Foundations of Computer Security Lecture 33: Entropy II

> Dr. Bill Young Department of Computer Sciences University of Texas at Austin

Example Revisited

Given: an unbalanced coin that is three times more likely to yield a head than a tail.

Solution: There are two possible outcomes:

Result	Prob
Н	3/4
Т	1/4

The entropy is computed as follows:

$$h = -(3/4 \times \log 3/4 + 1/4 \times \log 1/4) \approx 0.811$$

Upshot: It's theoretically impossible to encode this language using less than 0.811 bits per symbol (on average).

But how would you ever do better than 1 bit / symbol?

Lecture 33: 1	Entropy II	Lecture 33: 2	Entropy II

Example Revisited

Example Revisited

Instead of taking single flips as our "experiments," let's take pairs (call them "2flips") and code as follows:

Result	Prob.	Code
HH	9/16	0
HT	3/16	10
TH	3/16	110
TT	1/16	111

Suppose we flip the coin 32 times; that's 16 2flips. In an *average* run, we'd expect: HH to appear 9 times, HT and TH to each appear 3 times, and TT to appear once. *Why*?

Given 32 flips (16 2flips), we could expect:

Result	Count	Code	Bits
HH	9	0	9
HT	3	10	6
TH	3	110	9
TT	1	111	3
Total:			27

For the naïve encoding, using 1 bit / flip, we'd expect to use 32 bits. Our efficiency is $27/32 \approx 0.844$, which is not a bad approximation of the entropy (0.811).

Could we do better? Sure, just use 3flips, 4flips, etc. The entropy is the limit of this process.

Suppose you have a six-sided die that is unbalanced such that 1 and 2 are equally likely; 3 and 4 are equally likely; and 5 and 6 are equally likely. However, the die rolls 1 twice as often as 3, and rolls 3 three times as often as 5.

- What is the "naive" encoding for this language?
- What is the entropy of this language?
- Find an encoding that is more efficient than the naive encoding.
- Give a convincing argument that your encoding is more efficient than the naive encoding.

Hint: There's no need to encode sequences of rolls.

Lecture 33: 5 Entropy II

Lessons

- Computing the entropy of a language provides a bound on the efficiency of any encoding.
- But, finding an efficient encoding requires ingenuity.

Next lecture: Fundamental Theorems

Lecture 33: 6 Entropy