Repetitive Activity
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Using Loops While Loop

So you might as well use cleverness to do it. That’s what loops are One way is to use a while loop.

for.
General form:

B nCiude Lsidio.w/?

int magin(veid) : while condition:
t statement (s)

int county

for (count =15 counT{=500 jcount+t) M . . I h
prinT€ ("I will nal Throw paper dirplanes n Clus’s.")_‘j | eaning: as long as the

refurn 0; t } condition remains True, [ moay of whie woer |
execute the statements.

As usual, all of the statements

in the body must be indented

It doesn’t have to be the exact same thing over and over. the same amount.
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While Loop Another While Example

In file WhileExample.py:

COUNT = 500
STRING = "I will not throw paper airplanes in class."

def main():
""" Print STRING COUNT times. """
i=20
while (i < COUNT):
print (STRING)

i +=1
main ()
> python WhileExample.py
I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

CS303E Slideset 5: 5 Loops

Infinite Loops

You have to do something in the loop
to ensure that you eventually exit;
otherwise, you'll be in an infinite loop.

Either:

@ change some variable so that the test eventually becomes
False, or

@ break out of the loop on some condition that eventually
occurs.
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Compute N! =1 x 2 x ... N, the factorial of N.
In file fact2.py:

def factorial():
""" Compute the factorial of a number supplied
by the user. """

num = int (input ("Compute factorial of: "))
ans = 1
i=1

# Do we know that this loop terminates?
while ( i <= num ):

ans *x= i

i +=1
print ("Factorial of", num, "is", ans)

factorial ()

> python fact2.py

Compute factorial of: 17

Factorial of 17 is 355687428096000
>
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Another Example: Sum to N

def sumToN():
# Accept input from the user until a positive integer
# is entered.
while True:

n = int(input("Sum to what positive integer: "))
if n < 1:

print ("That’s not positive. Try again!")
else:

# This will exit the loop

break

# What must be true here?
# Sum the numbers up to n
sum = 0
i =n
while i > O:
sum += 1
i -=1
print ("The numbers to", n, "sum to", sum)

sumToN ()

Do we know that both loops terminate? Why or Why not?
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Another Example: Sum to N While Loop Example: Test Primality

How do prime numbers work?

Here's running our program: An integer is prime if it has no

positive integer divisors except 1 and ey

;urﬁyzgozhz:mTON . py . L Itself K N and 1. Soitisa

positive integer: -4 1 > prime number.
That’s not positive. Try again! i i
Sum to what positive integer: O To test whether an arbitrary integer n
ghat’s n;t positive. Try again!10 is pr"ne,see ﬁ'any number in é:i?ﬁ;ul
um to what positive integer: .. . 1, o
The numbers to 10 sum to 55 [2 e 11—1], dIVIdeS It. ﬂz ¢ ) aNr(‘)Tapr?nllels
> o number.

You couldn’t do that in straight line code without knowing n in

Would this program work if the user entered a float? advance. Why not?

Even then it would be really tedious if n is very large.
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isPrime Loop Example isPrime Loop Example

In file IsPrime.py:

def main () : > python IsPrime.py
""" See if an integer entered is prime. """ Enter an integer : 53
# Can you spot the inefficiencies in this? 53 i .
num = int( input ("Enter an integer: ") ) 1s prime
isPrime = True > python IsPrime.py
i < : .
£ ( num <2 Enter an integer: 54
isPrime = False
elif ( num == 2 ): 54 is not prime
isPrime = True
else:
divisor = 2 It works, though it's pretty inefficient. If a number is prime, we
while ( divisor < num ): test ible divi in [2 -1]
# Keep repeating this block until condition €st every possible divisor In R '
# becomes false (or we break out of the loop). o We don't actually need the special test for 2. Think about
if ( num % divisor == 0 ): .
isPrime = False M”U/thatls
b k ' ..
cleen @ There's no need to test any even divisor except 2. Why not?
divisor += 1 o If nis not prime, it will have a divisor less than or equal to /n.
print (num, "is prime" if isPrime else "is not prime")
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A Better Version: IsPrime2.py The Better isPrime Version

