
CS303E: Elements of Computers
and Programming

Selections

Dr. Bill Young
Department of Computer Science

University of Texas at Austin
© William D. Young, All rights reserved.

Last updated: August 27, 2024 at 14:25

CS303E Slideset 4: 1 Selections

Booleans
So far we’ve only been considering straight line code, meaning to
do one statement after another.

But often in programming, you want to ask a question, and then
do different things based on the answer.

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Python Boolean
constants are the values:
True, False. A Boolean
expression evaluates to a
Boolean value.

CS303E Slideset 4: 2 Selections

Using Booleans

>>> import math
>>> b = (30.0 < math.sqrt(1024))
>>> print(b)
True
>>> x = 1 # statement
>>> x < 0 # boolean expression
False
>>> x >= -2 # boolean expression
True
>>> b = (x == 0) # statement containing

boolean expression
>>> print (b)
False

Booleans are implemented in the bool class.

CS303E Slideset 4: 3 Selections

Booleans

Internally, Python uses 0 to represent False and 1 to represent
True. You can convert from Boolean to int using the int function
and from int to Boolean using the bool function.

>>> b1 = (-3 < 3)
>>> print (b1)
True
>>> int(b1)
1
>>> bool(1)
True
>>> bool(0)
False
>>> bool(4) # what happened here?
True

CS303E Slideset 4: 4 Selections

Boolean Context

In a Boolean context—one that expects a Boolean value—False,
0, "" (the empty string), and None all stand for False and any
other value stands for True.
>>> bool("xyz")
True
>>> bool (0.0)
False
>>> bool("")
False
>>> if 4: print ("xyz") # 4 == True , in this context
xyz
>>> if "ab": print ("xyz") # "ab" == True
xyz
>>> if "": print ("xyz") # "" == False
>>>

This is very useful in many programming situations.

CS303E Slideset 4: 5 Selections

Comparison Operators
The following comparison operators are useful for comparing
numeric values:

Operator Meaning Example
< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0
!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

>>> import math
>>> x = 10
>>> (x == math.sqrt(100))
True

CS303E Slideset 4: 6 Selections

Caution

Be very careful using “==” when comparing floats, because float
arithmetic is approximate.

>>> (1.1 * 3 == 3.3)
False # What happened ?
>>> 1.1 * 3
3.3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating
binary expansion: 1.000110011 . . . = 1.00011. That means it can’t
be represented exactly in a fixed size binary representation.

CS303E Slideset 4: 7 Selections

One Way If Statements

It’s often useful to be able to perform an action only if some
condition is true.

General form:
if boolean-expression:

statement(s)

Note the colon after the
boolean-expression. All of the
statements must be indented
the same amount.

if (y != 0):
z = (x / y)

CS303E Slideset 4: 8 Selections

If Statement Example
In file IfExample.py:
def main ():

""" A pretty uninteresting function to illustrate
if statements . """
x = int(input (" Input an integer , or 0 to stop: "))
if (x != 0):

print ("The number you entered was", \
x, ". Thank you!")

main ()

Would “if x:” have worked instead of “if (x != 0):”?

> python IfExample .py
Input an integer , or 0 to stop: 3
The number you entered was 3 . Thank you!
> python IfExample .py
Input an integer , or 0 to stop: 0
>

How could you get rid of the space before the period?
CS303E Slideset 4: 9 Selections

Two-way If-else Statements

A two-way If-else statement executes one of two actions,
depending on the value of a Boolean expression.

General form:
if boolean-expression:

true-case-statement(s)
else:

false-case-statement(s)

Note the colons after the boolean-expression and after the else.
All of the statements in both if and else branches should be
indented the same amount.

CS303E Slideset 4: 10 Selections

If-else Statement: Example
In file ComputeCircleArea.py:
import math

def main ():
""" Compute the area of a circle , given radius . """
radius = float (input (" Input radius : "))
if (radius >= 0):

area = math.pi * radius ** 2
print ("A circle with radius ", radius , \

"has area", format (area , " <5.2f"))
else:

print (" Negative radius entered .")

main ()

> python ComputeCircleArea .py
Input radius : 4.3
A circle with radius 4.3 has area 58.09
> python ComputeCircleArea .py
Input radius : -3.4
Negative radius entered .

