Repetitive Activity

CS303E: Elements of Computers Often we need to do some (program) activity numerous times:

and Programmin UCK Mpe = T TBFAC
g g I ILL NOT MOC K :"1”(4 tlnura,p;ﬁ_;_:
Loops WILL NoT Mer KS DUMBFACs

ILL NOT MOCK MRs pun:

| I WILL NOT MOCK MRS pue,

Dr. Bill Young I ' WILL NOT MOCK MRS purg
Department of Computer Science | WILL NOT MOCK MRS DU

University of Texas at Austin | WILL NOT MOCK MRS purlSa
© William D. Young, All rights reserved. | WILL NOT MOCK MRS .

Last updated: August 27, 2024 at 14:25

CS303E Slideset 5: 1 Loops CS303E Slideset 5: 2 Loops

Using Loops While Loop

So you might as well use cleverness to do it. That’s what loops are One way is to use a while loop.

for.
General form:

B nCiude Lsidio.w/?

int magin(veid) : while condition:
t statement (s)

int county

for (count =15 counT{=500 jcount+t) M . . I h
prinT€ ("I will nal Throw paper dirplanes n Clus’s.")_‘j | eaning: as long as the

refurn 0; t } condition remains True, [moay of whie woer |
execute the statements.

As usual, all of the statements

in the body must be indented

It doesn’t have to be the exact same thing over and over. the same amount.

CS303E Slideset 5: 3 Loops CS303E Slideset 5: 4

While Loop Another While Example

In file WhileExample.py:

COUNT = 500
STRING = "I will not throw paper airplanes in class."

def main():
""" Print STRING COUNT times. """
i=20
while (i < COUNT):
print (STRING)

i +=1
main ()
> python WhileExample.py
I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

CS303E Slideset 5: 5 Loops

Infinite Loops

You have to do something in the loop
to ensure that you eventually exit;
otherwise, you'll be in an infinite loop.

Either:

@ change some variable so that the test eventually becomes
False, or

@ break out of the loop on some condition that eventually
occurs.

CS303E Slideset 5: 7 Loops

Compute N! =1 x 2 x ... N, the factorial of N.
In file fact2.py:

def factorial():
""" Compute the factorial of a number supplied
by the user. """

num = int (input ("Compute factorial of: "))
ans = 1
i=1

Do we know that this loop terminates?
while (i <= num):

ans *x= i

i +=1
print ("Factorial of", num, "is", ans)

factorial ()

> python fact2.py

Compute factorial of: 17

Factorial of 17 is 355687428096000
>

CS303E Slideset 5: 6 Loops

Another Example: Sum to N

def sumToN():
Accept input from the user until a positive integer
is entered.
while True:

n = int(input("Sum to what positive integer: "))
if n < 1:

print ("That’s not positive. Try again!")
else:

This will exit the loop

break

What must be true here?
Sum the numbers up to n
sum = 0
i =n
while i > O:
sum += 1
i -=1
print ("The numbers to", n, "sum to", sum)

sumToN ()

Do we know that both loops terminate? Why or Why not?

CS303E Slideset 5: 8 Loops

Another Example: Sum to N While Loop Example: Test Primality

How do prime numbers work?

Here's running our program: An integer is prime if it has no

positive integer divisors except 1 and ey

;urﬁyzgozhz:mTON . py . L Itself K N and 1. Soitisa

positive integer: -4 1 > prime number.
That’s not positive. Try again! i i
Sum to what positive integer: O To test whether an arbitrary integer n
ghat’s n;t positive. Try again!10 is pr"ne,see ﬁ'any number in é:i?ﬁ;ul
um to what positive integer: .. . 1, o
The numbers to 10 sum to 55 [2 e 11—1], dIVIdeS It. ﬂz ¢) aNr(‘)Tapr?nllels
> o number.

You couldn’t do that in straight line code without knowing n in

Would this program work if the user entered a float? advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 5: 9 Loops CS303E Slideset 5: 10 Loops

isPrime Loop Example isPrime Loop Example

In file IsPrime.py:

def main () : > python IsPrime.py
""" See if an integer entered is prime. """ Enter an integer : 53
Can you spot the inefficiencies in this? 53 i .
num = int(input ("Enter an integer: ")) 1s prime
isPrime = True > python IsPrime.py
i < : .
£ (num <2 Enter an integer: 54
isPrime = False
elif (num == 2): 54 is not prime
isPrime = True
else:
divisor = 2 It works, though it's pretty inefficient. If a number is prime, we
while (divisor < num): test ible divi in [2 -1]
Keep repeating this block until condition €st every possible divisor In R '
becomes false (or we break out of the loop). o We don't actually need the special test for 2. Think about
if (num % divisor == 0): .
isPrime = False M”U/thatls
b k ' ..
cleen @ There's no need to test any even divisor except 2. Why not?
divisor += 1 o If nis not prime, it will have a divisor less than or equal to /n.
print (num, "is prime" if isPrime else "is not prime")

