CS303E: Elements of Computers

and Programming

Selections

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

© William D. Young, All rights reserved.

Last updated: August 27, 2024 at 14:25

CS303E Slideset 4: 1 Selections

Using Booleans

Booleans

>>> import math
>>> b = (30.0 < math.sqrt(1024))
>>> print(b)

True

>>> x =1 # statement

>>> x < 0 # boolean expression
False

>>> x >= -2 # boolean expression
True

>>> b = (x == 0) # statement containing

boolean expression
>>> print (b)
False

Booleans

So far we've only been considering straight line code, meaning to
do one statement after another.

But often in programming, you want to ask a question, and then
do different things based on the answer.

Boolean values are a useful

way to refer to the answer to a George Boole i .

yes/no question.

The Python Boolean
constants are the values:
True, False. A Boolean
expression evaluates to a
Boolean value.

CS303E Slideset 4: 2 Selections

Internally, Python uses 0 to represent False and 1 to represent
True. You can convert from Boolean to int using the int function
and from int to Boolean using the bool function.

Booleans are implemented in the bool class.

CS303E Slideset 4: 3 Selections

>>> bl = (-3 < 3)
>>> print (bl)

True

>>> int (b1l)

1

>>> bool(1)

True

>>> bool(0)

False

>>> bool(4) # what happened here?
True

CS303E Slideset 4: 4 Selections

Boolean Context Comparison Operators

The following comparison operators are useful for comparing

In a Boolean context—one that expects a Boolean value—False, numeric values:

0, "" (the empty string), and None all stand for False and any

other value stands for True. Operator Meaning Example
< Less than x <0
>>> b (" "
SN ("xyz") <= Less than or equal x <= 0
rue
>>> bool (0.0) > Greater than x >0
False
>= >=
o> B0l ("") Greater than or equal x 0
False == Equal to x =0
>>> if 4: print("xyz") # 4 == True, in this context 1= Not equa| to x =0
Xyz
>>> if "ab": int (" n # "ab" == T
vya if "ab": print("xyz") @ rae Each of these returns a Boolean value, True or False.
>>> if "": print("xyz") # "" == False .
>>> ? Y >>> import math
>>> x = 10
This is very useful in many programming situations. >>> (x == math.sqrt(100))
True

CS303E Slideset 4: 5 Selections CS303E Slideset 4: 6 Selections

One Way If Statements

It's often useful to be able to perform an action only if some

Be very careful using “==" when comparing floats, because float condition is true.
arithmetic is approximate.

General form: /i\

//" \\\ true
if boolean-expression: K IMEE g
>>> (1.1 % 3 == 3.3) ~
statement (s) o~

False # What happened?
>>> 1.1 % 3 Note the colon fafter the stateneat (a)
3.3000000000000003 boolean-expression. AII of the

statements must be indented

the same amount. A b s

The problem: converting decimal 1.1 to binary yields a repeating
binary expansion: 1.000110011... = 1.00011. That means it can't
be represented exactly in a fixed size binary representation.

CS303E Slideset 4: 7 Selections CS303E Slideset 4: 8 Selections

If Statement Example Two-way If-else Statements

In file IfExample.py:

def main(): .
wiw A pretty uninteresting function to illustrate A two-way If-else statement executes one of two actions,
if statements. """ depending on the value of a Boolean expression.
x = int(input("Input an integer, or O to stop: "))
if (x !'=0):
print ("The number you entered was", \ . _— -
x, ". Thank you!") General form: @
if boolean-expression:
main ()
true-case-statement (s) statement (3) statement (3)
Would “if x:" have worked instead of “if (x !'= 0):"? else:
false-case-statement (s) i
> python IfExample.py ERRE G eess
iipm a: integer ’tor 2 vo SEOP:TE . . Note the colons after the boolean-expression and after the else.
e number you entered was . ank you! . .
> python IfExample.py All of the statements in both if and else branches should be
Input an integer, or 0 to stop: O indented the same amount.
>

How could you get rid of the space before the period?

CS303E Slideset 4: 9 Selections CS303E Slideset 4: 10 Selections

If-else Statement: Example

In file ComputeCircleArea.py:

import math
Let's take a break here and resume in the next video.
def main():

""" Compute the area of a circle, given radius. """

radius = float(input ("Input radius: "))

if (radius >= 0):

area = math.pi * radius *x*x 2
print("A circle with radius", radius, \
"has area", format(area, "<5.2f"))
else:

print("Negative radius entered.")

main ()

> python ComputeCircleArea.py

Input radius: 4.3

A circle with radius 4.3 has area 58.09
> python ComputeCircleArea.py

Input radius: -3.4

Negative radius entered.