CS303E Slideset 4: 11 Selections

Break

Let’s take a break here and resume in the next video.

CS303E Slideset 4: 12 Selections

Nested If Statements: Leap Year Example

The statements under an if can themselves be if statements.

For example: Suppose you want to determine whether a particular
year is a leap year. The algorithm is as follows:

1 If year is a multiple of 4, then it’s a leap year;
2 unless it’s a multiple of 100, and then it’s not;
3 unless it’s also a multiple of 400, and then it is.

CS303E Slideset 4: 13 Selections

Nested If Statements: Is Leap Year?
In file LeapYear.py:
def main ():

""" Is entered year a leap year? """
year = int(input (" Enter a year: "))
if (year % 4 == 0):

Year is a multiple of 4
if (year % 100 == 0):

Year is a multiple of 4 and of 100
if (year % 400 == 0):

IsLeapYear = True # What do you know here?
else:

IsLeapYear = False # What do you know here?
else:

IsLeapYear = True
else:

IsLeapYear = False # What do you know here?
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

main ()

CS303E Slideset 4: 14 Selections

Leap Year

> python LeapYear .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear .py
Enter a year: 2005
Year 2005 is not a leap year.

CS303E Slideset 4: 15 Selections

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

if boolean-expression1:
statement(s)

elif boolean-expression2:
statement(s)

elif boolean-expression3:
...

else: # optional
statement(s)

You can have any number of elif branches with their conditions.
The else branch is optional.

CS303E Slideset 4: 16 Selections

If-elif-else Example
In file LeapYear3.py:
def main ():

Is this a leap year
year = int(input (" Enter a year: "))
if (year % 400 == 0):

IsLeapYear = True
elif (year % 100 == 0): # what ’s true here?

IsLeapYear = False
elif (year % 4 == 0): # what ’s true here?

IsLeapYear = True
else: # what ’s true here?

IsLeapYear = False
Print result .
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

main ()

We could always replace elif with nested if-else statements, but
this is much more readable. Be careful with your indentation!

CS303E Slideset 4: 17 Selections

If-elif-else Example

> python LeapYear3 .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear3 .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear3 .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear3 .py
Enter a year: 2005
Year 2005 is not a leap year.

CS303E Slideset 4: 18 Selections

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction

or : logical disjunction
Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0) and not (x % 400 == 0)

CS303E Slideset 4: 19 Selections

Truth Tables

And: (A and B) is True
whenever both A is True and B is
True.

A B A and B
False False False
False True False
True False False
True True True

Or: (A or B) is True whenever
either A is True or B is True.

A B A or B
False False False
False True True
True False True
True True True

Not: not A is True whenever A
is False.
A not A

False True
True False

Remember that “is True” really
means “is not False, the empty

string, 0, or None.”

CS303E Slideset 4: 20 Selections

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesn’t matter
what B is. So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn’t matter what B is. So
there’s no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> legal = (y == 0 or x/y > 0)
>>> print(legal)
True

Python doesn’t evaluate B if evaluating A is sufficient to determine
the value of the expression. That’s important sometimes.

CS303E Slideset 4: 21 Selections

Boolean Operators

In a Boolean context, Python doesn’t always return True or False,
just something equivalent. What’s going on in the following?
>>> "" and 14
’’ # equivalent to False
>>> bool("" and 14)
False # coerced to False
>>> 0 and "abc"
0 # equivalent to False
>>> bool (0 and "abc")
False # coerced to False
>>> not (0.0) # same as not(False)
True
>>> not (1000) # same as not(True)
False
>>> 14 and ""
’’ # equivalent to False
>>> 0 or "abc" # same as False or True
’abc ’ # equivalent to True
>>> bool (0 or ’abc ’) # equivalent to False or True
True

CS303E Slideset 4: 22 Selections

Leap Years Revisited

Here’s an easier way to do our Leap Year computation:

In file LeapYear2.py:
def main ():

""" Input a year and test whether it ’s a leap year. """
year = int(input (" Enter a year: "))

What ’s the logic of this assignment ?
IsLeapYear = (year % 4 == 0) and \

(not (year % 100 == 0) or (year % 400 == 0))

Print the answer
if IsLeapYear :

print ("Year", year , "is a leap year.")
else:

print ("Year", year , "is not a leap year.")

main ()

CS303E Slideset 4: 23 Selections

Leap Years Revisited

> python LeapYear2 .py
Enter a year: 2000
Year 2000 is a leap year.
> python LeapYear2 .py
Enter a year: 1900
Year 1900 is not a leap year.
> python LeapYear2 .py
Enter a year: 2004
Year 2004 is a leap year.
> python LeapYear2 .py
Enter a year: 2005
Year 2005 is not a leap year.