CS303E Slideset 5: 11 Loops CS303E Slideset 5: 12 Loops

A Better Version: IsPrime2.py The Better isPrime Version

In file IsPrime2.py: .
by > python IsPrime2.py
import math Enter an integer: 2
def main(): 2 is prime
""" See if an integer entered is prime. """ > python IsPrime2.py
num = int(input ("Enter an integer: ")) Enter an integer: 53
isPrime = True b3 is prime
if (num % 2 == 0): > python IsPrime2.py
If num is even, then it’s prime only if (num == 2) k
isPrime = (num == 2) Enter an integer: 54
else: 54 is not prime
divisor = 3 # Why 37 > h IsPri 2
while (divisor <= math.sqrt(num)): python sFrimes.py
if (num % divisor == 0): Enter an integer: 997
isPrime = False 997 is rime
break # exit from loop p
else:
divisor += 2 # Why 27 . . - . .
print (num, "is", "prime" if isPrime else "not prime") Notice that IsPrime does 995 divisions to discover that 997 is

prime. IsPrime2 only does 16. Why?

CS303E Slideset 5: 13 Loops CS303E Slideset 5: 14 Loops

Example While Loop: Approximate Square Root Running the Example

Approximate the square root of a positive integer as follows:

. > python GuessSqrt.py

In file GuessSqrt.py: Enter a positive integer: -20

Try again

Enter a positive integer: 20

The square root of 20 is approximately 4.5
> python GuessSqrt.py

Enter a positive integer: 1024

The square root of 1024 is approximately 32.0
> python GuessSqrt.py

Enter a positive integer: 100

The square root of 100 is approximately 10.1

def main():
"""Approximate the square root of a positive integer."""
num = 0
while (num <= 0):
num = int(input("Enter a positive integer: "))
if (num <= 0):
print("Try again")

Iterate by increments of 0.1 until we find an
approximate square root (within 0.1).
guess = 0.1

while (guesz :* 2 < num): Notice that the last one isn’t quite right. The square root of 100 is
+=
gness exactly 10.0. Foiled again by the approximate nature of floating
sqrt = guess point arithmetic.
print ("The square root of ", num, "is approximately", \
format (sqrt, "4.1f")) How would you change the code to get an approximation within
main () 0.017

CS303E Slideset 5: 15 Loops CS303E Slideset 5: 16 Loops

Let's Take a Break

TIVIEFOR A

CS303E Slideset 5: 17 Loops

Loop Variable

for var in sequence:
statement (s)

var is called the loop variable or sometimes the indicial variable. It
takes on successive values from the sequence in successive
iterations of the loop.

>>> for i in [1, 2, 4, 8, 16, 32, 64]:
print (i)

CS303E Slideset 5: 19 Loops

For Loop

In a for loop, you typically know how many times you'll execute.

General form:

for var in sequence:
statement (s)

Meaning: assign each element
of sequence in turn to var and
execute the statements.

As usual, all of the statements
in the body must be indented
the same amount.

CS303E Slideset 5: 18

What's a Sequence?

A Python sequence holds multiple items stored one after another.

Loops

for each

item in
sequence

Last
item
reached?

Body of for

Yes

Exit loop

>>> seq =

(2, 3, 5, 7,

11,

13]

a list

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a, a+1,

range (b)

range(a, b, c) : generates a, at+c, a+2c,
b’ is the last value < b.

Actually, range () doesn't really return a sequence, but rather a
special type of immutable object that supplies a value on demand.

Don’t worry about this!

CS303E Slideset 5: 20

Loops

. is the same as range (0, b).

., b-1.

., b’, where

Range Examples

>>> for i in range(3, 6): print(i, end=" ")

é.é 5 >>> for i in range(3): print(i, end=" ")

6.i 2 >>> for i in range(0, 11, 3): print(i, end=" ")
6.5 6 9 >>> for i in range(11l, 0, -3): print(i, end=" ")

11 8 5 2 >>>

Why is it printing strangely?

CS303E Slideset 5: 21 Loops

Loop Example

Remember this one?

FnCludg 5110w

int mgin(veid) « m
i 3

int county 23

for {coun =15 count< = 500 ; countes)

print€ (“I will nat Throw paper dirplanes in class.”);)

refurn 03 @%
B
=

How would you do this with a for loop in Python?

