True

Variables x, y, z all contain pointers to the same value in memory.

CS303E Slideset 2: 17 Simple Python

What Immutable Means

If you do something to the object that yields a new value (e.g.,
uppercase a string), you’re actually creating a new object, not
changing the existing one.
>>> s1 = "abc" # set s1 to string "abc"
>>> s2 = "ab" + "c" # set s2 to string "abc"
>>> s3 = s1. upper () # set s3 to the uppercase of s1
>>> s3
’ABC ’
>>> s1 is s2 # s1 and s2 are the same value
True
>>> s1 is s3 # a3 is a different value
False
>>>

CS303E Slideset 2: 18 Simple Python

Let’s Take a Break

CS303E Slideset 2: 19 Simple Python

How is Data Stored?

Fundamental fact: all data in the computer is stored as a series
of bits (0s and 1s) in the memory.

That’s true whether you’re storing
numbers, text, documents, pictures,
movies, sounds, programs, etc.
Everything!

A key problem in designing any
computing system or application is
deciding how to represent the data
you care about as a sequence of bits.

CS303E Slideset 2: 20 Simple Python

Storage Example: Digital Images

For example, images can be stored digitally in any of the following
formats (among others):

JPEG: Joint Photographic Experts Group
PNG: Portable Network Graphics
GIF: Graphics Interchange Format
TIFF: Tagged Image File
PDF: Portable Document Format
EPS: Encapsulated Postscript

Most of the time, we won’t need to know how data is stored in the
memory. The computer will take care of that for you.

CS303E Slideset 2: 21 Simple Python

How is Data Stored?

The memory can be thought of as a big array of bytes (1 byte = a
sequence of 8 bits). Each memory address has an address
(0..maximum address) and contents (8 bits).

... ...

... ...
10000 01001010 Encoding for character ’J’
10001 01100001 Encoding for character ’a’
10002 01110110 Encoding for character ’v’
10003 01100001 Encoding for character ’a’

... ...

... ...

A byte is the smallest unit of storage a programmer can address.
We say that the memory is byte-addressable.

CS303E Slideset 2: 22 Simple Python

Representation Example: ASCII

The standard way to represent characters in memory is ASCII
(American Standard Code for Information Interchange). The
following is part of the ASCII representation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 ! ” # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ∧
96 ‘ a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { — }

The standard ASCII table defines 128 character codes (from 0 to
127), of which, the first 32 are control codes (non-printable), and
the remaining 96 character codes are printing characters. You
don’t need to know these!

CS303E Slideset 2: 23 Simple Python

Some Facts about ASCII

Sorting strings really means sorting according to ASCII code
(lexicographically). Here are some things to know:

upper case letters have consecutive ASCII codes (65 to 90);
lower case letters have consecutive ASCII codes (97 to 122);
since upper case letters have smaller codes than lower case,
come earlier in a sorted list;
blank has a low ASCII code so “abc ” comes before “abcd” in
a sorted list of strings;
other characters fall at various places in the ASCII table, so
sorting strings with non-letter characters is not particularly
intuitive.

CS303E Slideset 2: 24 Simple Python

How is Data Stored

Characters or small numbers can be stored in one byte. If data
can’t be stored in a single byte (e.g., a large number), it must be
split across a number of adjacent bytes in memory.

The way data is encoded in bytes varies depending on:
the data type
the specifics of the computer

Most of the time, we won’t need to know how data is stored in the
memory. The computer will take care of that for you.

CS303E Slideset 2: 25 Simple Python

Formats of Data Types

Notice that the character string “25” is not the same as the
integer 25.

The integer 25 is represented in binary in the computer by:
00011001. Can you see why?

And the string “25” (two characters) is represented by: 00110010
00110101. Why is that?

Decimal fractions (float numbers) are represented in an even
more complicated way, since you have to account for an exponent.
(Think “scientific notation.”) So the number 25.0 (or 2.5 ∗ 101) is
represented in yet a third way.