CS303E Slideset 4: 24 Selections

Break

Let’s take a break here and resume in the next video.

CS303E Slideset 4: 25 Selections

Conditional Expressions

A Python conditional expression returns one of two values based
on a condition.

Consider the following code:

Set parity according to num
if (num % 2 == 0):

parity = "even"
else:

parity = "odd"

This sets variable parity to one of two values, “even” or “odd”.

An alternative is:
parity = "even" if (num % 2 == 0) else "odd"

CS303E Slideset 4: 26 Selections

Conditional Expression

General form:

expr1 if boolean-expr else expr2

It means to return expr1 if boolean-expr evaluates to True, and
to return expr2 otherwise.

find maximum of x and y
maximum = x if (x >= y) else y

Why would it be a bad idea to use the variable name max here?

CS303E Slideset 4: 27 Selections

Conditional Expression
Use of conditional expressions can simplify your code.
def main ():

""" See if three numbers are input in ascending
order . """

xs , ys , zs = input (" Enter three numbers : "). split (",")
x, y, z = float (xs), float (ys), float (zs)
print (" Ascending " if (x <= y and y <= z) \

else "Not ascending ")

main ()

Note: split() is not introduced until slideset 8. Without it, you’d
have to have three separate input statements.
> python TestSorted .py
Enter three numbers : 3, 5, 9
Ascending

> python TestSorted .py
Enter three numbers : 9, 3, 5
Not ascending

CS303E Slideset 4: 28 Selections

Operator Precedence

Arithmetic expressions in Python attempt to match standard
syntax. Thus,

3 + 4 * (5 + 2)

is interpreted as representing:

(3 + (4 * (5 + 2))).

That is, we perform the operation within parentheses first, then
the multiplication, and finally the addition.

To make this happen we need precedence rules.

CS303E Slideset 4: 29 Selections

Precedence

The following are the precedence rules for Python, with items
higher in the chart having higher precedence.

Operator Meaning
+, - Unary plus/minus
** Exponentiation
not logical negation
*, /, //, % Multiplication, division,

integer division, remainder
+, - Binary plus/minus
<, <=, >, >= Comparison
==, != Equal, not equal
and Conjunction
or Disjunction

Unary plus/minus means a sign, e.g. -3, +4.

CS303E Slideset 4: 30 Selections

Precedence Examples

>>> -3 * 4
-12
>>> - 3 + - 4
-7
>>> 3 + 2 ** 4
19
>>> 4 + 6 < 11 and 3 - 10 < 0
True
>>> 4 < 5 <= 17 # notice special syntax
True
>>> 4 + 5 < 2 + 7
False
>>> 4 + (5 < 2) + 7 # this surprised me!
11

Most of the time, the precedence follows what you would expect.
CS303E Slideset 4: 31 Selections

Precedence

Operators on the same line have equal precedence.

Operator Meaning
+, - Binary plus/minus
*, /, //, % Multiplication, division,

integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x + y) - z) + w.

Note that assignment is right associative. Why would it have to
be?

x = y = z = 1 # assign z first

CS303E Slideset 4: 32 Selections

Use Parentheses to Override Precedence

Use parentheses to override precedence or to make the evaluation
clearer.
>>> 10 - 8 + 5 # an expression
7
>>> (10 - 8) + 5 # what precedence will do
7
>>> 10 - (8 + 5) # override precedence
-3
>>> 5 - 3 * 4 / 2 # not particularly clear
-1.0
>>> 5 - ((3 * 4) / 2) # much better
-1.0

Remember from the Zen of Python: Readability counts!

CS303E Slideset 4: 33 Selections

Next stop: Loops.

CS303E Slideset 4: 34 Selections

