
Elements of Security
Pretty Good Privacy

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: April 15, 2015

Slideset 8: 1 Pretty Good Privacy



Some Poetry

Mary had a little key
(It’s all she could export)
And all the email that she sent
Was opened at the Fort.

–Ron Rivest

What do you think that poem means?

Slideset 8: 2 Pretty Good Privacy



Need for Strong Encryption

The success of our information economy depends, in large part, on
the ability to protect information as it flows. This relies on the
power of cryptography.

RSA and other modern algorithms provides extremely strong
encryption, but are not particularly easy to use.

Slideset 8: 3 Pretty Good Privacy



Pretty Good Privacy

Phil Zimmermann had the goal of providing strong encryption for
the masses, in the form of an encryption system for email that is:

extremely strong, using state of the art
cryptographic algorithms;

easy to use and accessible to all.

PGP is “the closest you’re likely to get to military-grade
encryption.” –Bruce Schneier, Applied Cryptography

Slideset 8: 4 Pretty Good Privacy



Zimmermann’s Motivation

Zimmermann had a strong distrust of the government, and
believed strongly that everyone had an absolute right to privacy.

The government generally believes that the
right to privacy is limited by the need of the
government to read messages under certain
circumstances. Thus, the government
restricts access of the public and commercial
enterprises to strong encryption.

PGP is a “end-run” around government restrictions, and almost
landed Zimmermann in jail.

Slideset 8: 5 Pretty Good Privacy



Did Zimmermann Succeed?

From Wikipedia page on PGP:

In 2003, an incident involving seized Psion PDAs
belonging to members of the Red Brigade indicated that
neither the Italian police nor the FBI were able to decode
PGP-encrypted files stored on them.

A more recent incident in December 2006 (see United
States v. Boucher) involving US customs agents and a
seized laptop PC which allegedly contained child
pornography indicates that US Government agencies find
it “nearly impossible” to access PGP-encrypted files.
Additionally, a judge ruling on the same case in
November 2007 has stated that forcing the suspect to
reveal his PGP pass-phrase would violate his Fifth
Amendment rights i.e. a suspect’s constitutional right
not to incriminate himself.

Slideset 8: 6 Pretty Good Privacy



PGP

Zimmermann developed PGP (Pretty Good Privacy) in the late
1980’s and early 1990’s. Some characteristics include:

1 Uses the best available cryptographic
algorithms as building blocks.

2 Integrates these into a general-purpose
algorithm that is processor-independent
and easy to use.

3 Package and documentation, including
source code, are freely available on-line.

4 Now provided by Viacrypt in a
compatible, low-cost commercial version.

Why would anyone buy this software from Viacrypt when it’s
available free?

Slideset 8: 7 Pretty Good Privacy



Growth of PGP

PGP has grown explosively and is widely used.

1 Available free worldwide for Windows, UNIX, Macintosh, and
others. The commercial version satisfies businesses needing
vendor support.

2 Based on algorithms with extensive public review.

Public key encryption: RSA, DSS, Diffie-Hellman.
Symmetric encryption: CAST-128, IDEA, and 3DES.
Hash coding: SHA-1.

3 Wide applicability: standardized scheme for encryption,
supports secure communication over Internet and other
networks.

4 Not developed by or controlled by any government.

5 Now on track to become an Internet standard (RFC 3156).

Slideset 8: 8 Pretty Good Privacy



PGP Services

The actual operation of PGP, as opposed to key management,
consists of five services:

1 Authentication

2 Confidentiality

3 Compression

4 E-mail compatibility

5 Segmentation

Slideset 8: 9 Pretty Good Privacy



PGP Authentication

This is a digital signature function.

1 Sender creates a message.

2 SHA-1 (or DSS/SHA-1) is used to generate a 160-bit hash
code of the message.

3 The hash code is encrypted with RSA using the sender’s
private key and the result is prepended to the message.

4 The receiver uses RSA with the sender’s public key to decrypt
and recover the hash code.

5 The receiver generates a new hash code for the message and
compares it with the decrypted hash code.

What does this look like in our protocol notation? Detached
signatures are also supported.

Slideset 8: 10 Pretty Good Privacy



PGP Confidentiality

PGP provides encryption for messages sent or stored as files.

1 The sender generates a message and a random 128-bit session
key (used for this message only).

2 The message is encrypted using CAST-128 (or IDEA or
3DES) with the session key.

3 The session key is encrypted with RSA, using the recipient’s
public key, and prepended to the message.

4 The receiver uses RSA with his private key to decrypt and
recover the session key.

5 The session key is used to decrypt the message.

Put this into our protocol notation. What are the benefits of this
scheme?