CS303E Slideset 5: 22 Loops

smmm

Loop Example

In file ForExample. py:

COUNT = 500
STRING = "I will not throw paper airplanes in class."

def main():
for i in range (COUNT):
print (STRING)

main ()

Another For Loop Example

Suppose you want to print a table of the powers of 2 up to 2".

In file Powers0£f2. py:

> python ForExample.py
I will not throw paper airplanes in class.
I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

def main():
""" Print a table of powers of 2 up to 2%*n,
where n is entered by the user. e
num = int(input("Enter an integer: "))

for power in range (num + 1):
print (format(power, "3d"), \
format(2 ** power, "8d"))

Notice that the variable i isn't used in the loop body; it's only for
counting in this example. Does it print the right number of lines?

CS303E Slideset 5: 23 Loops

Why does the range go to num + 17

CS303E Slideset 5: 24 Loops

For Loop Example Break and Continue

Two useful commands in loops (while or for) are:

> python Powers0f2.py break: exit the loop (but continue the program);
Enter an integer: 15
0 1 continue: exit the current iteration, but continue with the loop.
1 2
2 4 while (True):
3 8 value = float(input("Enter a number, or 0 to exit: "))
4 16 if (value == 0):
5 32 break
6 64 # When will the following happen?
7 128 < process value >
8 256
9 512
10 1024 while (True):
11 2048 value = int(input("Enter a non-negative integer: "))
12 4096 if (value < 0):
13 8192 continue
14 16384 # When will the following happen?
15 32768 < process value >

What's the problem with this loop?

CS303E Slideset 5: 25 Loops CS303E Slideset 5: 26 Loops

Nested Loops Multiplication Table

The body of while loops and for loops contain arbitrary Multiplication Table
statements, including other loops. | 12 3 4 5 6 7 8 9

Suppose we want to compute and print out a multiplication table i1/ 1 2 3 4 5 6 7 8 9
like the following: 21 2 4 6 8 10 12 14 16 18
Multiplication Table o
| 1 92 3 4 5 6 7 8 9 9 | 9 18 27 36 45 54 63 72 81
i1l 1+ 2 3 4 5 6 7 8 9 Here's an algorithm to do this:
2 | 2 4 6 8 10 12 14 16 18 .
N
3] 3 6 9 12 15 18 21 24 27 @ How many columns/rows in the table?
41 4 8 12 16 20 24 28 32 36 ©Q Print the header information.
5 | 5 10 15 20 25 30 35 40 45 © For each row i:
61 6 12 18 24 30 36 42 48 54 o Printi.
717 14 21 28 35 42 49 56 63 @ For each column j: compute and print (i * j).
81 8 16 24 32 40 48 56 64 T2 0 Go to the next row.
9 | 9 18 27 36 45 54 63 72 81

This is easily coded using nested for loops.

CS303E Slideset 5: 27 Loops CS303E Slideset 5: 28 Loops

Nested Loops Nested Loops

Print the header:

Multiplication Table
| i1 2 3 4 65 6 7 8 9

In file MultiplicationTable.py:

Defines the size of the table + 1.
LIMIT = 10

def main():
""" Print a multiplication table to LIMIT - 1. """

print (" Multiplication Table")
Display the column headers.
print (" |", end = "")
for j in range(1, LIMIT):
print (format(j, "4d"), end = "")
print () # jump to a new line
Print line to separate header from body of the table.
print("---------------"-"-"-"-"—-"-"—~—~—~"—~—~—— - ")

CS303E Slideset 5: 29 Loops

This continues our multiplication example.

1] 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
9 | 9 18 27 36 45 54 63 72 81

Display table body
for row in range (1, LIMIT):
print (format (row, "3d"), "|", end = "")
for col in range (1, LIMIT):
Display the product and align properly
print (format(row*col, "4d"), end = "")
print ()

main ()

CS303E Slideset 5: 30 Loops

Nested Loops Example

> python MultiplicationTable.py
Multiplication Table

2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36
25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81

© 00 N O O b W N+
©O© 0 N O O b W N =

'—\

o

'_L

a1

N

o

Notice that if you want a bigger or smaller table, you only have to

change LIMIT in the code. But what would be wrong?

CS303E Slideset 5: 31 Loops

Nested Loops Example

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?

Suppose we set LIMIT = 57

> python MultiplicationTable.py
Multiplication Table

1| 1 2 3 4
2 | 2 4 6 8
3 | 3 6 9 12
4 | 4 8 12 16

The header is no longer right. We'll see how to fix this later.

CS303E Slideset 5: 32 Loops

Next stop: Functions.

CS303E Slideset 5: 33 Loops

