Foundations of Computer Security

Lecture 54: Certificates

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Web of Trust

Much of what happens on-line, particularly e-commerce, depends on establishing a web of trust relationships among the parties.

Question: Why should A trust B with whom he's never previously dealt?

Possible Answer: A might rely on a known third party to "vouch for" B.

The Chamber of Commerce, Better Business Bureau, credit reporting agencies, friends all function in part as certification authorities for some commercial transactions.

Need for Trust

With a public key infrastructure (PKI), if A knows B's public key, then A can:

- \bullet send a message securely to B;
- \bullet be assured that a message from B really originated with B.

But, how does A know that the public key B presents is really B's public key and not someone else's?

The most common circumstance in which trust is needed in a distributed on-line context is *reliably binding a public key to an identity*.

Certificates

A *certificate* is the electronic equivalent of a "letter of introduction."

A certificate is constructed with digital signatures and hash functions.

A public key and a user's identity are bound together within a certificate, signed by a certification authority, vouching for the accuracy of the binding.

How it Might Work

Suppose X is the president of a company; Y is her subordinate. Each have an RSA public key pair.

- \bigcirc Y securely passes message $\{Y, K_Y\}$ to X.
- ② X produces a cryptographic hash of the message, i.e., $h(\{Y, K_Y\})$.
- **3** X produces $\{Y, K_Y, \{h(\{Y, K_Y\})\}_{K_X^{-1}}\}$.

This last then becomes Y's certificate, signed by X.

Validating the Certificate

Suppose Y presents to Z the certificate:

$$\{Y, K_Y, \{h(\{Y, K_Y\})\}_{K_X^{-1}}\}$$

What does Z do with this? What does Z learn?

- The message certifies the binding of Y and K_Y .
- X is the certifying authority.
- \bullet Data items Y and K_Y were not altered or corrupted.

This scheme assumes that Z has a trustworthy public key for X, to verify X's signature.

Lessons

- Certificates are needed to establish a web of trust in a distributed environment.
- A trusted individual can "vouch for" another party by certifying the binding of identity to public key.
- A third party can check the validity of the binding.

Next lecture: Certificates II