Slideset 8: 11 Pretty Good Privacy



Confidentiality and Authentication

Both authentication and confidentiality may be combined for a
given message.

1 Sender generates a signature for the plaintext message and
prepends it to the message.

2 The plaintext message plus signature is encrypted.

3 The session key is encrypted using RSA and prepended to the
message.

Why is it preferable to generate a signature for the plaintext
message, rather than for the encrypted message?

Slideset 8: 12 Pretty Good Privacy



Compression

As a default, PGP compresses the message, using the compression
algorithm ZIP, after applying the signature and before encryption.
This is done because:

It is preferable to sign an
uncompressed message so that the
signature does not depend on the
compression algorithm.

Versions of the compression
algorithm behave slightly
differently, though all version are
interoperable.

Encryption after compression
strengthens the encryption, since
compression reduces redundancy in
the message.

Slideset 8: 13 Pretty Good Privacy



E-mail Compatibility

PGP always involves encryption. Encrypted text contains arbitrary
8-bit octets. However, many email systems permit only ASCII text.

PGP uses radix-64 conversion to map groups of three octets into
four ASCII characters. Also appends a CRC for data error
checking. By default, even ASCII is converted.

Slideset 8: 14 Pretty Good Privacy



E-mail Compatibility

Use of radix-64 expands the message by 33%. This is usually more
than offset by the compression. One website says:

HELD96 reports an average compression ratio of about
2.0 using ZIP. If we ignore the relatively small signature
and key components, the typical overall effect of
compression and expansion of a file of length X would be
1.33 ∗ 0.5 ∗ x = 0.665 ∗ x. Thus, there is still an overall
compression of about one-third.

Slideset 8: 15 Pretty Good Privacy



Segmentation and Reassembly

E-mail facilities are often restricted to a maximum message length.
A longer message must be broken into segments, which are mailed
separately.

PGP automatically segments
messages that are too large. This is
done after all of the other steps,
including radix-64 conversion. Thus
signature and session key appear only
once.

At the receiving end, PGP strips off mail headers and reassembles
the message from its component pieces.

Slideset 8: 16 Pretty Good Privacy



Key Management

PGP makes use of four types of keys: one-time session symmetric
keys, public keys, private keys, passphrase-based symmetric keys.

1 Unpredictable session keys must be
generated.

2 PGP allows users to have multiple
public/private key pairs. There is
not a one-one correspondence
between users and public keys.

3 Each entity must maintain a file of
its own public/private key pairs as
well as the public keys of others.

Slideset 8: 17 Pretty Good Privacy



Session Key Generation

A session key is generated on the fly for symmetric encryption of a
single message.

Each session key is associated with a single message and used only
once. Encryption is done with CAST-128 (128-bit keys), IDEA
(128-bit keys), or 3DES (168-bit keys). (Assume CAST-128.)

CAST-128 is used to generate the key from a previous session key
and two 64-bit blocks generated based on user keystrokes,
including keystroke timing. The two 64-bit blocks are encrypted
using CAST-128 and the previous key, and concatenated to form
the new key.

Slideset 8: 18 Pretty Good Privacy



Public/Private Key Generation

Assume the public key algorithm is
RSA. Generating keys requires finding
a pair of large primes.

An odd number n of sufficient size (usually > 200 bits) is
generated and tested for primality. If it is not prime, then repeat
with another randomly generated number, until a prime is found.
The generation of the initial candidate may be influenced by
jiggling the mouse or other user input.

Slideset 8: 19 Pretty Good Privacy



Public/Private Key Generation

A result from number theory says that primes appear in the
neighborhood of n about every ln(n) = lge(n) numbers. To find a
prime of around 200 bits, it takes about ln(2200)/2 = 70 tries.

This is an expensive operation, but performed infrequently.

Slideset 8: 20 Pretty Good Privacy



Managing Key Pairs

Given the desire to allow one user to have multiple public/private
key pairs, how do we know which public key was used to encrypt a
message.

Send the public key along with the message. Inefficient, since
the key might be hundreds of bits.

Associate a unique ID with each key pair and send that with
the message. Would require that all senders know that
mapping of keys to ID’s for all recipients.

Generate an ID likely to be unique for a given user. This is
PGP’s solution. Use the least significant 64-bits of the key as
the ID.

This is used by the receiver to verify that he has such a key on his
“key ring.” The associated private key is used for the decryption.

Slideset 8: 21 Pretty Good Privacy



Key Rings: Private Key Ring

Each user maintains two key ring data structures: a private-key

ring for his own public/private key pairs, and a public-key ring for
the public keys of correspondents.

The private key ring is a table of rows containing:

Timestamp: when the key pair was generated.