In file IsPrime2.py: .
by > python IsPrime2.py
import math Enter an integer: 2
def main(): 2 is prime
""" See if an integer entered is prime. """ > python IsPrime2.py
num = int( input ("Enter an integer: ") ) Enter an integer: 53
isPrime = True b3 is prime
if ( num % 2 == 0 ): > python IsPrime2.py
# If num is even, then it’s prime only if (num == 2) k
isPrime = ( num == 2 ) Enter an integer: 54
else: 54 is not prime
divisor = 3 # Why 37 > h IsPri 2
while ( divisor <= math.sqrt( num )): python sFrimes.py
if ( num % divisor == 0 ): Enter an integer: 997
isPrime = False 997 is rime
break # exit from loop p
else:
divisor += 2 # Why 27 . . - . .
print (num, "is", "prime" if isPrime else "not prime") Notice that IsPrime does 995 divisions to discover that 997 is

prime. IsPrime2 only does 16. Why?
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Example While Loop: Approximate Square Root Running the Example

Approximate the square root of a positive integer as follows:

. > python GuessSqrt.py

In file GuessSqrt.py: Enter a positive integer: -20

Try again

Enter a positive integer: 20

The square root of 20 is approximately 4.5
> python GuessSqrt.py

Enter a positive integer: 1024

The square root of 1024 is approximately 32.0
> python GuessSqrt.py

Enter a positive integer: 100

The square root of 100 is approximately 10.1

def main():
"""Approximate the square root of a positive integer."""
num = 0
while (num <= 0):
num = int( input("Enter a positive integer: ") )
if (num <= 0):
print( "Try again" )

# Iterate by increments of 0.1 until we find an
# approximate square root (within 0.1).
guess = 0.1

while ( guesz :* 2 < num ): Notice that the last one isn’t quite right. The square root of 100 is
+= . . . . .
gness exactly 10.0. Foiled again by the approximate nature of floating
sqrt = guess point arithmetic.
print ( "The square root of ", num, "is approximately", \
format ( sqrt, "4.1f") ) How would you change the code to get an approximation within
main () 0.017
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Let's Take a Break

TIVIEFOR A
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Loop Variable

for var in sequence:
statement (s)

var is called the loop variable or sometimes the indicial variable. It
takes on successive values from the sequence in successive
iterations of the loop.

>>> for i in [1, 2, 4, 8, 16, 32, 64]:
print (i)
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For Loop

In a for loop, you typically know how many times you'll execute.

General form:

for var in sequence:
statement (s)

Meaning: assign each element
of sequence in turn to var and
execute the statements.

As usual, all of the statements
in the body must be indented
the same amount.
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What's a Sequence?

A Python sequence holds multiple items stored one after another.

Loops

for each

item in
sequence

Last
item
reached?

Body of for

Yes

Exit loop

>>> seq =

(2, 3, 5, 7,

11,

13]

# a list

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a, a+1,

range (b)

range(a, b, c) : generates a, at+c, a+2c,
b’ is the last value < b.

Actually, range () doesn't really return a sequence, but rather a
special type of immutable object that supplies a value on demand.

Don’t worry about this!
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Loops

. is the same as range (0, b).

., b-1.

., b’, where




Range Examples

>>> for i in range(3, 6): print(i, end=" ")

é.é 5 >>> for i in range(3): print(i, end=" ")

6.i 2 >>> for i in range(0, 11, 3): print(i, end=" ")
6.5 6 9 >>> for i in range(11l, 0, -3): print(i, end=" ")

11 8 5 2 >>>

Why is it printing strangely?
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Loop Example

Remember this one?

FnCludg 5110w

int mgin(veid) « m
i 3

int county 23

for {coun =15 count< = 500 ; countes)

print€ (“I will nat Throw paper dirplanes in class.”); )

refurn 03 @%
B
=

How would you do this with a for loop in Python?
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smmm

Loop Example

In file ForExample. py:

COUNT = 500
STRING = "I will not throw paper airplanes in class."

def main():
for i in range (COUNT):
print ( STRING )

main ()

Another For Loop Example

Suppose you want to print a table of the powers of 2 up to 2".

