Elements of Security

Program Security and Viruses

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: April 28, 2015

Slideset 10: 1 Program Security and Viruses

Parhami’s Taxonomy

Behrooz Parhami gives the following expanded taxonomy of system

states:

Ideal:
Defective:

Faulty:

Erroneous:

Malfunction:

Degraded:

Failure:

the program perfectly meets its specification.
there is some flaw in the hardware or software.

certain system states may expose the defect,
resulting in incorrect values or decisions.

the fault is actually exercised, leading to an error.

an error may cause observed deviation from the
specification.

perceivable service-level effoect

catastrophic or unsafe system behavior, or
termination of system action.

Slideset 10: 3 Program Security and Viruses

Classifying Bugs

The IEEE (IEEE standard 729) has suggested a standard
terminology for “bugs” in computer programs.

Fault: a fault is a defect that gives rise to an error. It could
be due to defective, missing or extra instructions, or
a manufacturing flaw in hardware.

Error: a detectable deviation from the agreed specification
or requirements. An error is caused by a fault and
may lead to a failure.

Failure: the delivered service deviates from the specified
service, where the service specification is an agreed
description.

Slideset 10: 2 Program Security and Viruses

Fixing Faults

Number of faults detected and fixed is not a reliable measure of
software quality. Hence, the paradigm of penetrate and patch is
not a good way to build secure systems.

Patch efforts often make a system /ess secure than before, because
the patches introduce new faults.

o Effort focuses narrowly on the fault without correcting the
underlying design or requirements flaws.

@ A fault may have nonobvious side effects far removed from
the location of the fault.

@ A fault may not be fixed properly because it would impact
system functionality or performance.

Slideset 10: 4 Program Security and Viruses

Security Flaws Eliminating Security Flaws

Program security flaws can arise from many different types of It is probably impossible to completely eliminate security flaws.

faults, including intentionally malicious code, and code developed Q Program controls operate at the level of individual programs

in sloppy or misguided ways. We often divide program flaws into and programmers. Security is a system-wide phenomenon that

these two categories. results from the complex interaction of many parts of the
system.

O Software engineering evolves more quickly than does computer
security. That means that security is always trying to catch up
with the state of the art in software design.

o Intentional attacks (called cyber attacks) get more press, but

@ inadvertant errors undoubtedly cause much more damage.

OWASP Top 10 Web Vulnerabilities OWASP Top 10 Web Vulnerabilities
The Open Web Application Security Project (OWASP) is a Malicious File Execution: Code vulnerable to remote file inclusion
worldwide free and open community focused on improving the (RFI1) allows attackers to include hostile code and
security of application software. They regularly publish a 10 top data, resulting in devastating attacks, such as total
list of security vulnerabilities for web applications. Below is a server compromise.
recent list: Insecure Direct Object Reference: A direct object reference occurs
Cross Site Scripting (XSS): XSS flaws occur whenever an when a developer exposes a referer?ce to an internal
application takes user supplied data and sends it to a implementation object, such as a file, directory,
web browser without first validating or encoding that database record, or key, as a URL or form parameter.
content. Cross Site Request Forgery (CSRF): A CSRF attack forces a

logged-on victim's browser to send a

Injection Flaws: Injection occurs when user-supplied data is sent to
pre-authenticated request to a vulnerable web

an interpreter as part of a command or query. The

attacker’s hostile data tricks the interpreter into application, which then forces the victim’s browser to
executing unintended commands or changing data. perform a hostile action to the benefit of the
attacker.