Key ID: 64 least significant digits of the public key.

Public key: the public portion of the key.

Private key: the private portion, encrypted using a passphrase.

User ID: usually the user’s email address. May be different for
different key pairs.

Slideset 8: 22 Pretty Good Privacy



Encrypting the Private Key

The private key is encrypted with a user-supplied passphrase.

1 The user selects a passphrase for encrypting private keys.

2 When a new public/private key pair is generated, the system
asks for the passphrase. Using SHA-1, a 160-bit hash code is
generated from the passphrase, which is discarded.

3 The private key is encrypted using CAST-128 with 128 bits of
the hash code as key. The key is then discarded.

Whenever the user wants to access the private key, he must supply
the passphrase.

Slideset 8: 23 Pretty Good Privacy



Public Key Ring

Public keys of other users are stored on a user’s public-key ring.
This is a table of rows containing (among other fields):

Timestamp: when the entry was generated.

Key ID: 64 least significant digits of this entry.

Public key: the public key for the entry.

User ID: Identifier for the owner of this key. Multiple IDs may
be associated with a single public key.

The public key can be indexed by either User ID or Key ID.

Slideset 8: 24 Pretty Good Privacy



Signing a Message

We can now see the mechanics of the operations we described
earlier:
Signing a Message

1 PGP retrieves the sender’s private key from the private-key
ring using the User ID as an index. If no User ID was
supplied, retrieve the first private key.

2 PGP prompts the user for a passphrase to recover the
encrypted private key.

3 The signature component of the message is constructed.

Slideset 8: 25 Pretty Good Privacy



Encrypting a Message

1 PGP generates a session key and encrypts the message.

2 PGP retrieves the recipient’s public key from the public-key
ring using her User ID as an index.

3 The session key component of the message is constructed.

Slideset 8: 26 Pretty Good Privacy



Decrypting a Message

1 PGP retrieves receiver’s private key from the private-key ring,
using the Key ID field in the session key component of the
message as an index.

2 PGP prompts the user for the passphrase to recover the
unencrypted private key.

3 PGP recovers the session key and decrypts the message.

Slideset 8: 27 Pretty Good Privacy



Authenticating a Message

1 PGP retrieves sender’s public key from the public-key ring,
using the Key ID field in the signature key component of the
message as an index.

2 PGP recovers the transmitted message digest.

3 PGP computes the message digest for the received message
and compares it to the transmitted message digest to
authenticate.

Slideset 8: 28 Pretty Good Privacy



Public Key Management

In a public key system, the management of keys is a serious
practical problem. How does B know that the public key purported
to belong to A actually does, and not to some other party E .
There are several approaches:

1 B can physically obtain the key from A.

2 B can verify the key over the phone, assuming B knows A’s
voice.

3 B can obtain A’s key from a mutually trusted third party D,
which certifies the key using the certification methods we
discussed earlier.

4 B can obtain A’s key from a trusted certifying authority,
which supplies the certificate.

PGP’s solution to this is flexible, but allows for degrees of trust in
the system.

Slideset 8: 29 Pretty Good Privacy



Key Trustworthiness in PGP

Associated with each public key in the user’s key ring is a key

legitimacy field that indicates the extent to which PGP trusts
that this is a valid public key for this user.

This involves storing certificates for each key and chains of
certificates, and the user’s assessment of the trust to be assigned
to the key, and various heuristics for computing trust.

Slideset 8: 30 Pretty Good Privacy



Key Trustworthiness

Zimmerman envisioned establishing a “web of trust” that has been
partially supplanted by current PKIs.

As time goes on, you will accumulate keys from other
people that you may want to designate as trusted
introducers. Everyone else will each choose their own
trusted introducers. And everyone will gradually
accumulate and distribute with their key a collection of
certifying signatures from other people, with the
expectation that anyone receiving it will trust at least one
or two of the signatures. This will cause the emergence
of a decentralized fault-tolerant web of confidence for all
public keys. –Phil Zimmermann, PGP 2.0 manual (1992)

Slideset 8: 31 Pretty Good Privacy



Revoking Public Keys

A user may wish to revoke a public key because:

compromise is suspected, or

to limit the period of use of the key.

The owner issues a signed key revocation certificate. Recipients are
expected to update their public-key rings.

Slideset 8: 32 Pretty Good Privacy



PGP (Cont.)

Zimmermann faced two major issues:

Inclusion of RSA technology violated the patent protection of
the algorithm.

Exportation of strong cryptographic technology was prohibited
by federal law.

Both issues were eventually resolved. PGP was granted a license
for RSA, and the government realized it had lost the battle over
distribution.

Slideset 8: 33 Pretty Good Privacy