In file Powers0£f2. py:

> python ForExample.py
I will not throw paper airplanes in class.
I will not throw paper airplanes in class.

I will not throw paper airplanes in class.

def main():
""" Print a table of powers of 2 up to 2%*n,
where n is entered by the user. e
num = int( input("Enter an integer: ") )

for power in range (num + 1):
print ( format( power, "3d"), \
format( 2 ** power, "8d" ) )

Notice that the variable i isn't used in the loop body; it's only for
counting in this example. Does it print the right number of lines?
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Why does the range go to num + 17
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For Loop Example Break and Continue

Two useful commands in loops (while or for) are:

> python Powers0f2.py break: exit the loop (but continue the program);
Enter an integer: 15
0 1 continue: exit the current iteration, but continue with the loop.
1 2
2 4 while (True):
3 8 value = float( input( "Enter a number, or 0 to exit: " ))
4 16 if ( value == 0 ):
5 32 break
6 64 # When will the following happen?
7 128 < process value >
8 256
9 512
10 1024 while (True):
11 2048 value = int( input( "Enter a non-negative integer: " ))
12 4096 if (value < 0):
13 8192 continue
14 16384 # When will the following happen?
15 32768 < process value >

What's the problem with this loop?
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Nested Loops Multiplication Table

The body of while loops and for loops contain arbitrary Multiplication Table
statements, including other loops. | 12 3 4 5 6 7 8 9

Suppose we want to compute and print out a multiplication table i1/ 1 2 3 4 5 6 7 8 9
like the following: 21 2 4 6 8 10 12 14 16 18
Multiplication Table o
| 1 92 3 4 5 6 7 8 9 9 | 9 18 27 36 45 54 63 72 81
i1l 1+ 2 3 4 5 6 7 8 9 Here's an algorithm to do this:
2 | 2 4 6 8 10 12 14 16 18 .
N
3] 3 6 9 12 15 18 21 24 27 @ How many columns/rows in the table?
41 4 8 12 16 20 24 28 32 36 ©Q Print the header information.
5 | 5 10 15 20 25 30 35 40 45 © For each row i:
61 6 12 18 24 30 36 42 48 54 o Printi.
717 14 21 28 35 42 49 56 63 @ For each column j: compute and print (i * j).
81 8 16 24 32 40 48 56 64 T2 0 Go to the next row.
9 | 9 18 27 36 45 54 63 72 81

This is easily coded using nested for loops.

CS303E Slideset 5: 27 Loops CS303E Slideset 5: 28 Loops




Nested Loops Nested Loops

Print the header:

Multiplication Table
| i1 2 3 4 65 6 7 8 9

In file MultiplicationTable.py:

# Defines the size of the table + 1.
LIMIT = 10

def main():
""" Print a multiplication table to LIMIT - 1. """

print (" Multiplication Table")
# Display the column headers.
print (" |", end = "")
for j in range(1, LIMIT):
print (format(j, "4d"), end = "")
print () # jump to a new line
# Print line to separate header from body of the table.
print("---------------"-"-"-"-"—-"-"—~—~—~"—~—~—— - ")
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This continues our multiplication example.

1] 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
9 | 9 18 27 36 45 54 63 72 81

# Display table body
for row in range (1, LIMIT):
print ( format (row, "3d"), "|", end = "")
for col in range (1, LIMIT):
# Display the product and align properly
print ( format( row*col, "4d"), end = "")
print ()

main ()
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Nested Loops Example

> python MultiplicationTable.py
Multiplication Table

2 3 4 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36
25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81
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Notice that if you want a bigger or smaller table, you only have to

change LIMIT in the code. But what would be wrong?
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Nested Loops Example

Notice that if you want a bigger or smaller table, you only have to
change LIMIT in the code. But what would be wrong?

Suppose we set LIMIT = 57

> python MultiplicationTable.py
Multiplication Table

1| 1 2 3 4
2 | 2 4 6 8
3 | 3 6 9 12
4 | 4 8 12 16

The header is no longer right. We'll see how to fix this later.
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Next stop: Functions.
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