Slideset 10: 7 Program Security and Viruses Slideset 10: 8 Program Security and Viruses

OWASP Top 10 Web Vulnerabilities OWASP Top 10 Web Vulnerabilities

Information Leakage and Improper Error Handling: Applications
can unintentionally leak information about their
configuration, internal workings, or violate privacy
through a variety of application problems. Attackers

use this weakness to steal sensitive data, or conduct Insecure Communications: Applications frequently fail to encrypt

more serious attacks. network traffic when it is necessary to protect
Broken Authentication and Session Management: Account sensitive communications.

credentials and session tokens are often not properly Failure to Restrict URL Access: Frequently, an application only

protected. Attackers compromise passwords, keys, or protects sensitive functionality by preventing the

authentication tokens to assume other users’ display of links or URLs to unauthorized users.

identities.

Insecure Cryptographic Storage: Web applications rarely use
cryptographic functions properly to protect data and
credentials. Attackers use weakly protected data to
conduct identity theft and other crimes, such as
credit card fraud.

Slideset 10: 9 Program Security and Viruses Slideset 10: 10 Program Security and Viruses

Nonmalicious Program Errors Validation: Buffer Overflow

A buffer is a bounded memory space in which data is held. Writing

Landwehr et al. give a taxonomy of program flaws that might beyond the end of a buffer may:

result in security lapses. The inadvertant flaws fall into the] _
following categories: @ be detected by the compiler or run-time system;

N : . . may effect adjacent user data space;
validation error (incomplete or inconsistent)

. may effect adjacent user program space;
domain error

°
°
e . @ may effect adjacent system data space;
serialization or aliasing
0

. . L . may effect adjacent system program space.
inadequate identification or authentication y J y Prog P

An overflow into system space may allow an attacker to insert
system code running at system permission level, modify the call
other exploitable logic errors stack, etc. Both the Internet worm (1988) and the Code Red virus
(2001) used buffer overflow in critical ways.

boundary condition violation

¢ ¢© ¢ ¢ ¢ ¢

Slideset 10: 11 Program Security and Viruses Slideset 10: 12 Program Security and Viruses

Smashing the Stack Attacks on Buffers

A buffer is a data storage area inside memory (stack or heap).

Buffer overflows account for over 50% of advisories published by o Buffers are intended to hold a pre-defined amount of data. If

CERT (computer security incident report team): more is stuffed into it, it may spill into adjacent memory.

Morris worm (1988): overflow in fingerd, infected 10% of the o If executable code is supplied as “data,” the machine may be
existing Internet. fooled into executing it.

Code Red (2001): overflow in MS-IIS server, 300,000 machines An attack can exploit any memory operation: pointer assignment,
infected in 14 hours. format strings, memory allocation and de-allocation, function

SQL Slammer (2003): overflow in MS-SQL server, 75,000 pointers, calls to library routines.

machines infected in 10 minutes.
Why are buffer overflows more prevalent in C than in Java? Is the

solution to just use Java instead of C?

Slideset 10: 13 Program Security and Viruses Slideset 10: 14 Program Security and Viruses

Stack Buffers Stack Buffers

If a string longer than 126 bytes is copied into buffer, it will
Consider the following function: overwrite adjacent stack locations, including the frame pointer and
return address.
void func (char *str) {
char buf[126]; If buffer value contains attacker-generated code and ret addr
strcpy (buf, str); points into this code, the attacker can cause this to be executed.
}
If the running program has root privileges, so will the new code.

When this function is invoked, a new frame is pushed onto the . o
The attacker can, e.g., spawn a new shell with root privilege.

stack.

Stack grows this way

calling function buffer sfp ret addr str

N

Stack grows this way

ret Frame of the
addr

.
%
.

buffer sfp

Slideset 10: 15 Program Security and Viruses Slideset 10: 16 Program Security and Viruses

Overflow Issues Overflow Attacks

o Why not just make the stack non-executable? There are some In addition to buffers on the stack, there are related attacks:

circumstances where we want to treat data as code. @ overflow of buffers allocated on the may change pointers
@ Overflow portion of the buffer must contain the correct to important data or cause a crash;
address of the attack code in the RET position. This is harder ° may cause an alternative function to
than it seems. be executed;
@ Many C functions do not check input size: strcpy, strcat, gets, ° of a variable used in a bounds computation
scanf, printf, ... may facilitate an attack.
Incomplete Mediation Time-of-Check / Time-of-Use
Suppose you fill out a form on a web page. The result may be If a security access check is performed significantly before the
packaged and sent to the server side as, for example: access is actually performed, an attacker may perform a “bait and
switch.” This is also called a or flaw.