CS303E Slideset 4: 11 Selections CS303E Slideset 4: 12 Selections

Nested If Statements: Leap Year Example

The statements under an if can themselves be if statements.
For example: Suppose you want to determine whether a particular
year is a leap year. The algorithm is as follows:

Q If year is a multiple of 4, then it's a leap year;

Q unless it's a multiple of 100, and then it's not;

© unless it's also a multiple of 400, and then it is.

Isyear Yes Isyear v Isyear
divisible divisible divisible

LEAP

by4? by 1007 by 4007 YEAR

MOTLEAP YEAR LEAP NOT LEAP YEAR
YEAR

CS303E Slideset 4: 13 Selections

Nested If Statements: Is Leap Year?

In file LeapYear.py:

def main():
""" Is entered year a leap year? """

year = int(input ("Enter a year: "))
if (year % 4 == 0):
Year is a multiple of 4
if (year % 100 == 0):
Year is a multiple of 4 and of 100
if (year % 400 ==):
IsLeapYear = True # What do you know here?
else:
IsLeapYear = False # What do you know here?
else:
IsLeapYear = True

else:

IsLeapYear = False
if IsLeapYear:

print("Year", year, "is a leap year.")
else:

print("Year", year, "is not a leap year.")

What do you know here?

main ()

CS303E Slideset 4: 14 Selections

Multiway if-elif-else Statements

> python LeapYear.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear.py

Enter a year: 2005

Year 2005 is not a leap year.

CS303E Slideset 4: 15 Selections

If you have multiple options, you can use if-elif-else statements.
General Form:
statement (s)
elif boolean-expression2:
statement (s)

Else do this...

You can have any number of elif branches with their conditions.
The else branch is optional.

if boolean-expressionl:

Do
something

elif boolean-expression3:

Do
something

else: # optional
statement (s)

CS303E Slideset 4: 16 Selections

[f-elif-else Example If-elif-else Example

In file LeapYear3.py:

def main():
Is this a leap year > python LeapYear3.py
year = int(input("Enter a year: ")) .
if (year % 400 == 0): Enter a year: 2000
IsLeapYear = True Year 2000 is a leap year.
elif (year % 100 == 0): # what’s true here?
> .
IsLeapYear = False python LeapYear3 Py
elif (year % 4 == 0): # what’s true here? Enter a year: 2004
IsLeapYear = True Year 2004 is a leap year.
else: # what’s true here?
IsLeapYear = False > python LeapYear3.py
Print result. Enter a year: 1900
if IsLeapYear: .
print ("Year", year, "is a leap year.") Year 1900 is not a leap year.
else: > python LeapYear3.py
print("Year", year, "is not a leap year.") Enter a year: 2005
main () Year 2005 is not a leap year.

We could always replace elif with nested if-else statements, but
this is much more readable. Be careful with your indentation!

CS303E Slideset 4: 17 Selections CS303E Slideset 4: 18 Selections

Logical Operators Truth Tables

And: (A and B) is True
whenever both A is True and B is

. True.
Pytlron has Iog;caElgl olperators (ar.1d, or, not) that can be used to R s | amds Not: not A is True whenever A
make compound Boolean expressions. an .
logical . False False False is False.
not : logical negation False True False A not A
d - logical . ti True False False False Troe
and : logical conjunction True True True

. . . True False
or : logical disjunction

Operators and and or are always evaluated using short circuit Or: (A or B) is True whenever

. Remember that “is True” reall
evaluation. - . . y
either A is True or B is True. means “is not False, the empty
(x % 100 == 0) and not (x % 400 == 0) A B |AorB string, 0, or None."
False False False
False True True
True False True
True True True

CS303E Slideset 4: 19 Selections CS303E Slideset 4: 20 Selections

Short Circuit Evaluation Boolean Operators

Notice that (A and B) is False, if A is False; it doesn't matter
what B is. So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn't matter what B is. So
there’s no need to evaluate B, if A is True!

>>> x = 13

>>> y =0

>>> legal = (y == 0 or x/y > 0)
>>> print(legal)

True

Python doesn’t evaluate B if evaluating A is sufficient to determine
the value of the expression. That's important sometimes.

CS303E Slideset 4: 21 Selections

Leap Years Revisited

In a Boolean context, Python doesn't always return True or False,
just something equivalent. What's going on in the following?