CS303E Slideset 2: 26 Simple Python

Data Type Conversion

Python provides functions to explicitly convert numbers from one
type to another:

int (<number, variable, string >)
float (< number, variable, string >)
str (<number, variable >)

Note: int truncates, meaning it throws away the decimal point
and anything that comes after it. If you need to round to the
nearest whole number, use:

round (<number or variable >)

CS303E Slideset 2: 27 Simple Python

Conversion Examples

float (17)
17.0
>>> str (17)
’17 ’
>>> int (17.75) # truncates
17
>>> str (17.75)
’17.75 ’
>>> int("17")
17
>>> float ("17")
17.0
>>> round (17.1)
17
>>> round (17.6)
18
round (17.5) # round to even
18
>>> round (18.5) # round to even
18

Why does round to even make sense?

CS303E Slideset 2: 28 Simple Python

Arithmetic Operations
Here are some useful operations you can perform on numeric data
types.

Name Meaning Example Result
+ Addition 34 + 1 35
- Subtraction 34.0 - 0.1 33.9
* Multiplication 300 * 30 9000
/ Float division 1 / 2 0.5
// Integer division 1 // 2 0
** Exponentiation 4 ** 0.5 2.0
% Remainder 20 % 3 2

(x % y) is often referred to as “x mod y”.

Note that “integer division” doesn’t always return an integer. E.g.,
9 // 2.0 returns 4.0. Expressions that mix an int and float
typically return a float.

CS303E Slideset 2: 29 Simple Python

Simple Program
In file sumDigits.py:
""" A simple program that takes a 3 digit integer number in

variable num , and adds its digits together . """

num = 479
d0 = num % 10 # extract the ones digit
r0 = num // 10 # what ’s left?

d1 = r0 % 10 # extract the tens digit
r1 = r0 // 10 # what ’s left?

d2 = r1 % 10 # extract the hundreds digit
r2 = r1 // 10 # quotient should be 0 here

sum = d0 + d1 + d2
print ("Sum of the digits of", num , "is", sum)
print ("The final quotient is", r2)

Let’s run it:
> python sumDigits .py
Sum of the digits of 479 is 20
The final quotient is 0
>

CS303E Slideset 2: 30 Simple Python

Augmented Assignment Statements
Python (like C) provides a shorthand syntax for some common
assignments:

i += j means the same as i = i + j
i -= j means the same as i = i - j
i *= j means the same as i = i * j
i /= j means the same as i = i / j
i //= j means the same as i = i // j
i %= j means the same as i = i % j
i **= j means the same as i = i ** j

>>> x = 2.4
>>> x *= 3.7 # same as x = x * 3.7
>>> print(x)
8.88

CS303E Slideset 2: 31 Simple Python

Mixed-Type Expressions

Most arithmetic operations behave as you would expect for
numeric data types.

Combining two floats results in a float.
Combining two ints results in an int (except for /). Use // for
integer division.
Dividing two ints gives a float. E.g., 4 / 2 yields 2.0.
Combining a float with an int usually yields a float.

Python will figure out what the result should be and return a value
of the appropriate data type.

CS303E Slideset 2: 32 Simple Python

Mixed Type Expressions

>>> 5 * 3 - 4 * 6 # (5 * 3) - (4 * 6)
-9
>>> 4.2 * 3 - 1.2
11.400000000000002 # approximate result
>>> 5 // 2 + 4 # integer division
6
>>> 5 / 2 + 4 # float division
6.5

CS303E Slideset 2: 33 Simple Python

Special Assignment Statements

Simultaneous assignments:

m, n = 2, 3

means the same as:
m = 2
n = 3

With the caveat that these
happen at the same time.

What does the following do?
i, j = j, i

Multiple assignments:

i = j = k = 1

means the same as:
k = 1
j = k
i = j

Note that these happen right to
left.

CS303E Slideset 2: 34 Simple Python

Advice on Programming

Think before you code!
Think before you code!
Think before you code!

Don’t jump right into writing code.
Think about the overall process of solving your problem; write
it down.
Refine each part into subtasks. Subtasks may require further
refinement.
Code and test each subtask before you proceed.
Add print statements to view intermediate results.

CS303E Slideset 2: 35 Simple Python

Advice on Programming
The software development process outlined in Section 2.13 is called
the waterfall model. You’ll do well to follow it, except on the
simplest programs.

CS303E Slideset 2: 36 Simple Python

Next stop: More Simple Python.

CS303E Slideset 2: 37 Simple Python