http://www.somesite.com/subpage/userinput
&parm1=(808)555-1212&parm2=2004Jan01 Suppose a user presents a request in the form of a pair:
. The system checks whether the access is allowed. If the
pair is left in user space, the user might alter the file name while

What happens if you insert nonsense for the parameters clearly the access check is occurring, and obtain access to a file for which
intended to contain a phone number and date? he does not have appropriate permissions.

If the values are checked on the (i.e., by code in the This is a particular concern in systems, in which
browser), the data fields may still be tampered with before the line users maintain “tickets” granting them access rights. These tickets
is sent. The data is not completely : must be unalterable and unforgeable.

Slideset 10: 19 Program Security and Viruses Slideset 10: 20 Program Security and Viruses

Malicious Code

The Computer Emergency Response Team (CERT) at Carnegie
Mellon University, tracks vulnerabilities and attacks.

Period | Vulnerabilities | Incidents
1998 262 3,734
1999 417 9,859
2000 1,090 21,756
2001 2,437 52,658
2002 4,129 82,095
2003 3,784 137,529
2004 3,780 *x
2005 5,990 *x
2006 8,064 *x

“** Given the widespread use of automated attack tools, attacks ... have
become so commonplace that counts of the number of incidents provide little

information with regard to assessing the scope and impact of attacks.”

Slideset 10: 21 Program Security and Viruses

Malicious Code Taxonomy

Malicious code or a rogue program is the generic name for
unanticipated or undesired effects in programs, caused by an agent
intent on damage. The agent is the author or distributor of the
program.

Virus: a program that can pass on malicious code to other
nonmalicious programs by modifying them.

@ A transient virus runs when its attached
program executes and terminates when the
attached program ends.

@ A resident virus locates itself in memory and
can run as a stand-alone program.

Trojan horse: malicious code that, in addition to its primary effect,
has a second, nonobvious malicious effect.

Slideset 10: 23 Program Security and Viruses

Malicious Code (Cont.)

Malicious code (viruses, worms, etc.) runs with the permissions of
the user or operating system, and can do anything that a legitimate
user can do—create files, write to files, delete data and files, etc.

It may also sit dormant until triggered by some event, including
reaching a certain time.

Slideset 10: 22 Program Security and Viruses

Malicious Code Taxonomy

Logic bomb: class of code that “detonates” on a specific trigger.
Time bomb: logic bomb whose trigger is a time or date.

Trapdoor or backdoor: program to allow access other than by the
obvious, direct call, perhaps with special privileges.

\Worm: program that spreads copies of itself through a
network.

Rabbit: virus or worm that replicates without bound, with the
intention of exhausting system resources.

Slideset 10: 24 Program Security and Viruses

How Viruses Attach How Viruses Attach

For a virus to operate, it must be executed. There are many ways

to ensure that virus code will be executed. @ The virus may be appended at the beginning of a program.

When the program is invoked, the virus runs first, and then
may transfer control to the original program.
@ The virus may surround a program, i.e., have portions both

before and after the program to ensure that it regains control
after the program runs.

@ The virus may be resident within the code of another
program. When execution reaches that point in the code, the

virus code is executed.
@ The virus may be integrated into the program, altering the

functionality of the program. This requires intimate
knowledge of the program structure.

@ The virus can be embedded in an executable attachment to
an email message.

@ The execution might be triggered by a specific time or event.