>>> "" and 14
?0 # equivalent to False
>>> bool("" and 14)

False # coerced to False

>>> 0 and "abc"

0 # equivalent to False
>>> bool (0 and "abc")

False # coerced to False

>>> not (0.0) # same as not(False)
True

>>> not (1000) # same as not(True)
False

>>> 14 and ""

’0 # equivalent to False

>>> 0 or "abc" # same as False or True

’abc’ # equivalent to True

>>> bool (0 or ’abc’) # equivalent to False or True
True

CS303E Slideset 4: 22 Selections

Leap Years Revisited

Here's an easier way to do our Leap Year computation:

In file LeapYear2.py:

def main():
""" Input a year and test whether it’s a leap year.
year = int(input ("Enter a year: "))

nun

What’s the logic of this assignment?
IsLeapYear = (year % == 0) and \
(not (year ¥ 100 == 0) or (year % 400 == 0))

Print the answer
if IsLeapYear:

print("Year", year, "is a leap year.")
else:

print("Year", year, "is not a leap year.")

main ()

CS303E Slideset 4: 23 Selections

> python LeapYear2.py

Enter a year: 2000

Year 2000 is a leap year.

> python LeapYear2.py

Enter a year: 1900

Year 1900 is not a leap year.
> python LeapYear2.py

Enter a year: 2004

Year 2004 is a leap year.

> python LeapYear2.py

Enter a year: 2005

Year 2005 is not a leap year.

CS303E Slideset 4: 24 Selections

Break Conditional Expressions

A Python conditional expression returns one of two values based
Let's take a break here and resume in the next video. on a condition.

Consider the following code:

Set parity according to num
T'MF FOR A if (num % 2 == 0):
T parity = "even"
else:
parity = "odd"

This sets variable parity to one of two values, “even” or “odd".

An alternative is:

parity = "even" if (num % 2 == 0) else "odd"

CS303E Slideset 4: 25 Selections CS303E Slideset 4: 26 Selections

Conditional Expression Conditional Expression

Use of conditional expressions can simplify your code.

def main():
See if three numbers are input in ascending

nun

General form: order. "
Xxs, ys, zs = input ("Enter three numbers: ").split(",")
exprl if boolean-expr else expr2 x, y, z = float(xs), float(ys), float(zs)

print ("Ascending" if (x <= y and y <= z) \
else "Not ascending")

It means to return exprl if boolean-expr evaluates to True, and

. in ()
to return expr2 otherwise. mern

Note: split() is not introduced until slideset 8. Without it, you'd
find maximum of x and y have to have three separate input statements.
maximum = x if (x >= y) else y

> python TestSorted.py
Enter three numbers: 3, 5, 9
Ascending

Why would it be a bad idea to use the variable name max here?

> python TestSorted.py
Enter three numbers: 9, 3, 5
Not ascending

CS303E Slideset 4: 27 Selections CS303E Slideset 4: 28 Selections

Operator Precedence Precedence

The following are the precedence rules for Python, with items
higher in the chart having higher precedence.
Arithmetic expressions in Python attempt to match standard

syntax. Thus, Operator Meaning
+, - Unary plus/minus
3+4ax(5+2) *x Exponentiation
is interpreted as representing: not logical negation
x, /s /]y h Multiplication, division,
B+ (4x*x (5+2))). integer division, remainder
. +, - Binary plus/minus
That is, we perform the operation within parentheses first, then el s se Compyar?son/
the multiplication, and finally the addition. o
==, I= Equal, not equal
To make this happen we need precedence rules. and Conjunction
or Disjunction

Unary plus/minus means a sign, e.g. -3, +4.

CS303E Slideset 4: 29 Selections CS303E Slideset 4: 30 Selections
Precedence Examples Precedence
>>> -3 * 4 Operators on the same line have equal precedence.
-12
>>> - 3 + - 4 Operator | Meaning
-7 +, - Binary plus/minus
>>> 3 + 2 X% 4 x, /, //, % | Multiplication, division,
19 integer division, remainder
>>> 4 + 6 < 11 and 3 - 10 <0 Evaluate them left to right.
True
>>> 4 < 5 <= 17 # notice special syntax All binary operators are left associative. Example: x + y - z + w
True means ((x + y) - z) + w.
>>> 4 + 5 < 2 + 7
False Note that assignment is right associative. Why would it have to
>>> 4 + (5 < 2) + 7 # this surprised me! be?
11

x =y =12z =1 # assign z first

Most of the time, the precedence follows what you would expect.

CS303E Slideset 4: 31 Selections CS303E Slideset 4: 32 Selections

Use Parentheses to Override Precedence

Use parentheses to override precedence or to make the evaluation

clearer.

>>> 10 - 8 + 5 # an expression

7

>>> (10 - 8) + b # what precedence will do
7

>>> 10 - (8 + 5) # override precedence

-3

>>> 5 - 3 *x 4 / 2 # not particularly clear
-1.0

>>> 5 - ((3 * 4) / 2) # much better

-1.0

Remember from the Zen of Python: Readability counts! Next stop: Loops.

CS303E Slideset 4: 33 Selections CS303E Slideset 4: 34 Selections