Slideset 10: 25 Program Security and Viruses Slideset 10: 26 Program Security and Viruses

Qualities of Viruses Boot Sector Viruses

The bootstrap loader is a small piece of code that runs when your
machine is rebooted. The goal is to load the operating system
from disk, often by “chaining” together blocks. Each block loaded

A virus writer may strive for some subset of the following
characteristics:

o It is hard to detect. contains the location of the subsequent block.
o It is not easily destroyed or deactivated.
o It spreads infection widely. A boot sector virus interrupts the chain and causes loading of
o It can reinfect its home program or other programs virus code rather than regular OS code. This has the following
] effects:
o It is easy to create.))
)] o _ @ The virus seizes control of the OS very early and has complete
@ It is (relatively) machine independent and OS independent.

control of the machine.

Most viruses execute only once, and do their damage during this
execution.

@ Since OS files are often made invisible to ordinary users, the
take-over may go unnoticed.

Slideset 10: 27 Program Security and Viruses Slideset 10: 28 Program Security and Viruses

Memory-Resident Viruses

Most programs are swapped into memory to run. After they run,
the space is re-used for other programs. Some OS routines run so
frequently that they are kept in memory. These are called TSR's or
“terminate and stay resident” routines.

A virus that infects a TSR is guaranteed to be activated many
times. This is useful if the purpose of the virus is to infect media
that may be mounted and removed. Eg., each time the virus runs,
it can check whether any disk, floppy, CD, etc. has been mounted
and, if so, infect that medium.

Slideset 10: 29 Program Security and Viruses

Virus Effects and Causes

Virus Effect | How it is Caused
Attach to executable program

Modify file directory

Write to executable program file
Modify directory

Rewrite data

Append to data

Append data to self

Intercept interrupt

Load self into nontransient memory
Intercept interrupt

Intercept OS call (format disk, eg.)
Modify system file

Modify ordinary executable program

Attach to disk or control file

Remain in memory

Infect disks

Slideset 10: 31 Program Security and Viruses

Other Homes for Viruses

A virus may infect:

° such as word processors and
spreadsheets. These often have startup macros executed each
time the application is invoked.

° may be used by many other programs, and shared
and transmitted by many users.

) such as compilers, loaders, linkers, runtime
monitors, debuggers and even virus control programs, may be
infected and shared widely.

Slideset 10: 30 Program Security and Viruses

Virus Effects and Causes

Virus Effect | How it is Caused
Conceal self

Intercept system calls and falsify result
Classify self as “hidden” file

Infect boot sector

Infect systems programs

Infect ordinary programs

Infect data programs use to control executic
Activate before deactivating program

Store copy to reinfect after deactivation

Spread infection

Prevent deactivation

Slideset 10: 32 Program Security and Viruses

Detecting Viruses Detecting Viruses

To avoid detection some virus writers use multiple forms of the

Detecting viruses is undecidable, in general. Nevertheless, virus virus, so that the virus scanner may have to look for a different
scanners look for , certain recognizable patterns. signature for each form. Such viruses are called polymorphic.
Common text strings: once a virus has been identified, it may be
recognized by a characteristic string in the code. Some ways to fool scanners include:
Storage patterns: a virus that attaches to a file may cause the file @ Reorder the virus code, using JUMPs between blocks.
size to grow in a predictable way, or may invalidate @ Intersperse harmless instructions randomly throughout the
the checksum of the file. code.
Execution patterns: nonstandard patterns of creation or deletion of ° copies of the virus using different keys. In this case,
files may signal the presence of a virus. the call to the decryption library routine must be in the clear

and can serve as a signature.

Slideset 10: 33 Program Security and Viruses Slideset 10: 34 Program Security and Viruses

Preventing Infection

The following are some techniques for avoiding infection:
@ Use only commercial software acquired from reliable vendors.
@ Test all new software on an isolated computer.
@ Open attachments only when you know them to be safe.
o Make a recoverable system image and store it safely.
@ Make and retain backup copies of executable system files.

o Use virus detectors regularly and update them daily.

Slideset 10: 35 Program Security and Viruses

